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Abstract

Several econometric models for the analysis of relationships with limited
dependent variables have been proposed including the probit, Tobit, two-
limit probit, ordered discrete, and friction models. Widespread application
of these methods has been hampered by the lack of suitable computer programs.
This paper provides a concise survey of the various models; suggests a
general functional model under which they may be formulated and analyzed;
reviews the analytic problems and the similarities and dissimilarities of
the models; and outlines the appropriate and necessary methods of analysis
including, but not limited to, estimation. It is thus intended to serve as
a guide for users of the various models, for the preparation of suitable
computer programs, for the users of those programs; and, more specifically,
for theusers of the program package utilizing the functional model as
implemented on the NBER TROLL system.
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Introduction

Economic relationships involving limited dependent variables are
receiving widespread attention in the Econometrics literature. Much
of the discussion has focused on methodology with only scattered
application to real problems, the one exception being the qualitative
variable probleﬁlfrequently treated with logit and probit analysis.
Since potential applications for these models abound, it is likely
that the shortage of computer programs and their limited dissemination
is partly responsible for the infrequent emperical studies using them.
In turn, useable computer routines may be scarce because the models
though similar in many respects are dissimilar enough so as to seem
to require a separate algorithm for each model.

The purpose of this note is to suggest a general functional model
which is readily adaptable to computer coding and flexible enough to
fit a wide variety of limited dependent variable problens.l It should
be emphasized that the model presented here is functional as opposed

to theoretical. That is, it is not advocated as the structural model

1. Tom Johnson [1] presents a general discussion of many
of the models but falls of short describing in detail a central
model around which a computer algorithm can be constructed.



underlying any limited dependent variable relationship. Rather we
suggest that many of the theoretical relationships may be reformulated
to fit this functional model so that a single computer program may be
used to analyze all of them.

The terminology "limited dependent variable" is used here to
denote variables endogenous to some underlying economic relationship
which are not continuously measureable (or observable) over the entire
real line either directly or even after some transformation such as
logarithms. Thus it applies to discrete (ordinal) variables, qual-
itative (non-ordinal) variables and to variables subject to threshold
constraints such as non-negativity. Such discontinuities may result
from theoreticai considerations, from physical constraints on the
variable or simply from measurement difficulties.

The effect of the discontinuities on estimation is that when such
a‘dependent variable enters the usual sort of regression model the
properties of the implied disturbance term cannot satisfy the assumptions
needed for least squares estimation. The atternative estiﬁation method
generally proposed is maximum likelihood. After a suitable choice for
the distribution of the disturbances is specified the distribution of
the limited dependent variable is derived and the likelihood function
is constructed. This typically involves both probability density and
distribution functions and yields non-linear normal equations so that
iterative maximization algorithms, generally Newton-Raphson, are
suggested for obtaining estimates. These procedures are of course
straight forward but they may become quite expensive and time consuming

if computer programs to not exist for the particular model being examined.
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Section I of this paper presents a brief review of a number of
limited dependent variable models. Such a survey will serve to
motivate the types of models to be treated and highlight their sim-
ilarities and dissimilarities. In Section IT the functional model is
introduced.‘ It is of course possible to outline a completely general
model but the aim here is for a model which may be easily implemented
in a single computer algorithm. With this goal in mind reasonable
restrictions on the model are imposed and many of the details needed
for implementation are discussed. A final section outlines features

which should be included in a general computer algorithm.




Review of Some Limited Dependent Variable Models
2

Binomial choice models

In these models each measﬁring unit or individual is faced
with the choice of one of two mutually exclusive alternatives and
the choice made is thought to depend on some vector of exogenous
variables. One way to formalize the choice mechanism is to view
the decision maker as having associated with each alternative
some preference function, say

I

5&) +v

1i 1i

I f.(X.) +v
2717

2i 21,

and choosing that alternative which yields the higher preference.
1

Assuming fj(Xi), j=1,2, is of the form fj(xi) = qui, alternative

2 is chosen if

'
. = g X, ~alX, + v, .-V,
Izl>Ill uz 3 ule V21 Vll>0

= B'Xi+ui>0

.~V... The model can be rewritten in the

where B=a 017 V14

0~ and ui:V

alternative form:

N |
Yi = Bxi + Lﬁ
W. = 0 if Y.<0
i i
=1 1if Y.>0
1_

where Y. is some latent (i.e., unobserved) variable and W, is the

observed dependent variable which indicates the choice made. Maxi-

These models appear to have been first examined in the context of
economics by Tobin [8] who outlined the method of estimation which

he termed "probit regression analysis." Theil [7], among others,
treated the same problem with "logit" analysis. The distinction
between the two lies in the assumptions made regarding the distribution
of the underlying disturbance.




