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I. Introduction and Basic Concepts

A simple model that is commonly used to intjrpret movements in corporate

common stock price indexes asserts that real stock prices equal the present

value of rationally expected or optimally forecasted future real dividends

discounted by a constant real discount rate. This valuation model (or va4 iations

on it in which the real discount rate is not constant but fairly stable) is

often used by economists and market analysts alike as a plausible model to

describe the behavior of aggregate market indexes and is viewed as providing

a reasonable story to tell when people ask what accounts for a sudden movement

in stock price indexes. Such movements are than attributed to "new information"

about future dividends. I will refer to this model as the "efficient markets

model" although it should be recognized that this name has also been applied

to other models.

It has often been objected in popular discussions that stock price indexes

are too "volatile", Le., that the movements in stock price indexes could not

realistically be attributed to any objective new information, since movements

'in the indexes are "too big" relative to actual subsequent-movements in dividends.

To illustrate graphically why it seems that this is so, I have plotted in

figure 1 a stock price index Pt with its ex-post rational counterpart P~ (data

set l).!/ The stock price index Pt is the detrended real Standard & Poor's

Composite Stock Price Index, and P~ is the present discounted value of

th~ actual subsequent detrended real dividends. l/ The analogous 'series for a

modified Dow Jones Industrial Average appear in figure 2 (data set 2). One is

struck by the smootnness and stability of the ex-post rational price series p*
t

when compared with the actual price series. This behavior of p* is due to the

fact that the present value relation relates p* to a long weighted moving

average of dividends, and moving averages tend to smooth the series averaged. ,While

real cliviopnds r'l.i.n vary over this sample, period, they did not vary long enough or
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Figure 1 Detrended real Standard & Poor Composite Stock Price Index
(solid line, p) and ex-post rational price (dotted line, p*), first of
the year, 1871-1979. The variable p*is the present value Qf actual
subsequent detrended real dividends, subject to an assumption about
dividends after 1978. The variable p is from data set 1, described in

. t
appendix, and P~ is defined for this data set using P~ = Y(P~+l + d t )

with P!979 set at the average value of Pt over the sample.
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Figure 2 Detrended real modified Dow Jones Industrial Average
(solid line, p) and ex-post rational price (dotted line, p*),
1928 - 1979. The variable p* is the present value of actual
subsequent detrended real divid~ds, subject to an assumption
about dividends after 1978.
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far enough to cause major movements in p*. For example, while one normally thinks

of the great depression as a time when business was bad, real dividends were

substantially below trend (i.e., 10-25% below trend for the Standard & Poor

series, 16-38% below trend for the Dow Series) only for a few years: 1933, 1934

1935 and 1938. Clearly the stock market decline beginning in 1929 and ending

in 1932 could not be rationalized in terms of subsequent dividends! Nor could

it be rationalized in terms of subsequent earnings, since earnings are relevant

in this model only as indicators of later dividends. Of course, the efficient

markets model does not say p = p*. Might one still suppose that this kind of

stock market crash was a rational mistake, a forecast error that rational

people might make? This paper will explore the notion that the very

volatility of p (i.e., the tendency of big movements in p to occur again and

again) implies that the answer is no.

To give an idea of the kind of volatility comparisons that will be made

here, let us consider at this point the simplest inequality which puts limits

on one measure of volatility: the standard deviation of p. The efficient

markets model can be described as asserting that Pt = Et(p~), that is, Pt is

the mathematical expectation conditional on all information available at time

t of p~. In other words, Pt is the optimal forecast of P~. One can define

the forecast error as u
t

p*
t

Pt' A fundamental principle of optimal forecasts

is that the forecast error u
t

must be uncorrelated with the forecast, that is,

the covariance between Pt and ut must~e zero. If a forecast error showed a

consistent correlation with the forecast itself, then that would in itself imply

that the forecast could be improved. Mathematically, it can be shown from the

theory of conditional expectations that u
t

must be uncorrelated with Pt'

If one uses the principle from elementary statistics that the variance of
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the sum of two uncorrelated variables is the sum of their variances, one then

has var(p~) = var(ut ) + var(pt)' Since variances cannot be negative, this

means var(pt) < var(p*) or, converting to more easily interpreted standard
- t

deviations:

(1)

This inequality (noted before by LeRoy and Porter [1979J and Shiller [1979J)

is viola~ed dramatically by the data in figures (~) and (2) as is immediately

b · " . 1 k" h "fi 3/o V10US ln 00 lng at t e gures.-

This paper will develop the efficient markets model in section II below

to clarify some theoretical questions that may arise in connection with the

inequality (1) and some similar inequalities will be derived that put limits

on the standard deviation of the innovation in price and the standard deviation

of the change in price. The model is restated in innovation form which allows

better understanding of the limits on stock price volatility imposed by the

model. In particular, this will enable us to see (section III) that the

standard deviation of f'.Pt is highest when information about dividends is

revealed smoothly, and that if information is revealed in big lumps occasionally

the price series may have higher kurtosis (fatter tails) but will have lower

variance. The notion expressed by some that earnings rather than dividend data

should be used is discussed in section IV, and a way of assessing the importance

of time variation in real discount rates is shown in section V. The inequalities

are compared with the data in section VI.

This paper takes as its starting ;aint an approach qeve10ped earlier (Shiller

[197~) which showed that long-term bond yields are too volatile to accord with

. 1 t t" d 1 f h f . 4/ I hslmp e expec a lons mo e sot e term structure 0 lnterest rates.- n t at paper,

it was shoWn how restrictions impJ-ied by efficient markets on the cross,'covariance

function of short-term and long-term interest rates imply inequality restrictions
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on the spectra of the long-term interest rate series which characterize the

smoothness that the long rate should display. In this paper, analogous implications

are derived for the volatility of stock prices, although here a simpler and more

intuitively appealing discussion of the model in terms of its innovation.

representation is used.

LeRoy and Porter [1979} have independently derived some restrictions on

security price volatility implied by the efficient markets model and concluded

that common stock prices are too volatile to accord with the model. The approach

in this paper, however, while it has benefited from their work is actually quite

different from theirs. Some different characterizations of volatility are examined

here, dividends rather than earnings are used, and long time series rather than

post-war data are employed. I do not attempt Box-Jenkins [1970J modelling of the

series. On the other hand, some indication is given here of how much expected real

rates would have to move to explain the volatility.

