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1. INTRODUCTION.

Most applied science is concerned with uncovering and verilying causal relationships. There-
fore, many disciplines have spawned a literature concerned with estimating the effect of
treatments, interventions, and programs. In the evaluation of new medical treatments and
drugs, standard have emerged that researchers must usually follow for their work to be
considered credible. Although the need for randomization is sometimes a subject of dispute
(Royall, [1991]), random assigment of treatment and concurrent data collection on treatment
and control groups is the norm in medical research . In contrast, the use of random assig-
ment to evaluate social programs remains controversial. While some researchers have argued
that evaluations based on observational studics are not credible (Lalonde [1986]), others ar-
gue that experiments can never be a complete substitute for analyzing observational data
(Heckman and Hotz [1990}).

Disputes over the possibility and even desirability of randomization in social research
have led researchers to search for reliable methods of estimating treatment effects from ob-
servational data. Recently, much research has been geared towards establishing conditions
that guarantee identification of treatment effects without relying on functional form restric-
tions or distributional assumptions. The focus has been on using instrumental variables
for identification of average treatment effects in a population of interest, or on the average
effect for the sub-population that is treated. The conditions required to nonparametrically

identify these parameters can be restrictive, however, and the derived identification results



fragile (Heckman {1990)). In particular, results in Chamberlain (1986), Manski (1990), and
Angrist and Immbens (1991) require that there be some group in the sample for whom the
probability of treatment is zero, at least in the limit.

The purpose of this paper is lo show that even when there is no group available for
whom the probability of treatment is zero, we can still identify an average treatment effect
of interest, which we will call a local average treatmeni effect (LATE). This is the average
effect of treatment for individuals whose treatment status is influenced by changing an ex-
ogenous regressor that satisfies an exclusion restriction. To obtain this result, we impose
mild restrictions that are satisfied in a wide range of models and circumstances in economic
research, including latent index models and evaluations based on natural ezperiments such
as those by Angrist (1990) and Angrist and Krueger (1991). We do not make assumptions
about the distribution of the response variables, nor do we assume that the treatment ef-
fect is constant. One interpretation of the result is that the incentives for participation are
randomized, rather than the participation status itself. Combined with a restriction on the
way incentives affect participation status this identifies the average treatment effect for those
whose participation status can be changed by changing the incentives to participate.

In addition we analyze the probability limit of an instrumental variable estimator under
these conditions. We show that it estimates a weighted average treatment effect, with the
weights non-negative and adding up to one. If there is more than one instrument the

probability limit potentially depends on the choice of the instrument. If the treatment effect



is identical for all individuals the choice of instrument is only important for efficiency.

The paper is organized as follows: In Section 2 we introduce the model. Section 3 contains
the main identification result. In Section 4 we discuss estimation of local average treatment
effects and the IV estimator., A number of examples are discussed in Section 5. The final

section contains a summary of the main results and the conclusion.

2. THE MODEL.

The framework we use is essentially similar to that outlined by Rubin (1974} and Heckman
"(1979) and described in our previous paper on identification of treatment effects (Angrist
and Imbens [1991}). Let Y, be the respons;a without the treatment or program for the typical
individual.? Y] is the response with treatment. D is an indicator of treatment. We observe
DandY=Yp=D-Y;+ (1 — D) Y for a random sample of individuals. The individual
treatment effect is ¥; — Y but ¥; and Y, are never observed for the same person. Therefore
we rely on comparisons between different individuals and compute average treatment effects.
T w§ average treatment effects have received particular attention (see Heckman and Robb

-[1985]). The first is the average treatment effect for the entire population:
Qg = E[Y] - Yg]

Outside of experimental situations, ay is nol consistently estimated by taking the difference
of the response for the individuals in the treatment and control group (or, equivalently,

regressing Y on a constant and D) because such a difference has expectation equal to

2We will supress the index denoﬁng the individual during most of the paper.
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E1|D = 1] - E[Yo|D = 0].
When individuals are not randomly assigned to the treatment and control groups, there is
no reason to believe that E[Ys|D = 0] = E[Y] and E[Y4|D = 1] = E{V4].

A second average treatment effect of interest is the selected average treatment effect
o = E[Y; - Y|D =1].