mum likelihood estimation requires some assumption about the

. . . . . . 2
distribution of U . If that distribution is normal, i.e., u;"IN(O,0 ),

the likelihood function is given by

L(B,o|W,X) = T P(—B'Xi)n P('e"Xi)

w.=0 w.=1
i o i o

where P(x) represents the standard normal cumulative density

function, P(x)= ? 1 exp(-u?/2)du.
- I

1
Unfortunatly B’Xiﬁlis observationally equivalent to (k B) XAko)
where K is any positive constant so that ¢ is not estimable and

g is estimable only up to a scale factor. Thus we estimate

o =

Q|

B, say, which is equivalent to normalizing ¢ at unity.

An interesting related model is
Y.

- nt
i =8 X 4 Yy
W. =1 if Y. < Z.
i i-"1
=0 if Y. > Z.
i 1

where Zi is some observed variable. A concrete example might be
the estimation of a wage expectation function for say new labor
force entrants. Expectations (Yi) are not observable but we might
argue that when faced with a job offer (that is an offered wage
of Zi) the entrant will accept the job (M&=l) only if that offer
meets or exceeds his expectation. The appropriate likelihood
function, under the assumption of normality, is given by
'
LB,o| W,X ,Z) =T P(Ei—-—sﬁ) .o 1-P in's'xi)

W, - =
| i-l o Wi 0 o

In this case o is estimable because observations on Zi provide

information on the scale of Yi'



In another variation on the same model Zi is replaced by some
constant threshold. If 8'X; includes an intercept term then ¢ is
again not estimable since (c—BO—B'X)/c is observationally equivalent
to (c-op-a'X)/ (ko) where oy=kB,+(1-k)c and a=k 8. If that con-
stant is also unknown and to be estimated the identification
problem is further compounded and estimation will require some

normalization on either 8, or the threshold parameter.

Multinomial choice npdels3

An obvious generalization of the binomial choice model is to
allow for more than two alternatives in the set of possible choices.
Such models fit a large and important set of problems encountered
in economics and are mentiocned here for that reason. Regxetably
the functional model to be presented here cannot be used to analyze
these models. This is the one class of limited dependent variable
models, however, for which there seems to be wide dissemination
of suitable computer programs. The approach used in these programs
is logit analysis, a choice dictated in part by the fact that a
specification of the underlying disturbance distributions such that
the selection probabilities are of the logistic form leads to tract-
able likelihood functions, while almost every other choice of
distributions leads to nearly insurmountable computational diff-

iculties.

3.

Refer to McFadden [3] for a description of the most general
multinomial model, an extensive bibliography of practical
applications and a discussion of the estimation problems.




Ordinaly disérete dependent variablesu

Another extensidn of the binary choice model is to allow for
more than two alternatives but to require that those alternatives
be ranked in some well defined order. Such models might arise
when the magnitude of the cbserved dependent variable feflects the
magnitﬁde but not the scale of some underlying but unobserved
dependent variable. As an example years of schooling might be a
proxy measure for accumulated human capital but it may not be
reasonable to assume that twice as much education implies twice
as much capital. Alternatively the observed dependent variable
may have the scale relevant to a particular relationship being
examined but it may be measurable only in coarse discrete units.

In fhe case with unknown scale the model appears as:
Y. = B’Xi+ ui

W. =1 if Yi<ul

2 if ulin<u2

S=11f Mg pS¥i<ua

S if us_lin

If the ui's are independently and normally distributed with mean
zero the likelihood function is

(ul-s»'X'i\ QTB’Xi) (ul-s'X§

AN~ 71 PN o /-P\ o J°

=1 W.=?

us—l-B'Xi us-2-B’Xi us-l_B’Xi
il P o -pP o QH i-P o

W.=g- =
178 . i78

L(B s | X,W) =N
o ’ W_

L.

See McKelvie [U4] for a detailed discussion of the models.



As in the binomial choice model, o is not identifiable and the
set of thresholds uj and the intercept cannot all be estimated.
After suitable normalization, for example o=1 and ul=0 we can
estimate B up to a multiplicative scale factor and the difference
between the thresholds up to the same scale. Estimates of the
uj'S would represent the relative scale amohg the values taken on
by the Qbserved dependent variable.