It may appear that this paper is attempting to contradict the extensive

literature of efficient markets (for example, as in Cootner [1964], or surveyed

in Fama [1970J). 1/ This appearance is somewhat deceptive, since most of this

literature really examines different properties of security prices, and in fact

there is no agreement on an operational definition of the term "efficient markets".

Very little of the efficient markets literature bears directly on the characteristic

feature of our model: that expected real returns for the aggregate stock market

are constant through time (or approximately so). ~/ Much of the literature on

efficient markets concerns the investigation of nominal "profit opportunities"

(variously defined) and whether transa2tions costs prohibit their exploitation.

Of course, if real stock prices are "too volatile" as it is defined here, then

there may well be a sort of real profit opportunity. Time variation in

expected real interest rates does not itself imply that any trading rule
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dominates a buy and hold strategy, but really large variations in expected returns

might seem to suggest that such a trading rule exists. This paper does not

investigate this, or whether transactions costs prohibit its exploration. This

paper is concerned, however, instead with a more interesting (from an economic

standpoint) question: what accounts for movements in real stock prices and can they

be explained by "new information" about subsequent real dividends? If the

model fails due to excessive volatility, then we will have seen a new characteri-

zation of how the simple model fails. The characterization is not equivalent to

other characterizations of its failure, such as that one period holding

returns are forecastable or that stocks have not been good inflation hedges

recently.

The volatility comparisons that we will make have the advantage that they

are insensitive to misalignment of price and dividend series, as may happen

with earlier data when collection procedures were not ideal. The tests are also

not affected by the practice, in the construction of stock price and dividend

indexes, of dropping certain stocks from the sample occasionally and replacing

them with other stocks, so long as the volatility of the series is not misstated.

These comparisons are thus well suited to existing long-term data in stock price

averages. The robustness that the volatility comparisons have, coupled with

their simplicity, may account for their popularity in casual discourse.

II. The Simple Efficient Markets Model

According to the simple efficient markets model, the real price P of a
t

share at the beginning of the time period t is given by:

O<y<l (2)
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where D
t

is the real dividend paid (let us say) at the end of time t, E
t

is the

expectations operator conditional on information available at time t and y is the

constant real discount factor. We define the constant real interest rate r so

that y = l/(l+r). Information at time t includes P
t

and D
t

and their lagged

values, and will generally include other variables as well.

The one-period-ho1ding return Ht = (~Pt+1 + Dt)/Pt is the return from

buying the stock at time t and selling it at time t+1. The first term in the

numerator is the capital gain, the second term is the. dividend received at the

end of time t. They are divided by P to provide a rate of return. The model
t

(2) has the property that Et(Ht ) = r.

The model (2) be restated in terms of detrended series -tcan Pt = APt'

d = A-(t+1)D
t t

-t
(2) by A and

where A = (l+g), and g is the rate of growth term.

b ·· f" d 7/su stltutlng one ln s: -

Multiplying

(3)

The growth rate of the firm g must be less than the discount rate r if (2) is

to give a finite price, and hence y ~ Ay < 1, and defining r by y _ l/(l+r),

the disc~unt rate appropriate for the detrended series is r > O. This discount

rate r is, it turns out, just the mean detrended real dividend divided by the

- 8/mean detrended real price, Le., ,r = E(dt)/E(pt). -

We may also write the model as noted above in terms of the ex-post rational

price series P~ (analogous to the ex-post rational interest rate series in

Shiller and Siegel [1977J) which is the present value of actual subsequent

dividends. That is,
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* = 00 -k+l
p t - k~OY d t +k

(4)

Since the summation extends to infinity, we never observe P~ without some error.

However, with a long enough dividend series we may observe an approximate p~.

If we choose an arbitrary value for the terminal value of p* (in fig. 1 and 2 p*
t

for 1979 was set at the average detrended real price over the sample) then we

may determine P~ recursively by P~ = Y(P~+l + dt ) working backward from the

terminal date. As we move back from the terminal date, the importance of the

terminal value chosen declines. In data set (1) as shown in figure 1, y is

.957 and yl08 = .0084 so that at the beginning of the sample the terminal value

chosen has a negligible weight in the determination of p~. If we had chosen

a different terminal condition the result would be to add or subtract an

exponential trend from the p* shown in figure 1. This is shown graphically

in figure 3, in which p* is shown computed from alternative terminal values.

Since the only thing we need know to compute p* about dividends after 1978 is
•

p* for 1979 it does not matter whether dividends are "smooth" or not after 1978.

Thus, figure 3 summarizes our uncertainty about p*.

There is yet another way to write the model, which will be useful in the

analysis which follows. For this purpose, it is convenient to adopt notation

for the innovation in a variable. We will define the "innovation operator"

~t = Et - Et _l where Et is the conditional expectations operator. Then for any

variable Xt the term ~tXt+k equals EtXt +k - Et_lXt +k which is the change in the

conditional expectation of X k that is made in response to new informationt+ ..

arriving between t-l and t. Since conditional expectations operators satisfy

EjEk = Emin(j,k) it follows that Et-l~t+k = 0, k > O. This means that ~tXt+k
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must be uncorrelated with all information known at time t-l and must, since

lagged innovations are information at time t, be uncorrelated with bt,Xt +j ,

t' < t, all j, i.e., innovations in variables are serially uncorrelated.

The model implies that the innovation in price btpt is observable. Since

(2) can be written Pt = Y(dt + Etpt+l) we know, solving, that Etpt+l = Pt/Y-dt·

Hence btpt =Etpt - Et-lPt = Pt + dt _l - pt-l/Y = bP t + dt _l - rp
t _l . The

variable which we call btp
t

is the variable which Granger [1975] and Samuelson

[1977J emphasized should, in contrast to bP
t

- P
t

- p
t

• l , by efficient markets,

be unforecastable. In practice, with our data btp
t

so measured will approximately

equal bp .
t

The model also implies that the observable innovation in price is related

to the unobservable innovations in dividends by

(5)

This expression is identical to (3) except that bt replaces Et .