This is the average effect of the treatment on the treated. Like ag, oy is also difficult to

identify because E[Y5|D = 1] is not directly estimable.

3. IDENTIFICATION.

The solution to the identification problem dominating the evaluation of medical treatments
is randomized assigment to treatment and control groups. This guarantees that E[Y;|D = 0]
is equal to E[Y;|D = 1] for i = 0,1. In the evaluation of social programs researchers have
often relied on instrumental variables strategies to identify treatment effects. We define
an instrumental variable Z to be a variable unrelated to the responses Yy and Yi, and
correlated with the participation probability. In order to formalize this, let {21, 2s,...,2x}
be the support of Z. Define for each z in the support of Z, a random variable D;. D. is
equal to zero if an individual would not participate if he or she had the instrument Z equal
to z, and it is equal to one if that individual would participate with Z = 2. Clearly, we will
not observe the entire set of indictators {D;,, D,,,..., Dz, }, but we assume that it exists

in the same way thal Y, and ¥; are defined even if not observed.> We observe (Z, D,Y)

3The D, notation was su.ggested to us by Gary Chamberlain.
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for a random sample of individuals, where D = Dz = K | I,_,, - D,,, the participation
indicicalor associated with Z, and Y = Yp = D - ¥; + (1 — D) - Y, the variable given the
participation status D.

The formal condition for instruments is:

Condition 1 (Existence of Instruments) Let Z be any observed random variable such
that Yo, Y1 and D, D.,,...,D,, are jointly independent of Z, and P, = E[D|Z = 2] =

E[D,] is a non-trivial function of z.

This condition guarantees that Z‘ is a valid instrument in the sense that it does not directly
affect the responses Y5 and Y1, and thal it does affect the probability of participation in the
program (i.e. that is is correlated with D).

It is important to note that Condition 1 by itself is not enough to identify any aver-
age treatment effect. The existence of a valid instrument implies that the endogeneity of
treatment assigment can be dealt with, but it does not address the issue of treatment ef-
fect variation. The following example shows how severe the implication of treatment effect

heterogeneity can be for the identification of an average treatment effect.

Example 1 Consider the following model:

Yo=c¢
Yi=Yo+9
D; = h{z,v)




and (¢, 7, ) are jointly independent of Z. If Var(n) = 0, a linear regression of Y on a constant
and P, = E[D|Z = z] estimates the (constant) treatment effect. If the treatment effect p
is not constant, this regreésiou does not necessarily estimate anything of interest. Let Z be
binary, and » € {0,1,2}, with Pr(v = 0) = 2/7, Pr(v = 1) = 4/7 and Pr(v = 2) = 1/1.
Further more, let E[gly = 0] = E[j|lv = 1] = 1, and E[g|lv = 2] = 2. The conditional
expectation of ¢ satisfied Ele|v = 0] = 1, E[e|v = 1] = 5/2, E[elr = 2] = 0. Finally, let the
function A(-,) satisfy: h(1,0) = A{0,2) = 1, and 2(0,0) = h(0,1) = A(1,1) = h(1,2) = 0.
The participation probability P, is 2/7 for people with Z = 0 and 1/7 for people with Z = 1.
The average treatment effect g is equal to 8/7, and the selected average treatment effect
o equals 2/[Pr(Z = 0) + 1. However, the conditional expectation of ¥ given D and Z
is equal to 2, no matter what the value of D or Z. The expected response is the same
among participants as among non—participants,. and it is the same among those with a high
probability of participating {Z = 0) as among those with a low probability (Z = 1). Despite
the fact that the treatment effect is positive for every individual, there is no comparison of
the four average responses that could identify a meaningful treatment effect.

The reason there is no meaningful comparison is that shifting the instrument from 0 to
1 causes some people (those with v = 0) to shift from non-participation to participation,
while others (with » = 2} shift from participation to non-participation. The treatment
effect for those who shift to participation is cancelled out by the loss of those who shift from

participation to non—participation for a given change in the instrument. O



One condition that could prevent cases like this is that the treatment effect is constant.
Another condition is the existence of a value z of the instrument such that the probability
of participation conditional on that value, P,, is equal to zero. This type of condition is
investigated in Heckman (1990) and Angrist and Imbens (1991). The next condition prevents
shifts in participation status in opposite direction by limiting the variability in hypothetical

participation decisions.

