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1. Introduction

' w

The phenomenon of "sticky prices," that is, the apparent insensitivity

of prices to fluctuations in demand, has long intrigued both microeconomists
and macroeconomists.l Normally, increasing production and raising prices
are thought of as alternative ways for a firm to respond to an increase in
the demand for its product. Thus firms that opt for large quantity adjust-
ments will display small price adjustments, while firms that make small
quantity adjustments will be forced to make large price adjustments.

The logic behind this common conclusion is clear from Figure 1., Here
y is output, C'(y) is the (rising) marginal cost curve, R"(y) + ¢ is the
(falling) MR curve (with ¢ a random demand shock), and equilibrium is where
MR = MC. It follows quite clearly that, among firms facing the same structure
of demand, those with steep MC schedules will display strong price responses
and weak output responses, while those with flat MC schedules will
display weak price responses and strong output responses.

The main point of this paper is that :this simple conclusion may well
be reversed when output is storable. Specifically, it may be that some firms
»exhibit large output and large price responses to demand shocks while other
firms respond rather little in either dimension. The central result is a
theorem characterizing precisely what types of firms <=tend to fall in each
category. Loosely speaking, the principal conclusion of the paper (stated
more precisely as Theorem 1 below) is that both price and output responses
become smaller as demand shocks become less persistent and output becomes
more "inventoriable.'" That is, for given MC and MR curves, "sticky" prices

will tend to emerge when it is not very costly to vary inventories and when

demand shocks are very transitory.

For a recent comprehensive survey from a macroeconomic perspective, see
Gordon (forthcoming).
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The paper is closely related to, and generalizes the results of,
recent papers by Amihud and Mendelson (198Q0) and Reagan (1980), and a
well-known earlier paper by Zabel (1972).l The two recent papers emphasize
an asymmetry in pricing behavior that results when stockouts occur by showing
that prices resppnd more strongly to demand shocks when there are stockouts
than when there are not. This asymmetry, while it does occur in my model as
well, is not the focus of this paper. Rather, for the most part I ignore
stockouts and stress that the existence of inventories reduces the flexibility
of prices in all states of demand and in both directioms.

The paper is organized as follows. This section concludes with an
intuitive explanation of the main result, which both conveys the flavor of
the proof and, more importantly, suggests that the result is quite a bit more
general than the model used to derive it. Section 2 presents the formal
model, compares it to the earlier literature, and states the main theorem
precisely. Section 3 consists of a formal proof, and Section 4 collects
some interesting related results on inventory behavior that flow from the
model. Section 5 discusses some macroeconomic phenomena for which the model may
provide microfoundations, and Section 6 is a brief summary.

Why does the existence of inventories of finished goods invalidate
the simple story told by Figure 1? The answer is that a firm with storable out-
put is operating simultaneously on two margins. It must decide how much out-

put to produce for inventory, and it must decide how much inventory to sell.

1 For other related work, see Maccini (1976), Blinder and Fischer (1981),
Phlips (1980), and Reagan and Weitzman (1980).

2 Such a result is hinted at by Zabel (1972, p. 535).



While profit maximization continues to require MC=MR each period, it is no

longer necessary that this be done with output (yt) equal to sales (xt). In-

deed, it will quite often be the case that optimal Y, and X, differ, with
changes in the stock of inventories (Nt) taking up the‘slack. Figure 2 il-
lustrates the basic idea. The MC curve is C'(y), and optimal output is deter-
mined by equating MC to the shadow value of inventories, denoted A (N), at point
B. The MR curve is R'(x) + €, and optimal sales are determined by equating

MR to A(N) at point A. It is obvious that x and y need not be equal.

Now consider what happens when ¢ changes. Trivial algebra establishes that:

v o _1 _d
de C'(y) de
dx _ 1 d)
de  R"(x) (- de)
L , . dAr |
SO it is clear that everything hinges on the response of A to e. If Hg-ls

close to unity, demand shocks will be met by substantial changes in output
but small changes in sales, i.e., large changes in prices. Conversely, if
gg is close to zero, demand shocks will elicit small output responses and
large sales responses, i.e., small price responses. Large (small) output
responses and large (small) price responses thus go together if the cross-
sectional differences among firms come mainly in gg (rather than in C'"(y) and
R"(x)).

What factors are likely to govern the size of g%—? First, intuition
tells us that the shadow value of inventories will respond more strongly
when shocks are expected to persist longer. A very transitory shock will
change A very little; a permanent one will change it a lot. Second, it
seems likely that %% will be larger when goods are more difficult to inven-

tory. Finally, Figure 2 suggests that the slopes of the MC and MR curves

remain relevant, though not in as obvious a way as in Figure 1. The essence






dx
of Theorem 1 below is to show that‘§€~ is between zero and unity,
and depends on the aforementioned parameters in the ways suggested by intui-

tion.