Expressions (2) - (5) constitute four different representations of the

same valuation model. Expressions (4) and (5) are particularly useful for

deriving our inequalities on measures of volatility. We have already used

(4) to derive the limit (1) on the standard deviation of P given the standard

deviation of p*, and we will use (5) to derive a &imit on the standard deviation

of btp t given the standard deviation of d.

One issue that relates to our derivation of (1) can now be clarified.

The inequality (1) was derived using the assumption that the forecast error

ut = P~ - Pt is uncorrelated with Pt. However, the forecast error ut is not

serially uncorrelated. It is uncorrelated with all information known at time

t, but the lagged forecast error u 1 is not known at time t since P* 1 is not
t- t-
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oo~

In fact, ut = k~lY ~t+kPt+k' as can be seen by

substituting the expressions for Pt and P~ from (3) and (4) into ut = P~ - Pt'

and rearranging. Since the series ~tPt is serially uncorrelated, ut has first

order autoregressive serial correlation~/For this reason, it is inappropriate

to test the model by regressing P~ - Pt on variables known at time t and using

the ordinary t-statistics of the coefficients of these variables. However, a

generalized least squares transformation of the variables would yield an

appropriate regression test. We might thus regress the transformed variable

- -
ut - YUt +l on variables known at time t. Since ut - YUt +l = Y~t+lPt+l' this

amounts to testing whether the innovation in price can be forecasted. We will

perform and discuss such regression tests in section VI below.

To find a limit on the standard deviation of ~tPt for a given standard

deviation of d
t

we first note that d
t

equals its unconditional expectation plus

the sum of its innovations:

(6)

If we regard E(dt")as E(d ) then this expression is just a tautology, It
_00 t

tells us, though, that d t = 0,1, 2, , .. are just different linear combinations
" t

of the same innovations in dividends that enter into the linear combination

in (5) which determine ~tPt t = 0, 1, 2, ••• We can thus ask how large

var(~tPt) might be for given (d t ). Since innovations are serially uncorrelated,

we know from (6) that the variance of the sum is the sum of the variances:

(7)
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Our assumption of stationarity for d
t

implies that var(~t_kdt)
2

- Ok is independent

of t.

In expression (5) we have no information that the variance of the sum is

the maximum variance of... ,

the sum of the variances since all the innovations are time t innovations, which

In fact, for given o~, ai,may be correlated.

the sum in ($) occurs when the elements in the sum are perfectly positively

correlated. This means then that so long as var(~tdt) 4 0, ~ d = a ~ d
T t t+k k t t'

where ak = ok/GO' Substituting this into (6) implies

d
t

(8)

where - denotes demeaned variable: dt = dt - E(dt)and Et = ~tdt' Thus, if

var(~tPt) is to be maximized for given o~, ai, "', the dividend process must

be a moving average process in terms of its own innovations. 1Q/ We have thus

shown, rather than assumed, that if the variance of ~tPt is to be maximized,

the forecast of dt +k will have the usual ARIMA form as in Box and Jenkins [1970].

We can now find the maximum possible variance for ~tPt for given variance

of dt • Since the innovations in (5) are perfectly positively correlated,

<X) -k+1 2
var(~tPt) = (k£OY Ok)' To maximize this subject to the constraint var(dt )

<X) 2
k£Ook with respect to 00' 01' .•. , we set up the Lagrangean:

(9)

where v is the Lagrangean multiplier. The first order conditions for cr.,
J

j=O, .•• <X) are:

aL
aG.

J
2vo. = 0

J
(10)
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-j
which in turn means that G. is proportional to Y .

J

for a maximum are satisfied, and the maximum can be viewed as a tangency of

an isoquant for var(~tPt)' which is a hyperplane in GO' Gl , G2 , space, with

the hypersphere represented by the constraint. 2At the maximum Gk
-2

(l-Y )

-2k -2-2
var(dt)y and var(~tPt) = Y var(dt)/(l-Y ) and so, converting to standard

deviations for ease of interpretation, we have:

where

G(~ P ) < G(d )/lr2t t - t
- - 2r = (l+r) - 1

2

(11)

Here, r 2 is the two-period interest rate, which is roughly twice the one-period

rate. The maximum occurs, then, when d is a first order autoregressive process,
t

- . ... -k-
dt = Yd t _l + Et;"and Et1e+k7 ydt • In contrast, if d

t
were revealed, let us say,

at t-50 (G;Omvar(dt)) then the innovation in dividend would be s~ heavily

discounted in (5) that it would contribute little to

1 d b d '1' ( 2if nothing were revea e a out t untl tlme t GO =

var(~tPt)' Alternatively,

var(d t » then still the

innovation in only one dividend would contribute to var(~tPt)'

The same maximum variance for ~tPt can also be derived in another way.

We will illustrate this by a maximum for the variance of the price change ~Pt'

though the procedure we use could also be employed to derive expression (11)

as well. lll/ Under the stationarity assumption, the variance of ~p may be
t

written var(~Pt) = 2var(pt) - 2cov(pt' Pt+l)' Since ~t+lPt+l cannot be forecasted

using p , we know that
t

- var(pt)/Y = 0 or, rearranging: cov(Pt' Pt+l) = var(pt)/Y - cov(d
t

, Pt)'

Substituting this into the expression for var(~Pt) gives:

1
2(1 - V) var(pt) + 2cov(dt , Pt)

2(1 -~) var(pt) + 2Pdp Vvar(dt ) Ivar(pt) (12)

where Pdp is the correlation coefficient between d
t

and Pt' Maximizing with

respect to var(pt)for given Pdp and var(dt ) we set the first derivative to zero:
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dvar(~Pt)_ 1
avar(p~T - 2(1 - y) + Pdp

Ivar(d
t

)

Ivar(pt)
= 0 (13)

and since P > 0, the second order condition for a maximum is satisfied.
dp

Hence at the maximum:

(14)

2since P
d

< 1 and since (l-y)/yp-
r, we thus have the inequality

1
o(~Pt)< .- o(d )-g t

(15)

The maximum standard deviation of ~Pt for given standard deviation of dt is

attained if dividends are paid every period and the demeaned dividend series,

d
t

follows the first

unforecastable white

-
order autoregression ~dt = -rdt _l + Et where Et is

- - k-
noise, and Et(dt +k) = (l-r) dt . In this case, there is

-
a perfect correlation between prices and dividends, and Pt = dt /(2r) (while

at the same time E(pt) = E(dt)/r).