Condition 2 (Monotonicity) For all z, w in the support of Z, such that P, # P,,
(Po—=P) - (Du—D,)20

If Py =P, then D, = D,.

This condition ensures that the instrument affects the participation or selection decision in
a monotone way. That is, if people are more likely to participate given Z = w than given
Z = z, then anyone who would participate given Z = z must also participate given Z = w.

Another way of phrasing Condition 2 is:
Pr(D,—D,>0)=1 or Pr(D,~D,<0)=1

Of course we can never verify this condition, because we observe people only with one value
of Z, but in particular applications it might be a reasonable assumption.
An important class of models that satisfies Conditions 1 and 2 is the class of latent index

models commonly used in econometric sample selection applications.



Example 2 Consider the following model

Yo=u+te

Yi=Yo+7

D, =1I[z-v+v>0]

Z is independent of (v,€,7).

The treatment effect 7 may be correlated with the stochastic component of both the response
(€) and the participation equation (v}, but all three must be independent of the instrument
Z. Gronau (1974), Heckman (1978, 1990) and many others have used this type of model,
often with variations, such as constant treatment effects (Var(n)=0), and with extra observ-
able characteristics that affect both the participation and response. Heckman (1990) gives
sufficient conditions for identification of the average treatment effect for the treated, oy, from
a random sample of (Y, D, Z). An important condition he requires is that the support of the

instrument Z be unbounded. O

QOur main result is the following:

Theorem 1 If Conditions 1 and 2 hold, then we can identify the following average treatment

effect:

Oz = E[}/l - Y;)lDz # Dw]



A

from the joint distribution of Y, D and Z, for all 2 and w in the support of Z such that

P, #£P,

Proof: See Appendix.

Theorem 1 implies that one can identify the average treatment effect for that part of
the population that changes its participation behavior with the change in the instrument
from Z = z to Z = w. The relevance of the theorem depends on two issues. The first is
whether the conditions are likely to be satisfied in practical evaluations of treatment effects.
We give some examples below that suggest that there are cases where these conditions are
satisfied. The other issue is whether the local average treatment effects that are identified
here are of interest. Obviously if the treatment effect is identical for everybody, the local
average treatment effect is equal to the average treatment effect for the population and for
participants. In general, the less the treatment effect varies accross the population, the closer
the local average treatment effect is to a population effect. Another point is that the local
average treatment effect is the average treatment effect for the individuals whose behavior
can be changed by changing the value of Z. The average treatment effect for this group
mig.ht therefore be a good approximation for the treatment effect on those individuals who
would be drawn into the program if it were to be made marginally more attractive. An
appropriate analogy is to panel data techniques. In models with fixed effects, the data are
only informative about the impact of binary regressors on individuals who change the value

of the regressor over the period of observation. Here the treatment effect is identified only



for potential changers, those who can be induced to change participation status by a change

in the instrument.

4. ESTIMATION.
The result in Theorem 1 suggests a simple procedure for estimating average treatment effects
with a random sample of Y, D and Z. when Z is binary with values z and w. In this case

the 6nly treatment effect identified is . From the proof of Theorem 1 we have:
ez = EYy = Yo|D; # D] = {E[Y|Z = 2] — E[Y|Z = w]}/{P. — P.}

which can be consistently estimated by replacing expectations with sample averages. The
resulting estimator is an application of Wald’s (1940) method of fitting straight lines and is
the same as an instrumental variables estimator using binary Z and a constant as instruments
(Durbin [1954}).

If Z has a discrete distribution with points of support 2o,2;,...,2x we can estimate
(H + 1) x K/2 average treatment effects, only K of which are linearly independent. They

are related as follows:

a __‘Pz!_sza +Pz"\_Pz;a
Zm,Zk LTk Zm,¥y
= P~ Py P., - P,

Let the points of support be ordered in such a way that ! < m implies ; < P,.. Then the

average treatment effect that refers Lo the largest group is a,,,,.* This can be expressed in

e is the average treatment effect for a group that makes up a proportion equal to [P, — Py] of the

total population. The size of this proportion is maximized by taking the treatment effect [« TP
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terms of a complete set of K linearly independent treatment effects based on first differences

as:

K
Mzpezg = [E(sz - sz—n) . azuk_x]/[PZK - Pln]

A sequence of K estimated local average treatment effects can be used to assess the variability
of treatment effects. When the effects appear stable they can be combined into a single
efficient estimate.