2. The Model and Formal Statement of the Theorem

The firm, which I take to be a monopolist, chooses time paths for sales,
X, s and output, Vs to maximize the expected discounted present value of profits.
There is a random demand shock, Mo each period which the firm sees before
setting sales and output for that period. While the analysis could be con-
ducted equally well in either discrete or continuous time, I choose the former.

Hence, the firm wishes to maximize:

Ey

I o1 8

D K(x,n) - C(y) - B(n)))

t=0

subject to the constraints;

(2.1) iy - B, = oy o-xX t=1, 2, ...

A%
Here R(:) is the revenue function, C(:) is the production cost function, B(:)
. . . . .1 . ,
is the inventory carrying cost function, D :(I:?) is a discount factor, and
the expectation is taken as of time zero. Each of the functions merits some

discussion.

Revenue Function

The work of Zabel (1972) makes it quite clear that there is almost
no hope of deriving results unless the random shock to the demand curve is

additive. Hence I assume that price, Ppo is given by:

p, = Tr(xt) +n T () < 0,

t t’

This is purely a matter of taste. The earlier version of this paper used con-
tinuous time.



where mt is the random demand shock. Then define the revenue function as;

K( ) (x) + = R(x ) +

b4 = x = x 7m(x X = X b4

£ e Pt t Tt "t t’ “eNee

where R(-), the deterministic part of the revenue function, is assumed to
be strictly concave. Where explicit solutions are required, I assume a

linear demand function:

(2.2) w(x) = = (n, - %x) .

T
so that R(+) is quadratic. T is assumed to be so large that ;9-+ n

t

(which is marginal revenue at zero sales) is always positive and the constraint
X, 2 0 1is never binding. While this is a less general specification than

that used by Zabel (1972), Amihud and Mendelson (1980), and Reagan (1980), its
only role is to permit an explicit solution. All the results to follow hold
approximately in the neighborhood of equilibrium for an arbitrary concave

revenue function.

Production Cost Function

For the same reason, the production cost function is assumed to be
quadratic:

1 1 2
(2.3) C(yt) = ¢ + E(clyt + E-yt)

where cl/c (i.e., marginal cost at zero output) is assumed small enough so
the constraint y > 0 is never binding. While this specification is less
general than Zabel (1972), who worked with an arbitrary convex cost functionm,
it is more general than Amihud-Mendelson (1980) and Reagan (1%280), who res-

tricted themselves to the case of constant marginal costs.



Inventory Cost Function

Here again, where explicit solutions are necessary, [ assume that

B(+) is quadratic:

_ 2
(2.4) B(nt) = bO + blnt + (b/2)nt, b>0

whereﬂt = Nt - K is the deviation of inventories from some critical lewvel, XK.
This is a more general specification than Zabel (1972) or Amihud-Mendelson
(1980), both of which assumed a linear storage cost technology (b=0). Reagan
(1980) assumed no explicit storage costs. It turns out that the parameter
b is absolutely critical to the analysis and that b=0 is a very special case.
This cost function, which is sketched in Figure 3 for the case bl =0
admits of two possible interpretations. First, K could be zero, in which case
B(N) is storage costs if inventories are positive and represents the cost of
holding a queue of unfilled orders if N is negative.l Alternatively, K could
be some critical level of inventories below which production costs actually
rise because it is difficult to schedule production efficiently, etc. The
magnitude of K would then obviously influence the likelihood that the firm
stocks out. For the most part, I will assume that negative values of N
(interpreted as unfilled orders) are possible. But Section 5 will offer some
brief remarks on what happens if negative N is impossible. Under either in-
terpretation, it makes sense to assume bl = 0 since B(n) reaches its minimum

at n = —bl/b. But the parameter bl is not critical in what follows.

The way the maximand is structured assumes that sales made at time t earn

the firm p_ even though they are not delivered until some future date, that

is, it asstumes that unfilled orders are prepaid. If, in fact, unfilled _
orders are paid only upon delivery, then x, yields the firm only p S(l+r)
where s is the delivery lag. Thus the cost to he firm of backordering the sale
is: Py = Py (l+r) S = Py [1-( l+,)s] where pt+S = (1+4g)S defines g. For

small g and r, this is approx1mately -p (g~r)s If s is zero for positive N

and rises in an approximately quadratlc manner for negative N_, then a quadratic
function B(N_) over negative values of N is derived. Syumetry of B(Nt) around
zero 1s not essential. )
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Distribution of Demand Shocks

Each of the papers referred to above assumes that demand shocks are
independently and identically distributed (i.i.d.). This assumption, while
it simplifies things greatly, is quite unsatisfactory. We know, for example,
that disturbances at tgé macro level are highly serially correlated, and it
would be surprising indeed if this serial correlation disappeared when we
disaggregated to the industry of firm levels. In this paper, I assume that

the stochastic structure of demand follows an AR(1l) process:

(2.5) g =en,_;tve, O0s<pxl

where v, is a white noise disturbance term. Obviously, i.i.d. disturbances
are a special case of (2.5) when o = 0. At the other extreme, 0 = 1 denotes
a random walk.