When the scale of the variable W is known the model is the
same except for replacing the unknown uj's with‘appropriate known
consfants and in this case ¢ is estimable.

Truncated dependent variables5

In many economic relationships the dependent variable is

neceséarily hon negative.‘ Thus we might write the model as

wy

B'Xi + u, if RHS>0
= 0 otherwise
Alternatively we might concieve of an unconstrained latent variable

Yi and reformulate the model as

Y. B'X. + u.

i 1 1
W. =Y. if Y. > L.
1 1 i 1

L. if Y. < L.
1 1 1
where the threshold of 0 has been replaced by a more general variable

threshold and only Xi, M& and Li are observed. For independent

normal Ui's the likelihood function is given by
' ‘ _at
Li— B! Xi _]___ wl B Xi
L(B',0|WsX,L) = I P S ‘T ¢ 2 o

W
W.=L. 570y
ii

These models were investigated by Tcbin [9] and have come to be
called "Tobit" models.
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1
where Z (%) is the standard normal density function T exXp (—x2/2).

Examples of problems to which this model might be applied
include consumer expenditure on some class of goods, which is
constrained to be non negative, and interest rates paid by commercial
banks on savings deposits, which are constrained by regulation Q
not to exceed a certain rate fixed by the Federal Reserve. Note
that for purposes of estimation alone the particular value assigned
to\ﬂi for 1limit observations is not used while the threshold value
is. On the other hand for non limit observations the threshold
value need not be known. Thus the model may under certain cir-
cumstances be utilized to estimate seperately the two equations

of the following disequilibrium market model:

D=gy X Y

S = 5; X, + U,

Q = Min(S,D)

Y and 4, independent
The observed variables are Q,X1 and X2 and we assume that Xl and
X, are independent of u, and U, For estimation of the demand

equation D is the latent variable and S the threshold with the roles
reversed fdr estimation of the supply equation. We must, for the
truncated model to apply, know which observations in a given sample
correspond to demand (ie excess supply) and which correspond to
supply. Furthermore information on this sample separation must be
eX0genous.

Suppose that in the simple truncated dependent variable model

See Maddala and Nelson [2] for a detailed discussion of disequilibrium
market model estimation under these and other assumptions.
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the threshold is an unknown constant to be estimated with limit
observations on Wi somehow distinguishable, though not equal to
the threshold. Then direct maximization of the likelihood function
with respect to B, o and u (the threshold) would lead to an estimate
for w of infinity. But this would be inconsistent with mpdel which
specifies that the constant threshold must necessarily be léss than
or equal to the minimum observed value of Wi over the set of non-
limit observations. Thus the maximum likelihood estimate of wu
would be this minimum value of Wi and the other estimates would be
obtained by maximizing the likelihood with respect to the other
parameters holding u fixed.
Doubly trunéated dependent variables.

Some dependent variables of interest may be truncated both
at high and at low values. The model7 becomes

1
Y, =8 X, + u.
1 1 1

W. L.. if Y.<L
i

i 11 11

1 <
Y, AF LSy

and the likelihood function is given by

L,.-8'X. 1 [ W.-B'Xs
P( 11 l)'H 7 ( 1
. =Y

L(B,0|W,X,L) = I
W.=L o W. o
1 11 1
L,.—B'Xs
I 1-P (%—l)
W =Ly

In some problems the intermediate or non-limit observations may also

See Rosett and Nelson [6] for a detailed treatment of this class
of models.
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be unobserved. Provided the sample may still be separated into
the three subsets of observations and the thresholds are known
constants or observable variables, all parameters of the model are
still estimable. The middle term in the likelihood function is

L,.-B'X. L..-p'X.
ot = 1) _p(—L 1)1, and the model

replaced in this case by [P(
is seen to be a specific case of the ordered discrete variable
model with Jnown scale.

An example of a problem to which this model has been applied
is the demand for health insurance by people on medicare. A certain
minimum coverage (the lower threshold) is provided to all participants.
They may purchase supplemental insurance only up to some maximum
which falls short of full coverage.
Models of Friction
Rosett [5] considered a model in which the dependent variable
responds only to numefically large values of the exogenous variables.
His model may be written as:

1]
Y. =B X. + u,
1 1 1

Wi Yi - al if Yi < al

:O lfOtl<Yi<0t2
= Yi—a2 if ag < Yi
Denote the sample separation into the three subsets by three sets

of integers ¥,,¥y and ¥, . The likelihood function is given by
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! _r!
\yl 1 (wi+ocl B Xi ¥, o, B Xi o‘l'B'Xi .
Lo 50,5850 |W 5X) = 7 G Z\7 o ) 'IP{ o ) - P\—
v, 1 W, +q, -g'X,
'H3 ) 1 20 1

The model provides for a different intercept in the two sets of
continous observations. One might assume no difference in the
intercepts by setting\ﬂi¥Yi in both extreme cases and deleting
oy and % from the corresponding terms in the likelihood.
Going the other direction even the slope coefficients might be
permitted to change between the two sets by appropriate modification
of the model and the likelihood function.