Angrist (1991) discusses a simple framework for imposing and testing the constant treat-
ment effect hypothesis on a complete set of linearly independent Wald estimates. The efficient
linear combination of any set of K linearly independent Wald estimates is computed by using
K indicators for each value of Z, §; = I[Z = 2| as instruments for P along with a constant

in conventional Two-Stage Least Squares estimation of the equation:
(1) Y=EYo]+ar-P+e=EYo]+ar - P+ {{(Yi-Yo) —a]- P+ Y, — E[Y0]

This is the same as using P, as an instrument for P in (1). Finally, the same estimate of a;

can be computed by Generalized Least Squares estimation of the grouped equation
(2) Y= E(Vol 4 on- Po + 4

where 7, is the average of the compound error term given Z = z;, and Y = E[Y|Z = z].
A Wald test for the equality of a full set of linearly independent Wald estimates is the

Chi-square goodness of fit statistic for (2). Alternatively, the same statistic can be computed
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as the standard instrument—error orthogonality test statistic (see, e.g. Newey [1985]) using
the set of instruments, & (Angrist 1991, Proposition 2).

In empirical applications, local average treatment effects will often differ. Even in this
case the parameter estimated by TSLS using a constant and P, or a full set of dummies as
instruments applied to equation (1) is still of interest. It can be shown that the probability

limit of the TSLS or IV estimator of a, is

. _EY-(B-EP) 35,
() ea= E[P, - (P,— E[F])] ,;2“

with

Z{;k T (Pzt - Q)

M=(Py—Py)
¢ ( * * ) EIK=07”'P21'(P2~_Q)

where 1, = Pr(Z = z) and Q@ = Pr(D = 1) = K ;74 P,,. This probability limit ay is a
weighted average of the K average treatment effects a, ;, _, with the weights Ax non-negative
and adding up to one.’

i P., = 0, then the conditions for identification of the average treatment effect on the

treated are satisfied. We have:

_ ud Tkiz,
01—2 Q * Ozyzg

If Z is continuous one could parametrize the treatment effect, for instance by dividing

tlie support of Z in intervals and estimating an average treatment effect for every interval.®

57This follows from the ordering of the points of support of Z in such a way that P, > P;,_, for all &.
SCondition 1 now requires that Z is independent of Yo, Y1 and the infinite set of D, for all z in the
support of Z.
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Alternatively one can regress Y on a constant and Pz, equivalent to using P, and a constant
as instruments for P. This is feasible if P, can be estimated. In investigating the probability
limit of the estimator of the coefficien on Pz in such a regression we will assume that Z is
a one-dimensional random variable with density f(z). In addition we assume that P; is a
differentiable function of z with positive derivative. These assumptions might seem more
restrictive than they really are. If Z is not one-dimensional, or P, is not non—decreasing,
one can transform the instrument from Z to Z = Pz, with participation probability P, =
E[D|Z =zl Z satisﬁmr Conditions 1 and 2, is one-dimensional and P, is non—decreasing
because ﬁ, = E|D|Z = z] = E[D|Pz = z} = z. Also, the regression of ¥ on Pz and the
regression of Y on Pz give identical results because P, = E[D|Z = 2] = E[D|Z = P.] = Pp,.

Define:
a, = lirlna,w = E[Y; — Yo[lirtn D, - D, #0)

We assume that this limit is well defined. «; is the expected treatment effect for someone
who will change from participation to non-participation if the value of the instrument is
lowered from its original value of z, however small the decrease. An example should help to

clarify the nature of c,. In the latent index model of example 2,
o, = E[Y; —-Y0|Lill;111D, -D, #0]
= BIY: ~ Yollim Iz -y + v 2 0]~ T 744 2 0] £
=B = Yo|lim-w-y>v2 ~z-9]

13



= B[Y; — Yolv = —2-1]
The main result in this section is the following

Theorem 2 The probability limit of the estimator for the coefficient on P, in the regression

of Y on a constant and P,, or the IV estimator using P; as an instrument, is equal to:

_EY(P=Q e
CE P (P. - Q)] /—eo = A=)

with

3o =[5 [TR- @) s /[T R (- @) s

The weight function is non-negative and integrates to one. The weights are proportional to

the derivative of P, and to [°(P. — Q) - f(u)du.