Intuitively, one can see why o(~Pt) is maximized with such a dt process.

Such a d
t

process moves fairly smoothly, but not too smoothly, through time.

If d
t

were much less smooth (i.e, a choppy irregular series) then the long

average in the present value formula would in effect average these movements

out leaving little variation in P~ and hence little room for movements in ~Pt.

If the dt process were much smoother than in this autoregression, then the

moving average in the definition of P~ would not effectively average out the

movements in d so that P~ would vary a lot. However, P~ would then be very

smooth itself, again leaving little room for variation in ~Pt·

2
At the maximum, the R between ~Pt and Pt-l is r/2 which is a very small
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number. Hence, the case where cr(~pd is maximized is also a case where Pt

resembles a random walk. Even with fairly sizeable samples this correlation

will generally not be significant. However, the above maximum is not also

the minimum for the RZ of a regression of ~Pt on pt-l. If dt = ~dt_l + Et and

k-· Z Z
Et(d

t
+R) = ~ d

t
then R = (1 - ~)/Z an~ so the R approaches zero as

~ approaches 1.

III. High Kurtosis and Infrequent Important Breaks in Information

It has been repeatedly noted that stock price change distributions show

high kurtosis or "fat tails". This means that, if one looks at a time series

of observations on ~tPt or ~Pe one sees long stretches of time when their

(absolute) values are small and then an infrequent large (absolute) value.

This phenomenon is commonly attributed to a tendency for new information to

come in big lumps infrequently. There seems to be a common presumption that

this information lumping might cause stock price changes to have high or

infinite variance, which would seem to contradict our conclusion in the preceding

section that the variance of price is limited and is maximized if forecasts

have a simple autoregressive structure.

High sample kurtosis does not indicate infinite variance if we do not

assume, as did Fama [1965J and others, that price changes are drawn from the

stable Paretian class of distributions. 12/ Our model does not suggest that

price changes have a distribution in this class. Our model instead suggests

that the real issue is the existence of moments for the dividends series.

As long as dt is jointly stationary with information and has a finite

variance, then Pt' p~, ~tPt and ~Pt will be stationary and have a finite

variance. 13/ If d
t

is normally distributed, however, it does not follow that
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the price variables will be normally distributed. In fact, they may yet show

high kurtosis.

To see this possibility, suppose the dividends are serially independent

and identically normally distributed. The kurtosis of the price series is

~4 ~2 2
defined by kurtosis = E(pt)/(E(pt» • Suppose that with a probability of l/n

we are told d
t

at the beginning of time t but with probability (n-1)/n have

~4 1 -~ 4
Pt = O. Then E(Pt) = n E«ydt ) )

-~ 4 . - 2
equals nE(yd

t
) )/E«ydt ) » which

and

no information.
~ ~

In time periods when we are told d ,p = yd , otherwise
t t t

~2 1 -~ 2
E(pt) = nE«ydt ) ) so that kurtosis

equals n times the kurtosis of the normal

distribution. Hence, by choosing n high enough we can acheive an arbitrarily

high kurtosis, and yet the ·variance will always exist. Moreover, the

distribution of p conditional on the information that the dividend has been
t

revealed is also normal, so that, as Rosenberg [1972] suggested, conditional

distributions may always be normal.

If information is revealed in big lumps occasionally (so as to induce

high kurtosis as suggested in the above example) var(~Pt) or var(~tPt) are not

especially large. The variance of ~Pt loses more from the long interval of

time when information is not revealed than it gains from the infrequent

events when it is. The highest possible variance of ~Pt for given variance of d
t

indeed comes when d
t

has a simple autoregressive forecast as noted in the

previous section. In the above example, where information about dividends is

revealed one time in n, cr(~Pt)= (2:y2/n)1/2cr(d~)'. The value of cr(~Pt) implied by

this example is for all n strictly below the upper bound of the inequality

(15). 14/

IV. Dividends or Earnings?

In the model (2) earnings may be relevant to the pricing of shares but only
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insofar as earnings are indicators of future dividends. Earnings are thus no

different from any other economic variable which may indicate future dividends.

Earnings are statistics conceived by accountants which are supposed to provide

an indicator of how well a company is doing. Unfortunately, there is a

great deal of latitude for the definition of earnings, as the recent literature

on inflation accounting will attest. Historically, earnings appear inaccurate

and overstated in that retained earnings appear to earn far less than the discount

rate and are a poor indicator of future dividends, as noted by Cowles [1938],

Little [1962J and Baumol, Heim, Malkiel and Quandt [1970].

There is no reason why price per share ought to be the present value of

expected earnings per share if earnings are retained. In fact, as Miller and

Modigliani [19611 argued, such a present value formula would entail a fundamental

sort of double counting. It is incorrect to include in the present value

formula both earnings at time t and the later earnings that accrue when time t

earnings are reinvested. 15/ That is, however, what the present value of

earnings per share would include. Miller and Modigliani showed a formula by

which price might be regarded as the present value of earnings corrected for

investments but that formula can be shown, using an accounting identity, identical

to (2).

Some people seem to feel that one cannot claim price as present value of

expected dividends since firms routinely payout only a fraction of earnings,and

also attempt somewhat to stabilize dividends. That feeling apparently stems from

a careless extrapolation of the case where firms paid out no dividends or paid

constant dividends in a growing economy. Simple growth models such as those

described in Fama and Miller [1971] in fact show that as long as the payout

fraction is non-zero, one may regard price as present value of dividends. 16/
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In these models, one can always describe price as the present value of dividends

as long as the dividend retention policy doesn't cause the firm to grow at

the discount rate. With our Standard and Poor data, the growth rate of real

price is only about 1.5%, while the discount rate is about 4.5% + 1.5% = 6%.

At these rates, the price of the firm a few decades hence is of little concern

to investors.

The crucial thing to recognize in our context is that once we know the

terminal price and intervening dividends, we have specified all that investors

care about. It would not make sense to define an ex-post rational price from

a terminal condition on price and using our same formula with earnings in place

of dividends.