Examples of problems to which this model might apply‘axe

changes in the holdings of some asset in response to changes in

its price or rate of return and changes in wage offers by a firm

in response to changes in market conditions.
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II. A General Functional Model

Most of the limited dependent variable models may be specified,

perhaps after reformulation, as

(1) a single regression equation relating a latent, i.e., not
directly observable, endogenous variable to a stochastic
function of some vector of exogenous variables, say
Y. = f (Xi,B,ui)
and

(ii) a discontinuous mapping from the latent variable Yi to an
observable dependent variable Wy, say

W. = g (Yi,Zi)

The role played by the vector of exogenous variables Z will
be discussed below. Observed variables include Xi’zi and Wi and para-
meters to be estimated include the vector B and perhaps parameters of
the distribution of u. and of the function g.

The functional form of both g and f must be known and constant
over all observations. If the model is to conform to the various limited
dependent variable models and be operaticnally feasible we will require
certain restrictions on the form of these two functions. Consider
first the function f. Since the estimation method to be used is maximum
likelihood the distribution of the stochastic component must be specified.
We will assume that the disturbance term u appears, perhaps after a
suitable transformation, additively and follows an independent normal

distribution with zero mean and constant variance.8 Restrictions on

8. The choice of distributions may of course be changed but is an
integral part of the analysis and thus must be held fixed for
implementation of the model. Note that the normal distribution
leads to probit analysis for the binomial choice model and is
the distribution suggested most often for extensions of the limited
dependent variable models. A choice of the logistic (sech?) dist-
ribution would lead to logit analysis for the binomial choice model.
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the degree of non-linearity of f may also be desireable. The
iterative maximization algorithims used for cbtaining estimates
generally require at least first and perhaps second derivatives. Thus
if nonlinear specifications for f are to be allowed implementation
will require a computer system with analytic differentiation capability,
numerical derivatives or user supplied derivativatives. Restricting f
to be linear would avoid this problem but we will not impose that
constraint here. The regression equation to be used in the model is
thus of the form

2
(1) Yi= f(Xi,B) + ui 9 LliNIN(O,O ).

In the limited dependent variable models the mapping Wi=g(Yi) is
necessarily discontinuous with the discontinuities appearing at well
defined points, to be called thresholds, in the range of Yi' Assume
that there are S-1 threshold points and partition the range of Yi into
the S disjoint intervals. Then g(Yi’Zi) may be written as

() g(¥5,29) = gy(¥y) if ty ) <Y < s, 321,08

where t..,J=1,...,5-1 are the threshold points and t. and t. are
i io is

defined to be = » and + = respectively. The constraint tij—lf t

i3,
j=1,...,5 must hold across all observations i but the threshold points
need not be constant across cbservations, Any cormbination of the following
specifications for the tij 's should be permissable:
(1) known numeric constants
(ii) observable variables (ie. one of the variables in the vector
Z.)
i

(iii) constant but unknown parameters to be estimated.
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The individual gj(Yi)'s, j=1l,...,s are of two basic types, to be

called continuous and mass point as determined by the distribution of
the random variable W, within the relevant interval on Yi.9 A mass point
gj(Yi) specifies that within the jth interval of the range of Y; wi is

a constant function of Yi(i.e., independent of the level of Yi)' Typical
specifications for mass point gj's are

(i) gj(Yi) = ti (where t;) is one of the threshold points of

the type (i) or (ii) as given above)

Zik (where Zik

¢ (some known constant)

(ii) gj(Yi) is some observable exogenous variable)

(iii) gj(Yi)
Continuous gj(Yi)'s specify continuous and strictly increasing functions
of Y. within the corresponding interval on Y.. The most common specifi-
cation will be

gj (Y;) = Y.
We wi;lirl fact require that all continuous gj's be of‘this form, delaying
for the moment é discussion of the advantages and disadvantages of such
a restriction.