Proof: See Appendix.

An important implication of the above result is that different instruments may lead to
different estimates o if the treatment effect is not constant. The reason is not necessarily
that the instruments are not valid but may be that the weight functions associated with
the different estimators are different. This result might explain some of the variation found
in estimated treatment effects, such as union wage effects (cf Lewis [1986]). The following

example shows how the variation in treatment effects might affect different IV estimators.

Example 3 Let Y5 = 0, Y1 = 5. Z; and Z; are both potential instruments, and are
independent binary random variables. Let D be equal to h(Z;, Z,, v), with

14



A(0,0,0) = h(0,0,1) = A(0,1,0) = £(1,0,1) = 0

h(0,1,1) = A(1,0,0) = A(1,1,0) = ~(1,1,1) = 1

The treatment effect 5 has conditional expectation E[plv = 0] = 1o and E[g|v = 1] = ;.

This model satisfies the two conditions in two ways. From the point of view of the
researcher with instrument Zy, Z = Z; and D, = h(z, Z,v). For this researcher Condition 1
requires that Y5, Y1 and D, = k(z, Z, v) areindependent of Z = Z;, and Condition 2 requires
that {E[R(1, Zs,v)] — E[R(0, Z2,¥)]} - [R(1, Z3,v) — R(0, Zz,v)] 2> O for all Z; and v. This
researcher will estimate the local average treatment effect (which in the binary instrument
case is equal to the treatment effect estimated by the IV estimator) to be equal to (E[Y|Z, =
1]—-E[Y|Z: = 0))/(E[D|Z1 =1} E[D|Z, = 0]) = no-(1—Pr(v = 1))+m - Pr(y = 1). From
the point of view of the second researcher with instrument Z;, Z = Z, and D, = h{Z;, z,v).
Condition 1 and 2 change accordingly. He or she will estimate the local average treatment
effect to be (E[Y|Z; = 1] — E[Y|Z, = 0]))/(E[D|Z, = 1] — E[D{Z; = 0]) = n1.

The reason for the difference in estimated treatment eflects is that the instruments lead

to different weights for the treatment effects g and 7;,. O

If there are additional variables X which affect both the response and probability of
participation there are a number of possibilitics. The first is that X is uncorrelated with Z.
In that case X is just part of the stochastic component that is common to the participation

and response equation. One can leave it out of the analysis completely, since it does not



affect the estimates for the treatment effects. It might however reduce the variance of such
estimates by increasing the B? of the response regression. The second case is that where
X is correlated with Z as well as Y. One could modify Condition 1 to state that Yo, ¥
and D, are independent of Z, conditional on X. The entire analysis could then be done
conditional on X, either non-parametrically, or by assuming a particular parametric form

for the dependence on X.

5. EXAMPLES.

In this section we will give a number of examples in which conditions 1 and 2 are likely to
be satisfied. The examples exploit the manner in which a particular program or treatment is
implemented to create instruments that clearly are exogenous. Evaluations of this type are
sometimes reffered to as natural experiments, in contrast with the identification achieved in
clinical trials where individuals are directly randomized in or out of treatment and control
groups. The difference between natural experiments and clinical trials is not fundamental,

rather it is related to the stage at which randomization occurs.

Example 4 (Draft Lottery) Angrist (1990) uses the Vietnam-era draft lottery to identify
the earnings effect of veteran status on earnings. The instrument is the draft lottery number,
randomly assigned to date of birth. Because they were randomly assigned, lottery numbers
do not directly affect the response variable (be it earnings or employment status). However,
lottery numbers were used to determine priority for conscription {veteran status itself was
never randomly assigned). Therefore the average probability of serving in the military falls

16



with the lottery number. Condition 2 essentially requires that someone who would serve in
the military with lottery number k, would also serve in the military with lottery number
<k