V. Time Varying Real Discount Rates

If we modify the model (2) to allow real discount rates to vary without

restriction through time, then the model becomes untestable. We do not observe

real discount rates directly. Regardless of the behavior of £t and D
t

, there

will always be a discount rate series which makes (2) hold identically. We

might ask, though, whether the movements in the real discount rate that would

be required aren't larger than we might have expected. Or is it possible that

small movements in the current one-period discount rate coupled with new

information about such movements in future discount rates could account for

high stock price volatility? 12/

The natural extension of (2) to the case of time varying real discount

rate is:

(16)
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which has the property that Et(H
t

) = r
t

, i.e., expected one-period holding

returns equal the one-period real discount rate at time t. As before, we

can rewrite the model in terms of detrended series:

Pt Et(pP (17)
k

100

where p* - k~O .TI
O dt +kt J=

l+rt +j

(l+rt +j ) - (l+r t ) !A

This model then implies that a(p ) < a(p*) as before. Since the model is
t - t

nonlinear, however, it does not allow us to derive inequalities like (11) or

(15). On the other hand, if movements in real interest rates are not too

large, then we can use the linearization of p~ (i.e., Taylor expansion truncated

after the linear term) around d = E(dt)and r = E(r t ):

(18)

where ylic: 1/ (l+E (r t». The first term in the above expression is just the

expression for p~ in (4) (demeaned). The second term represents the effect

on p~ of movements in real discount rates. This second term is identical to

the expression for p* in (4) except that d
t
+

k
is replaced by r

t
+k and the

expression is premultiplied by E(dt)/E(r
t
).

It is possible to offer a simple intuitive interpretation for this

linearization. First note that the linearization of l/(l+rt +k), demeaned,

-2::'
around E(rt)is -y r

t
+

k
• Thus, a one percentage point increase in r

t
+k causes

-2l/(l+r
t
+k) to drop by y times one percent, or slightly less than one percent.

Note that all terms in (17) dated t+k or higher are premultiplied by l/(l+r
t
+

k
).



-18-

Thus, if r
t
+

k
is increased by one percentage point, all else constant, then all of

these terms will be reduced by about y2 times 1%. We can approximate the sum of all

these terms as yk-lE(~t)/E(rt)' E(dt)/~(rt) is the value at the beginning of time

-k-l .
t+k of a constant dividend stream E(d t ) discounted by E(rt ); and y dlscounts

it to the present. So,we see that a 1 percentage point increase in r t +k , all

else constant, decreases p~ by about yk+lE(dtJ!E(rt ), which corresponds to the

kth term in expression (18). There are two sources of innacuracy with this

linearization. First, the present value of all future dividends starting with

-k-l -time t+k is not exactly Y E(dt)/E(r t ).

point does not cause l/(l+;t+k) to fall by

Second, increasing r
t
+k by one

-2exactly Y times one percent.

percentage

To

-
some extent, however, these errors in the effects on p~ of r

t
, r t +l , r t +2 , •..

should average out, and one can use (18) to get an idea of the effects of changes

in discount rates.

To give an impression as to the accuracy of the linearization (18), I

computed p~ for data set 2 in two ways: first using (17) and then using (18),

with the same terminal condition P*1979' In place of the unobserved r t series

1 used the actual 4-6 month prime commercial paper rate plus a constant to

give it the mean r of Table I. The commercial paper rate is a nominal interest

rate and thus, one would expect, its fluctuations represent changes in inflationary

expectations as well as real interest rate movements. I chose it nonetheless,

rather arbitrarily, as a series which shows much more fluctuation than one would

normally expect to see in a real rate. The commercial paper rate ranges, in

this sample, from 0.53% to 9.87%. It stayed below 1% for over a decade (1935-46)

and, at the end of the sample, stayed generally well above 5% for over a decade.

In spite of this erratic behavior, the correlation coefficient between p*

computed from (17) and p* computed from (18) was .996, and cr(p*) was 250.5 and
t

268.0 by (17) and (18) respectively. Thus, the linearization (18) can be quite
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accurate. Note also that while these large movements in r t cause P~ to move

much more than was observed in figure 2, cr(p~) is still less than half of

cr(Pt). This suggests that the variability rt that is needed to save the efficient

markets model is much larger yet, as we shall indeed see in the empirical

section below.

Under some assumption about the correlation between r t and d
t

we can

use analogies to the above inequalities to gauge the maximum effect of variation

in r for given variance of r on the variation of p , ~tPt or ~p. For
t t t t

example, if we assume rand dare uncorrelated, then using the inequality
t t

(15) we see that the maximum possible contribution V of time variation in
max

rt to the variance of ~Pt is:

Vmax
(19)

Of course, this maximum can occur only when the unobserved real interest rate

has the right stochastic structure, i.e., it is first order autoregressive;
~

~rt ~ -E(r)r ~ 8 •
t t-lt We will use expression (19) in the next section of

the paper to help us to interpret our results.

VI. Empirical Evidence

The elements of the inequalities (1), (11) and (15) are displayed for the

two data sets @escribed in the appendix) in Table I. In both data sets, the

trend was estimated by regressing In(Pt) on a constant and time and then setting

A in (3) equal to eb where b is the coefficient of time. The detrended real

series were then multiplied by a scale factor chosen so that p for 1979 equalled

the nominal value of the index for that date. The discount rate r is estimated



TABLE I
SAMPLE STATISTICS FOR PRICE AND DIVIDEND SERIES

1 2 3 4 5 6 7 8 9 10 11 12

"

Elements of Inequalities

E(p)
b-lnA

Data Sample r A cov(p, p*) Inequality 1 Inequality 11 Inequality 15
Set Period E(d) r 2 o(b) oed) o(p ) o(pP o('\Pt) O(d)/~ o (l:>Pt) o(d)/Ii.':

1:
minCo) mined).

111

Standard . 1871- 135.3 .0452 .0145 .3962 47.17 7.505 24.59 4.212 24.29 4.260

& 1979 6.119 .0925 (.001 i) 1.281 22.13 21.86

Poor

1/2
... . .

Modified 1928- 1599. .0429 .0176 .1789 595.6 44.18 401.8 49.83 397.5 50.36

Dow 1979 68.56 .0876 (.0036) 14.75 346.8 342.5

Industrial

NOTE: In thi$ table, E denotes sample mean, 0 denotes standard deviation and 0 denotes standard error. Min (0) is the lower bound on 0 computed as
2 - -a one-sided X 95% confidence interval. The symbols p, d, r, r 2 , b, p* and l:>tPt are defined in the text. Data sets are described in the appendix.