Derivation of the likelihood function for the functional model is
straight forward. We need first to derive the distribution of W.. TFor

mass point intervals we have

Pr(wi=gj(Yi)) = Pr(tij_lin<tij)

=Pr(tij_l-f(Xi,B) Sug <ty -f(X B))

which under the Normality assumption on us becomes
@f(X R) t -1 f(X B)

_ 1°
Pr(W;=g; (¥;)) = P <—O—— ) - P (A )

9. The term mass point and continuous will be loosely applied to the sub-

functions g., to the corTesponding interval on Y. and to the values taken
on by W IWhat is implied in all cases is that, ‘within some intervals of
the range of Y.,W. is defined by g. to be a constant so that its associated
measure of pro%ablllty is probabllity mass. In other intervals W. is a
continuous function of Y. within that interval so that the approp%iate
measure of probability i% its probability density.
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where P(x) is the standard normal cumulative density function. A general

derivation of the density function for W. over continuous intervals

requires strong assumptions about the specification of continuous & (Yi)'s. .
If these functions are strictly increasing (decreasing) over the relevant

interval on Yi then the inverse function

_ -1
Yi"gj

(Wi)

exists and is differentiable so that the p.d.f. of continuous W., say

h(Wi), is given by

-1
g5 (W) -f(Xi,B)>

h(W.) = J.2 72 (
i jo o

‘ agfl
where Jj is the Jacobian of the transformation, Jj tlswl—4, and Z is the
i
standard normal density function. Construction of the likelihood requires

knowledge of the sample separation. That is for each observation on W,

we must be able to determine the interval in which the corresponding

. 0 \ , .
unobserved value for Yi lles.l For notational convenience define the

subsets Wj of integers 1,...,n, where n is the sample size, as

jev. if t

5 i5-1 < Yi <t.. ,i=1,...,n, j=1,...,s

1]
The likelihood function is given by

(3) L(e|W,x,Z2) =1 A., T A, ... T A.
.. 11 . 12 .. 1S
lewl 18?2 lews

where 6 is a vector of all parameters to be estimated and the Pij's are

defined as '
t..-f(X. 4R) T -f(XiaB)

- 33 iy ij-1
Aij P(————E—f————J P( =

)

if j corresponds to a mass point interval on Y. and

Ay =y 52 (gj W) - f(Xi.,BD

g

10. Determination of the sample separation is made by comparing, for each observa- .
tion, Wi with each g.(Y.). TFor mass point g.'s a matching of W; and g.(Y:) for

some j determines thdt the observation COTTengndS to a value of Y; in“the jin
interval. . This leaves only the continuous observations to be classified but, as

will be pointed out later, so long as we restrict continuous g:'s to be of the

form g+(Y;) = Y5 the knowledge that an observation on W;j is a continuous one is

all that 1Is required; we need not know to which continuous interval it belongs.
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if j corresponds to a continuous interval on Y. .
It should now be clear why the restrictive specification
gj(Yi) =Y. for continuous intervals was imposed. Such a restriction
makes it easy to distinguish mass point from continuous intervals
and permits all continuous observations be to be grouped into a single sub-
set, for purposes of estimation, since they all enter the likelihood in
exactly the same form (Jj=1 and ggl (Wi) = Wi for every continuous
interval J.) Thus we can avoid a good deal of perhaps messy computer
coding and additional user supplied information. Note too that this
restriction creates difficulty with only one of the limited dependent
variable models reviewed in section I, the friction model. But even this
problem is easily surmounted by judicious use of dummy variables .
The friction model, with intercepts which differ in the two
continuous intervals, is repeated here.
Yp T EIX oty

W.=Yi—al 1in<a

1 1

0  if ali Yi < a,

=Yi—OL2 lfa2<Yi

Reformulate the regression equation as

Y=oy Dy +agDp, b 8IK * oy
where Dil =1 when Yi lies in the lower continuous interval
= 0 otherwise
Di2 = -1 when Yi lies in the upper continuous interwval

0 otherwise.
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The rest of the model is then written as

W. = Y. if Y. < a

1 1 1 1
=0 if ulin < a,
= Y. if e, <Y.