An example of the average effect of veteran status that is identified is that for people
who would serve if they had a low lottery number, but not with a high lottery number. One
cannot say anything about the effect of veteran status on people who would serve regardless
of their lottery numbers (i.e. true volunteers), nor can one say anything about people who
would not serve regardless of their lottery number (draft ineligible men, draft evasions). The

average treatment effect is identified for the people affected by the draft. O

Example 5 (Compulsory Schooling Age) Angrist and Krueger (1991) investigate the
effect of schooling on earnings using the variation in compulsory schooling created by the
variation in birth dates. Birth dates themselves probably do not affect earnings in cohorts
born in a period that is not too long. Birth dates do affect the level of schooling achieved
because people born on different dates, who are allowed to drop out of school on their
birthday, are confronted with (slightly) different compulsory schooling levels. Condition 2
here requires that someone who would stay in school when not compelled, would also stay
in school when constrained to do so by accident of birth. The local average treatment effect
identified here is that of people who are (potentially) affected by the compulsory schooling

laws. O
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The following example illustrates that condition 2 is not trivially satisfied in practice.”

Example 6 (Administrative Screening) Suppose applicants for a social program are
screened by a number of officials. Different officials have different admission rates, even
if the stated admission criteria are identical. Since the identity of the official is clearly im-
material to the response, it satisfies Condition 1. However, Condition 2 requires that if we
have two officials, one who accepts applicants with probability po, and a second one who
accepts people with probability p; > po, the second official must accept any applicant who
would have been accepted by the first official, or D; > Do. This is unlikely to hold in
practice if admission is decided on a number of criteria. Therefore we cannot use Theorem
1 to identify a local average treatment effect despite the presence of a valid instrument that
does not affect response, but does affect the participation probability. IV estimation might

in this case reflect different screening procedures rather than any real treatment effect. O

The final example deals with an important epidemiological problem, randomization of "in-

tention to treat”. It is taken from Robins (1989).

Example 7 (Randomization of Intention to Treat) Let Z be equal to 0 or 1 if a par-
ticular individual is assigned to the control or treatment group. The actual treatment indi-
cator D may differ from Z because some individuals may not comply with the assigment.
For this case, Robins (1989) lays out different assumptions that identify or give bounds on

the average treatment effects for the entire population or for the treated. Condition 2 here

"This example was suggested to us by Geert Ridder.

18



requires that people who were assigned treatment but did not receive it, would also not re-
ceive treatment if they were not assigned to it.® In addition, people who received treatment
despite being assigned to the control group, would also receive it if they were assigned to
the treatment group. This seems likely to hold in practice if non-compliance is the result of
concious behavior by the patients. Formally, Condition 2 requires that D; > D,.

The treatment effect identified here is the average treatment effect for those who always

comply with their assigment. O

6. CONCLUSION.
In this paper we have given sufficient conditions for the identification of a class of average
treatment effects. As with previous exclusion restrictions, these conditions require the exis-
tence of an instrument that shifts the participation probability, but does not directly affect
the response. In the case of heterogeneous treatment effects, exclusion restrictions may not
be enough to identify the average treatment effect on the treated, but they are enough to
identify the average treatment effect for a subset of the participants. The most important
part of an empirical research agenda remains uncovering the potential instruments in the
first place. Elsewhere (Angrist and Imbens [1991]) we have argued that this is often a matter
of careful investigation of the implementation of a particular program.

The purpose of ths paper is to show applied researchers that given a valid instrument,

technical considerations arising from treatment effect heterogeneity need not inhibit in-

8 Assuming that the marginal probability of recciving Lreatment is higher if someone was actually assigned
to it than if he or she was assigned to the control group, or Py < Py.
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ference. Moreover, we show that a conventional 25LS estimator consistently estimates a
weighted average of local average treatment effects in the class of madels identified under

our main theoretical result.

Appendix

Proof of Theorem 1

From the joint distribution of Y, D and Z we can identify ¥; = E{Y|Z = z),Yo=EY|Z =
w], P, = E[D|Z = 2] and P, = E[D|Z = w]. We will show that .. is equal to (Y; —
Yu)/(P: = Pu).