Inequality 1 in the text asserts that the standard deviation in column 7 should be less than or equal to that in column 8, inequality 11 that 0 in
column 9 should be less than or equal to that in column 10, and inequality 15 that 0 in column 11 should be less than that in column 12.
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as the average detrended real dividend divided by the average detrended real

price. 18/

With data set 1 the series are the real Standard & Poor's Composite Stock

Price Index and the associated real dividend series. The earlier observations

for this series are due to Cowles [1938J who said that the index is "intended

to represent, ignoring the elements of brokerage charges and taxes, what would

have happened to an investor's funds if he had bought, at the beginning of

1871, all stocks quoted on the New York Stock Exchange, allocating his purchases

among the individual stocks in proportion to their total monetary value and

each month up to 1937 had by the same criterion redistributed his holdings

among all quoted stocks" <[19381, p.2). In updating his series, Standard & Poor

later restricted the sample to 500 stocks, but the series continues to be

value weighted. The advantage to this series is its comprehensiveness. The

disadvantage is that the dividends accruing to the portfolio at one point of

time may not correspond to the dividends forecasted by holders of the Standard

& Poor's portfolio at an earlier time, due to the change in weighting of the

stocks. There is no way to correct this disadvantage without losing comprehensiveness.

The original portfolio of 1871 is bound to become a relatively smaller and

smaller sample of U.S. common stocks as time goes on.

With data set 2, the series are a modified real Dow Jones Industrial

Average and associated real dividend series. With this data set, the advantages

and disadvantages of data set 1 are reversed. Our modifications in the Dow

Jones Ind~strial Average assure that our series reflect the performance of a

single unchanging portfolio. The disadvantage is that the performance of only

30 stocks is recorded.

The table reveals that all inequalities are dramatically violated by the

sample statistics for both data sets. The left hand side of the inequality is
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always at least 5 times as great as the right hand side, and as much as 13

times as great.

We saw above that the inequality (15) could be derived assuming only that

innovations in price are uncorrelated with the price level, cov(~t+lPt+l' Pt) = 0

and the assumption that processes are stationary. Since the inequality (15)

is violated dramatically, and processes do appear stationary we would expect

that the sample covariance between ~t+lPt+l and Pt is not zero. In fact, if

we regress ~t+lPt+l onto (a constant and) Pt' we get significant results: a

2
coefficient of Pt of -.1576 (t = -3.271, R = .0831) for data set 1 and a

coefficient of -.2382 (t = -2.618, R
2 = .1048) for data set 2. These results

are not due to the detrending of the data. In fact, if the holding period

return H
t

is regressed on a constant and the dividend price ratio Dt/Pt we get

results that are only slightly less significant: a coefficient of 3.875

22.669, R = .0541) for data set 1 and a coefficient of 4.954 (t = 1.843,

.0457) for data set 2.

These regression tests, while technically valid, may not be as generally

useful for appraising the validity of the model as are the simple volatility

comparisons. First, as noted above, the regression tests are not insensitive

to data misalignment. Such low R2 might be the result of dividend or commodity

price index data errors. Second, although the model is rejected in these very long

samples, the tests may not be powerful if we confined ourselves to shorter

samples, for which the data are more accurate, as do most researchers in finance,

while volatility comparisons may be much more revealing. To see this, consider a

stylized world in which (for the sake of argument) the dividend series d
t

is

absolutely constant while the price series behaves as in our data set. Since

the actual dividend series is fairly smooth, our stylized world is not too

remote from our own. If dividends dtare absolutely constant, however, it should

be obvious to the most casual and unsophisticated observer by volatility
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arguments like those made here that the efficient markets must be wrong. Price

movements cannot reflect new information about dividends if dividends never

change. Yet regressions like those run above will have limited power to

reject the model. If the alternative hypothesis is, say, that Pt = PPt-l + Et ,

where P is close to but less than one, then the power of the test in short

samples will be very low. In this stylized world we are testing for the

stationarity of the Pt series, for which, as we know, power is low in short

samples. 19/ For example, if postwar data from, say, 1950-65 were chosen (a

period often used in recent financial markets studies) when the stock market

was drifting up, then clearly the regression tests will not reject. Even in

periods showing a reversal of upward drift the rejection may not be significant.

Using expression (19), we can compute how big the standard deviation of

real discount rates would have to be to possibly account for the discrepancy

o = cr2(~Pt) - cr 2(d
t
)/(2r) between Table I results (columns 11 and 12) and rhe

inequality (15). Setting 0 < V in (19), assuming Table I r (column 4)
- max

-
We find that the standard deviation of r would have to. t

equals E(r ) and that sample variances equal population variances, we find that
t

2 - - 3 2
(J (r t) ~ 2oE(r t ) /E(dt ) .

be at least 5.32 percentage points for data set 1 and 7.22 percentage points

for data set 2. These are very large numbers. If we take, as a normal range

for r implied by these figures, a + 2 standard-cieviation range around the r
t' -

given in Table I, then r
t

w(j)uld have to range from -6.12% to 15.16% for data set

1 and -10.14% to 18.72% for data set 2! And these ranges reflect lowest

possible standard deviations which are consistent with the model only if the

real rate has the first order autoregressive structure noted above! 20/

VII. Conclusion

We did not attempt to test formally whether the inequalities on volatility
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21/
which follow from the efficient markets model are violated.--Instead, we sought

to describe the data so as to clarify what kinds of assumptions are necessary

to reconcile it with the model. Formal tests could be undertaken only under

some maintained hypothesis about the stochastic properties of the dividend

series (e.g., that they are an ARIMA process of low order) and our model tells

us nothing about the dividend series. Standard data analysis procedures:

detrending,first differencing and estimating autoregressions or moving average

Fepresentations introduce certain biases in the testing procedures that we do

not wish to casually accept. Depending on what we assumed as a maintained

hypothesis about the stochastic properties of the dividend series, we might or

might not reject the model. We could not reject the model if our maintained

hypothesis allowed for a small probability of really enormous movement in d
t

which was not observed in the sample. Such a maintained hypothesis might also

be described as allowing for a small probability each period of a major change

in trend. Investors may well have been rationally adjusting their forecasts

in response to new information about this possible big event which did not occur.