1 271

Note that the two continuous intervals on Yi are not properly defined
in this formulation but recall that for continuous intervals the
threshold points do not appear in the corresponding terms in the likeli-
hood function. Thus with regard to estimation the inconsistency is only
transparent. The inconsistency could in fact be removed by redefining
the two intervals as Y.<0 and Oin. But this would make the model more
difficult to implement since then, without specifically accounting for
the specification of f(Xi,B), the intervals on Y. would appear to either
overlap or fail to exhaust the entire range of Yi' Several other points
are worth noting. In this model B'Xi should not include an intercept
term or indentification problems among Bya%y and a, will arise. The
friction model is unique in that threshold parameters and parameters of

the function f overlap. Finally, similar use of dummy variables can

provide for slope coefficients which differ in the two continuous intervals

while if all intercept and slope coefficients are the same the restriction

on the specification of the continuous gj's is satisfied without a

reformulation using dummy variables.
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. III. Features of a Computational Algorithm

In this section we will discuss the specific details involved in.
a suitable computer program for the functional model. First the
model is restated.

The functional model is defined as

~
(o]
~
Y
it

f(Xi,B) + us

~
N
~
=]
"

gj(Yi) if tij—l < Yi < tij’ 3=1ls.e..,4S

2
U, ~ IN(O,0 )

Yi is a latent variable and Wi’ the vector Xi and perhaps some vector
Zi are the observed variables. Parameters to be estimated include B

and perhaps ¢ and/or some of the tij's. The threshold points tio and
tis are defined as - «» and + » respectively for all i=1,...,n where n

‘ is the sample size. The remaining threshold points ti1,5...5t may

is-1
be any of the following:
(i) known numeric constants

)

(ii) observable exogenous variables (one of the Zik's

(iii) constant but unknown parameters to be estimated
The gj(Yi)'s define W, to be either a mass point observation or a
continuous observation when the uncbserved Yi falls in the corresponding
jth interval. Continuous gj(Yi)'s must be of the form
gj(Yi) =Y.
while mass point gj(Yi)'s may be either
(1)  Xnown constants,i.e.,gj(Y_) =C
i
or

‘ (1i) observable exogenous variables,i.e.,gj (¥.) = Ziy
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Furthermore the mass point gj(Yi)'s must be such that a comparison of
Wi for each observation with each mass point gj will determine uniquely‘
a sample separation defined by the following subsets of the integers
l,...,5n

iEWj iff Wi = gj(Yi) for mass point interval j

ieWo iff Wi # gj(Yi) for any mass point interval j.
Note that Wj will be empty for any continuous interval j.

The components of the 1ikelihood function were presented in Section
ITI. Estimation involves maximization of the logarithm of the likelihood
function. The normal equaticns obtained by setting the derivatives of
log L with‘respept to each estimable parameter equal to zero will be non-
linear so that some iterative maximization algorithm is required.
Experience has shown that the Newton-Raphson algorithml1 works quite
well on these models with fairly rapid.convergence when starting from
reasonablé initial estimates. This algorithm does require both first
and second derivatives which, though messy, are fairly easy to derive.
Table 1 presents the components of the likelihood function corresponding
to each type of interval on Y, and the associated terms in the first and
second derivatives of the log likelihood function. Several points should
be noted. First fhe parameters to be estimated are denoted by the by
the vector 6 with elements 6. . Seéondly, the derivatives presented there
make the following use of the chain rule: The terms in thé log likelihood

function involve the functions P(A) and Z(B), where A and B are represent-

ative arguments, and have the following derivatives:

11. As was noted earlier the constraint t.. -<t.. must hold for j=1,...,s and
all i=1l,...,n. If these thresholds includéjﬁaféﬁ%ters to be estimated the
constaint should be taken into account in the maximization algorithm. This

is awkward to do however, in the general model since not all problems will
require estimation of threshold parameters. There is no danger that straight
forward application of Newton's method will produce estimates which violate
the constraint since this would require taking logarithms of negative numbers.
We therefore suggest using Newton's method with the provision of allowing some
user control in the iterative process for handling those occasional problems
in which the constraint causes difficulty.
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oP(A) _ Z(A) ., 3A and 3Z(B) = -Z(B) * B . 3B
aei P(A) aei aei 98

We have carried the differention only this far, since the arguments A
and B involve the unspecified function f(Xi,B), and assume that the
derivatives of these arguments can be readily obtained thru some combination
of user supplied derivatives, restrictions on the functional form of f
and internal differentiation ca.pability.12 Finally, note that lower and
upper mass point intervals have been distinguished in that table from
interior mass point intervals since recognition of their simpler
structure generally will achive significant economies in computer time;

As was suggested by the discussion in Section I, not all parameters
in the functional model are necessarily estimable. In particular ¢ can
be estimated only if the obséfved variable wi contains some information
regarding the scale of the latent variable Yi. In general any one of‘
the following conditions on the model will be sufficient to permit
estimation of o.