Consider the numerator ¥, — Y,,. It is equal to
E[Y|Z = z) - E[Y|Z = u]
= E[Dz-Yi+ (1 - Dz)-Yo|Z = 2] - E[Dz- Y1 + (1 = Dz) - Yo|Z = u]
=E[D. Y, +(1-D.) YolZ=2- E[Dy-Yi + (1~ Du) - YolZ = v]
=E[D,-Yi+(1-D:)-Yo] - E[Dy- Y1+ (1 = Du) - Yo

= E[D.-Yi+(1-D.)-Yo—Dy-Yi+ (1 - Dy)- Yo]

= E|(D, = Du)- ("1 — Yo}
(4) = Pr(D. - Dy=1)-E[Y; = Yo D; = Dy = 1]

— Pr(D, = Dy = —1)- E[Y; — Yo|D, = Dy = —1]
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Sofar we have not used Condition 2. We did use the independence implied by Condition 1.
If P, > P, Condition 2 implies that D, — D,, > 0, and therefore the second term of the last

equation is equal to zero. Then:
E[Y|Z = 2] - E[Y|Z = w] = Pr(D, - D, =1)- E[Y; - Y¥3|D. — Dy, = 1]
=(P2”PW)'E[Y1 _Y0|D= %DW]

Therefore (Y; — Y.,)/(P: — Pu) is equal to E[Y; — Yo|D. # D). If P, < P, Condition 2
implies that D, < D,, and the first term in (4) is equal to zero. The same procedure as
above then leads to the same result. QED.

Proof of Theorem 2

The estimator for the coefficient on P, in the regression of Y on a constant and P, with a

random sample of (Y, P,) of size N, is equal to:

EnN=1},".(PZn_Pz)
Ef:lpzn'(qu-Pz)

where P, = N | P, /N. The probability limil of this estimator is equal to

E[Y - (P, - Q)]
E[P. - (P. - Q)]

where @ = E[P,]. We have to show that

E[Y ) (Pz — Q)] = ffooofzm az%}'} ) (Pu - Q) | f(u)dUdz
E[P.- (P. - Q)] J%% P (P = Q) f(2)dz

The numerators of both sides are clearly identical, so the issue is whether
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o foo PGP,
®) BY-(P-@l= [ [TeT (A=) fudu
The first step is to analyze the conditional expectation of (5) given Z = z:
(6) EYiZ=2=ElYo+P- (Y- Ya)Z =] = E[¥| + P.- BlY - YalZ = 2, D = 1]
= E[Yol+ P, - E[Y1. - Yo|Z = 2,D, = 1] = E[Yy] + P, - E[Yi - Yo D. = 1]

The treatment effect E[Y; — Yo|D, = 1] is related to the local average treatment effects by

the following equation:
(1) E[Y - Yo|D: =1] = Pr(Dy # D:|D. = 1) E[Y; ~ Yo| Dy, # D]

+Pr(D, =1|D, =1)- E[Y; - Yo| D, = 1]

P,-P, P,
= ZP, -am+E—-E[Y1—Yo|Dw=1]

for all values of w < z in the support of Z. We have used here the fact that w < z implies
P, > P, and therefore D,, = 1 implies D, = 1. We can use (7) to calculate the derivative of

(6) with respect to 2, It is equal to:

fm ElY|Z =z~ E[Y|Z = w] _ i Pz P, apP,

W T
wiz z—-w wiz z—w oz

This implies that

BYiZ=z=c+ [ ai“-

a

aydu

for some constant ¢. Hence:
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B -(P- Q)= [* BV (P~ QIZ =4 f(2)d
=L+ L aai; “oudu) - (P, ~ Q) - f(2)dz

=/_°;/; 3613. (P, = Q) - f(z)dudz

- / / a, : (P = Q) f(w)dudz

This proves the first part of the Theorem. To see that the weights are non-negative, note

that %!—:4 is positive by assumption. Also,

[ P=@)-swin=- [* (P.-Q)- fw)du

If P, > Q, then the left hand side is positive because P, > @ for all u > 2. If P, < Q, then
the right hand side is positive because P, < @ for all u < 2. So, in both cases the left hand
side is greater than or equal to zero.

The final partis to show that the weight function intergrates out o one:
[
-5 )+ fduds] [[[7 P (- @) s
=U:/waap 2= Q) Sz / [/_:Pu-(Pu—Qw(u)du]
= [ P P wa] /[ P (P~ @) e = 1

QED.
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