The efficient markets model does tell us that the price innovation series

~tPt is serially uncorrelated, and ~Pt is approximately serially uncorrelated,

which enables us to put a x2 95% lower bound on their standard deviations

(Table I). With this information alone we can summarize our basic conclusion:

the movements in detrended real price Pt over the last century can be justified

as the rational response to new information about anticipated future movements

in detrended real dividends d
t

only if these anticipated future movements were

many times bigger than those actually observed over the last century. Thus,

the efficient markets model is at best an "academic" model about an unobservable

(new information about the trend) and does not describe observed movements in data.

Moreover, we have seen that if movements in the unobserved real interest rates

are instead invoked to explain the high volatility of prices (taking the



-24-

observed variance of d t a~- the true variancef then these real interest rate

movements would have to be very large.



APPENDIX

SOURCES OF DATA

Data Set 1
Standard and Poor Series

Annual 1871 - 1979. The price series P
t

is Standard & Poor's Monthly

Composite Stock Price index for January divided by the Bureau of Labor Statistics

wholesale price index (January WPI sta~ting in 1900, annual average WPI before

1900). The Standard" & Poor HonthlyGo.mposite Stock Price index, which may be

found in Standard & Poor [1978J p. 119, is a continuation of the Cowles Commission

Common Stock Index (Cowles ~938J), and ~urrently is based on 500 stocks.

Prior to 1918 the prices on which the index is based are simple averages of

the high and low price for the month. Starting in 1"918 the prices are monthly

averages of Wednesday closing prices. Rosenberg [1972J suggested a correction

to the sample variance of monthly changes to estimate end of month to end of

month price change variance. With our annual data, this correction is not so

important, and we ignore it.

The Dividend Series D
t

is total dividends for the calendar year accruing

to the portfolio represented by the stocks in the index divided by the average

wholesale price index for the year. Starting in 1926 these total dividends

are the series "Dividends per share 12 months moving total adjusted to

index" from Standard & Poor statistical serivce [1978J. For 1871 to 1925

total dividends are Cowles [1938J series Da-l multiplied by .1264 to correct

for change in base year.

Data Set 2
Modified Dow Jones Industrial Average

Annual 1928 - 1979. Here P
t

and D
t

refer to real price and dividends of
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the portfolio of 30 stocks compirsing the sample for the Dow Jones Industrial

Average when it was created in 1928. Dow Jones averages before 1928 exist,

but the 30 industrials series was begun in that year. The published Dow Jones

Industrial Average, however, is not ideal in that stocks are dropped and replaced

and in that the weighting given an individual stock is affected by splits.

Of the original 30 stocks, only 17 were still included in the Dow Jones

Industrial Average at the end of our sample. The published Dow Jones Industrial

Average is the simple sum of the price per share of the 30 companies divided

by a divisor which changes through time. Thus, if a stock splits 2 for 1 then

Dow Jones continues to include only one share but changes the divisor to

prevent a sudden drop in the Dow Jones average.

To produce the series used in this paper, the Capital Changes Reporter

[1977} was used to trace changes in the companies from 1928 - 1979. Of the

original 30 companies of the Dow Jones Industrial Average, today (1979) nine

have the identical names, 12 have changed only their names, and nine were

acquired, merged or consolidated. For these latter nine, the price and dividend

series are continued as the price and dividend of the shares exchanged by the

acquiring corporation. In only one case was a cash payment along with shares

of the acquiring corporation exchanged for the shares of the acquired corporation.

In this case, the price and dividend series were continued as the price and

dividend of common shares of equal value at time of acquisition. In four cases

preferred shares of the acquiring corporation were among shares exchanged.

Common shares of equal value were substituted for these in our series. The

number of shares of each firm included in the total is determined by the

splits, and effective splits effected by stock dividends and merger. The

price series is the value of all these shares on the first trading day of the

year. The dividend series is the total for the year of dividends and the cash
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value of other distributions for all these shares. The price and dividend

series were deflated using the same wholesale prices indexes as in data set 1.



FOOTNOTES

1/ The stock price index may look unfamiliar because it is deflated by a

price index, detrended, and only January figures are shown. One might note,

for example, that the stock market decline of 1929-32 looks smaller than the

recent decline. In real terms, it was. The January figures also miss both

the 1929 peak and 1932 trough.

2:..1 The undetrended series show a gradual increase. in scale of about 1.5%

a year, both for dividends and prices. Assumptions about public knowledge or

lack of knowledge of this trend are important, as we shall discuss below. p*

is computed subject to an assumption about dividends after 1978 and uses discount

rate r, average dividend d over average price p from Table I. See text and figure

3 below.

1/ Some people will object to this derivation of (1) and say that one might

as well have said that Et(pt) = p~, Le., that forecasts are correct "on average",

which would lead to a reverse of the inequality (1). This objection stems,

however, from a faulty understanding of the meaning of conditional expectation.

The subscript t on the expectations operator E means "taking as given (Le., non-

random) all variables known at time t." Clearly, Pt is known at time t

and P~ is not. In practical terms, if a forecaster gives as his forecast

anything other than Et(p~) then his forecast is not optimal in the sense of

expected squared forecast error. If he gives a forecast which equals Et(p~)

only on average, then he is adding random noise to the optimal forecast.

existence of this "noise" in Pt in precisely our interest here. Further

discussion of the robustness of such inequalities is in Shiller [1979J.

The
"

~/ This analysis was extended to yields on preferred stocks by Amsler

[1979J.

i/ It should not be inferred that the literature on efficient markets

uniformly supports the notions of efficiency put forth there, e.g., that no
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assets are dominated or that no trading rule dominates a buy and hold strategy.

Notable papers which claim to find evidence against efficiency so defined are

Alexander [1964], Basu [1977], Jensen et. al. [1978J and Modigliani and Cohn

[1979].

2-1 The claim that real short-term interest rates on default-free fixed

loans are roughly constant has received a great deal of attention rec~ntly.

This literature is discussed critically in Shiller [1980J.