(1) At least one continuous interval

(ii) At least one threshold is an observable, varying threshold

(iii) At least two threshold points are known constants

If none of these conditions are met then estimation may proceed only after
normalization of o, e.g., 0=1. If the model includes both threshold parameters
to be estimated and an intercept term in the regression equation there

will generally be an identification problem among this set of parameters

12.  The TROLL system on which the authors have implemented the functional
model does have the intermal capability of obtaining analytic derivatives.
This feature is extremely useful for such simple functions as the arguments
like A and B in that it renders unnecessary further restrictions of f or
alternatively, heavy user input. On the other hand it cannot be used to
avoid the programming of derivitive calculation to the level presented in
table I without resulting in prochibative computer time.
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TABLE 1. COMPONENTS OF LIKELIHOOD FUNCTION AND CORRESPONDING
FIRST AND SECOND DERIVATIVES OF THE LOG LIKELIHOOD

Type of interval Corresponding
to which an comporént in
observation belongs likelihood First derivative Az.%.d.mwv Second derivative Az.d.d.mw and mwv
Lower mass point | wA>mv NA>.vv. AL NAbuv . m>ww _ >..>w.>wu _ wwAbuv wwA>uv
PR P(A.) J L T
J J 1 Tk
Interior mass point  P(A)-P(B;) Z(Ay)-AT - 2(B.)-Bt 7(8,) [ATA, - ATAST - 7(B.)- [BX-B.-BL.B5)
J 1 J ] 1 J J 1 ] J ] J 13 3
P(A.) - P(B.) P(A.)- P(B.)
3 3 : 3 y
- 3[P(A.)-P(B. 3[P(A.)-P(B.)]
3[P( uv ( uvu . L : 3
90
1 LK
int 1-P(B. ~Z(B.) i ~7(B.) ; . _P(B. -
Upper mass poin ( uv ( 52 . >w 30 ﬁmww _ wmwwwwu , ol mﬁwuv Cal wAwuv
Ewu. ) Ewu. ) | , 80 80,
¥t 3 i 2 E3 > .
Continuous ‘ 1z(C) <-1/¢> -C.C* <<l/o >> - AOH.QW + o.otAv
g .
X _ 1 2
P(x) = /& Z(wdu, Z(x)= — exp(-x"/2) | |
— V21
A, = t.-f(68) , B. = t. —-F(X,8) , C = W-£(X,8) , AL = 2A. , A = 3%, | ete.
5 I H DI ol S —_— L7 L
o] o] o) 00. um.w@ﬁ
i i

o

* the term -1/0 appears only for 6.

g

%% the term 1/6° appears only for i=k, 6: =0
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- only the difference between each pair of parameters
in the set can be estimated. Again a normalization is required on
one parameter in this set.

The iterative maximization algorithm will require starting values
for the parameters to be estimated. We have not been successful in
obtaining a straightforward routine for selecting good starting values
for all parameters in the functional model. Tobin [9], in the context
of the Tobit model, suggested approximating the non-linear terms in the
normal equations by some simple functions to allow analytic solution of
those equations but this approach becomes quite difficult to implement
in the more general functional model, especially if the regression
equation is itself non-linear. Similarly some expansion of the normal
equations with a low order truncation is also difficult to implement.

In lieu of a general solution we offer the following suggestions for
implementation on a case by case basis.

(a) If the model includes continuous intervals, least squares
regression of Wi on Xi over just the subset of continuous
observations will often provide satisfactory, though biased,
starting values for the regression coefficients and for o.

(b) For threshold parameters choose starting values such that the
spacing between adjacent threshold points is proportional to
the percentage of observations falling in each interval.

(c) In models with no continuous intervals and values for Wi which
correspond ordinally to Yi try a straightforward least squares
regression of Wi on Xi for starting values for the regression

coefficients.




- 24 -

(d) for many data sets and if the iterative maximization
algorithm is fairly stable, zero starting values for many of

the parameters will generally suffice.

Generally parameter estimation is only part of the analysis to
be performed on a given model. The remainder of this section discusses
various other analyses which may often be desired and which are reason-
ably easy to implement in the functional model.