II No assumptions are introduced in going from (2) to (3), since (3) is

just an algebraic transformation of (2). We shall, however, introduce the

assumption that dt is jointly stationary with information, which means that the

(unconditional) covariance between d
t

and z k' where z is any information
t- t

variable (which might be dt itself or Pt)' depends only on k, not t. We shall

continue to include the time subscript in expressions such as var(d
t

) or E(d
t

)

even though the expressions are not functions of time. In contrast, a realization

of the random variable the conditional expectation Et(d
t
+

k
) is a function

of time since it depends on information at time t. Some stationarity assumption

is necessary if we are to proceed. In section VII we discuss this assumption.

~I Taking unconditional expectations of both sides of (3) we find

using y

E(p)= ...:L E(d )
t - tl-y

l/l+r and solving we find r = B(dt)/E(pt)·

I· -2.2. It follows that var(u
t

) = var(l:>tpt)/(l-y ) as LeRoy and Porter

[1979J noted. They base their volatility tests on our inequality (1) (which

2 2 -2 2
they call theorem 2) and a stronger inequality cr (p) + cr (l:>tpt)/(l-y ) ~ cr (p*) ,

(for which the equality should always hold, their theorem 3). They found that,

with postwar Standard and Poor earnings data, both inequalities were violated

by sample standard deviations.
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10/'
--' Of course, all indeterministic stationary processes can be given linear

moving average representations (Wold [1948)). However, it does not follow

that the process can be given a moving average representation in terms of its

own innovations. The true process may be generated nonlinearly or other

information besides its own lagged values may be used in forecasting. These

will generally result in a less than perfect correlation of the eerms in (5).

Ill' To derive (11) as illustrated here, find the maximum for the variance

- -2
of Pt+l - Pt /y = (1 + l/y ) var(p t ) - (2/y)cov(Pt , Pt +l ) with the

substitution. as the above. Then use the faCt that var(L\pt) = var(pt+l - p/y)

- var(d ).
t

12/ The empirical fact about the unconditional distribution of stock price

changes is not that they have infinite variance (which can never be demonstrated

with any finite sample) but that they have high kurtosis in the sample. We may

then assume finite variance in face of high sample kurtosis at the risk that

our sample statistics may not be trustworthy measures of population variances.

The risk is that some subsequent movements in stock prices not yet observed

will have such magnitude as to swamp out our sample observations. This risk

is analogous to that incurred when we assumed above that the dividend series

is stationary. This risk that rare or unobserved events may yet force us to

drastically change our conclusions is inherent in all statistical research,

even when sample data show low kurtosis.

131 With any stationary process, X
t

, the existence of a finite var(X
t

)

implies, by Schwartz's inequality, a finite value of cov(X
t

, X
t
+k) for any k,

and hence the entire autocovariance function of X
t

, and the spectrum, exists.

Moreover, the variance of Et(Xt ) must also be finite, since the variance of

X equals the variance of E (X ) plus the variance of the forecast error.
t t
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'"14Y For another illustrative example consider d
t

= -d + £ as with theY t.,..l t

upper bound for the inequality 11 but where the dividends are announced for the next

n years every l/n years. Here, even though.d
t

has the autoregressive structure,

£t is not the innovation in d
t

. As n $oes to infinity, 0(~tPt) approaches zero.

While we may regard real dividends as having finite variance, innovations

in dividends may show high kurtosis. The residuals in a second order

autoregression nor d
t

have a student~zed range of 6.29 for the Standard

& Poor series and 5.37 for the Dow series. According to the David-Hartley-Person

test, normality can be rejected at the 5% level (but not at the 1% level) with

a one-tailed test for both data sets.

15/ LeRoy and Porter [1979} do assume price as present value of earnings but

employ a correction to the price and earnings series which is, under addi.tional

theoretical assumptions not employed by Miller and Modigliani, a correction for

the double counting.

16/ These growth models are more easily understood in continuous time,

00 -rt
so instead of (2) we have Po = fODte dt. In a simple kind of growth model, a

firm has a constant earnings stream I. If it pays out all earnings then D=I

If it pays out only s of its earnings then the firm

sIe(l-s)rt which is less that I at t=O but higher

00 -rt
and Po = fOle dt = I/r.

grows at rate (l-s)r, D =
t

00 (l-s)rt -rt
than I later on. Then Po = fOsle e dt

00 -srt
= fOsle dt = sI/(rs). If

s f a (so that we're not dividing by zero) Po = I/r.

yj Pesando [1979] has asked the analogous question: how large must the

variance in liquidity premia be in order to justify the volatility of long-term

interest rates?

18/ This is not equivalent to the average dividend price ratio, which was

slightly higher (.0492 for data set 1, .0467 for data set 2).

19/ If dividends are constant (let us say d
t

= 0) then a test of the model
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by a regression of ~t+l Pt +l on Pt amounts to a regression of Pt +l on Pt with

the null hypothesis that the coefficient of P is (l+r). This appears to be an
. t

explosive model for which t-statistics are not valid yet our true model, which

in effect assumes a(d) f 0, is non-explosive. Regression tests of our model

when t = 0 have the form of tests of nonstationarity against the alternative

hypothesis, under which ordinary standard errors are asymptotically valid under

general conditions.

20/ If we further allow d and r to be correlated, then for a given
. t t

variance of dt and r t , the variance of ~Pt is maxinized if dt and r t are

perfectly negatively correlated. From (18) and previous arguments we know

a(~p) 2. a(dt - E(p)~t)/IzE(r). Defining the discrepancy ratio 8' = a(~p)

/[aCd/IzE(r)] it follows that aCr) ~ (8' - l)a(d)E(r)/E(d). Using table 1

data, we find a(r) must be at least 4.45 percentage points for data set 1 and

6.35 percentage points for data set 2. Perfect negative correlation does not

allow much lower standard deviation for r, since d doesn't vary much.

These estimated standard deviations of ex-ante real interest rates are

roughly consistent with the results of the simple regressions noted above. In

a regression of Ht on Dt/Pt and a constant, the standard deviation of the fitted

value of H
t

is 4.25% and 5~.19% for data sets 1 and 2 respectively. These large

standard deviations are consistent with the low R2 because the standard deviation

of H
t

is so much higher (18.29% and 24.18% respectively). The regressions of

~tPt on Pt suggest higher standard deviations of expected real interest rates.

The standard deviation of the fitted value divided by the average detrended

price is 5.50% and 8.05% for data sets 1 and 2 respectively.

21/ LeRoy and Porter have attempted such tests.
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