It is often quite informative to examine simple descriptive statistics,
such as mean, variance and range, of various variables in the model both
over all observations and over the subsets of observations corresponding
to each interval on Yi' Furthermore while such information may be of
use by itself it can as well serve to detect or explain failures in the
estimation process. To see this consider a simple binomial choice model
with a single regressor variable. The likelihood functién is given by

L(a,8[W,X) = T P(-a-gX;) . T [1-P(-a-gX;)]

W. =0 Wi=l
Suppose that in a given set of data the observations are as pictured in
the figure to the right. W

XX XX X
It is easy in this case to

AMM?QT[

find values for a and B8
such that whenever wi=o
(—a—BXi) is positive and when wi=1 (—a—BXi) is negative. All observations
can thus be perfectly classified on the basis of the mean value (a+BX)

for such o and B. In fact the likelihood is maximized as o and B tend

to negative and positive infinity respectively. This failure in the

estimation process could easily be predicted, in this simple model, by
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comparing the range of Xi within the two sets of observations. The
same problem arises in this model with more than one exogenous variable
and all the other models as well, suggesting that as a prelude to
estimation one should always critically examine simple statistics,
expecially the range, of the exogenous variables within each subset
of observations. In addition, even if the individual exogenous
variables do overlap, there may be some combination which provides
perfect classification of the observations. Such a situation is often
difficult to detect until after the estimation process has failed.
Performing the same analysis on §i = f(xi,é) where é is the vector of
regression coefficient estimates when the iterative maximization
procedure began to diverge may often reveal the source of the problem.
Estimated classification probabilities(i.e.Pr(Wi=gj(Yi)IXi,Zi)
or alternatively Pr(tij-li Y, < tijIXi,Zi)) are often as important to
the analysis as estimates of the parameters themselves. The expressions
for obtaining them are given by the components of the likelihood function
for mass point intervals and similar expressions for continuous intervals.
In addition to their independent use they serve an important role in
an examination of the estimation results analogous to residual analysis
in least squares regression. They provide, for example, one measure of
classification error. Let j* be the interval in which an cbservation
falls and 5 be the interval with largest associated classification

~ 13
probability. An obervation may be viewed as being misclassified if j#* # j.

13. Whether this is an appropriate measure of misclassification will depend
on the model being examined. For example it may be a useful measure for the
binomial choice model while in the ordinally discrete model, since the
frequency of misclassification under this measure is easily altered by
arbitrarily collapsing adjacent intervals, it may not be at all appropriate.




- 26 -

A variety of measures of "residuals" may be readily obtained. Using '

estimated coefficients to compute Yi = f(Xi,B) we can obtain directly

u; = Wi—Yi for continuous cbservations. For mass point observations

the estimated residual may be "bracketed" by t..-Y. and Y.-t,. 1.
1] "1 1 ij-1

~

Another indicator of misclassification is given by a comparison of j
and j* where 5 the interval in which §i falls and, as before, j* is the
observed interval.

An important part of the analysis for a given problem might be the
calculation of mean values for the observed dependent variables. These
might be needed, for example, for prediction purposes or for the calculation
of elas‘cici‘cj_es.]"1L The expected value of W for given X: (and Zi) is

y-£(X; ,8)

Zz (

. B o l

s Tij 1 y-f(X,8)

=z [ o Z(—o—) g.(y) dy =

i=1 t.. J i
ij-1

A.
1 J

It ™MW

For mass point intervals gj(y) is a constant so that the corresponding

term in the expected value of Wi is

t..-f(X. .B) t.. =-f(X.,8)
- 1] 12", ij-1 i
Aj gj(Yi) . [P(——U y - P «( S )]
14. If the prediction or elasticity is for a single individual or. R

observation then the appropriate value for W to be used should by Wi;g(Yi).
On the other hand if we need the mean predicted valge or aggregate
elasticity the appropriate value is E(Wi|Xi Zi) as is given here.

3
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. For continuous intervals, integration over the relevant range yields15

A = s L pCiTTR®) L p (B3 TR,
g

o
t..=-f(X.s8) t.. .=f(X.,B)
—o [z (2l Ly g (A=l iy,
o o
tj 1 y-f(X,8) L,
15. We have Aj =/ yvo Z(O—) dy = £ [£(X B) + ox] Z(x) dx
t. i
3~ Ly
Ly Ly
= f(XlB) ST Z2(x)dx + o £° xZ(x) A&
Ll Ll

where Ll=[tj_l—f(X,B)]/o and L2=[tj—f(X,B)]/o.
Since xZ(x) = -dZ(yx)/dyx, /xZ(x)dy = - Z(x)

‘ and we obtain

A‘j = f(X,B)'[P(LZ) - P(Ll)] - 0[Z(L2) -7 (Ll)]
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