I am now in a position to state the main theorem precisely.

THEOREM 1: The responses of the optimal price, pi, and optimal production,
yi, to the contemporaneous demand shock, n., are both smaller when demand
shocks are more transitory (i.e., p is smaller) and when marginal carrying
costs of inventories are less sensitive to the level of inventories (i.e., when

b is smaller).

I proceed now to the proof, whose basic idea was suggested by the in-
tuitive analysis of Section 1. It will be clear that the linear quadratic
structure of the problem is needed only to get an explicit solution and is
unlikely to be "special"” in any relevant sense.

Since the proof, while straightforward, is fairly long and involved,
it will be useful to have a road map of where we are going. The proof proceeds
in three stages:

1. The first-order conditions for the optimal control problem summarized
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in Sectionv2 are derived,

2. These conditions are .reduced to a second-order difference equation
in a Lagrange multiplier which is interpreted as the shadow value of inventories.
The homogeneous part of this difference . equation is obtained.

3. The specific stochastic structure of demand is used to derive a par-
ticular solution, and the resulting difference equation is solved for
its initial value. The results of step 1 are then used to derive the economic

results of interest.

3.1 First-Order Conditions

Introducing the Lagrange multiplier for constraint (2.1), the prob-
4 qt

lem becomes to &ind a critical point of the Lagranglan;

Eo

N 8

t
D{R(xx) +x N - @ - _ O
. i T €YD - B) +q (g + n o+ Y, = x5!

t=0

for which the first~order conditions are:

(3.1) EOC'(yt) = Ejq. = u,

(3.2) EOR'(xt) = Eo(qt - nt) Su - e,

(3.3) EB'(m) = Eglq, - #mdq. ) =u, - (Hou
(3.4) n, = nt_l'+ Vo1 = ¥pop v

where the following new symbols have been introduced to simplify the notation:

that 1is, M and e, are respectiyely the actual values of 4, and e for t=0,

but are the expectations (based on information known at t=0) of these variables

for t > 0. Consistent with this, the symbols Ve and X, denote the output and

sales for period t as planned at period 0. Hence only Yo and X, correspond to

1 The second order conditions obviously hold since R'(x) < 0, C"(y) > 0, and B"(a) > O.
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actual realized values,
Under the specific functional forms introduced in Section 2, 3.1 -
(3.3) can be written as;

Ve = @79

t t
X, = —w(ut - et) + L
My = (lfr)ut_l + bnt + bl.

These can be simplified somewhat by first computing the steady-state values of

the nonstochastic part of the difference equation system, which are:

- _Totey
H T+C
- _ v + bl
-b
Yy = Ccu - cl = X = -Tu -+ ﬂo

Then, if we let At denote the deviation of He from its steady state, our

difference ©€quation system can be written:
(3.5) Ve = y + ckt
(3.6) x, = X - wkt + e,
(3.7) A= (40X | +bla -n) .

When (3.5) and (3.6) are substituted into the identity (3.4), equations (3.7)
and (3.4) form a system of two first-order difference . equations. The

two stationaries of this system are given below:

o
(]

rkt—l + b(nt-n)

(@
it

(c+w)xt T T,
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and graphed in Figure 4, which clearly shows that for any fixed ¢ there is

a unique equilibrium which is a saddle.gpintt The firm must choose XO to

be on the unique stable arm, which immediately implies that A is a decreasing

0

function of nO,

- . ' 1
3.2 Solving the Difference . Equation System

Since the firm computes a new optimal path each period, we are only interested
in the solution for t=0. But to get this solution we must solve the entire
system for its initial values. The easiest way to do this is to reduce it to
a single second-order equation in At. This is obtained by first-differencing

(3.7) and using (3.5) and (3.6) to substitute out n,-n._q- The result is:

3.8) x_ - , = -
(3.8) A -[2+1r+ b(c-!-"r)])\t_l +(FDA bre,

Letting 8 = 2 + r + b(c+r), the characteristic roots of (3.8) are the solutions

to the quadratic equation:

(3.9) 22 -8z + (1+r) = 0,

and the solution to the homogeneous part of (3.8) takes the form:

. t t
At = Kl(zl) + KZ(ZZ)

are the roots of (3.9) and K, and K, are constants to be determined

where 2z 1 2

1°%2
by the initial conditioms.

One of these constants follows immediately, however. By Descartes rule
of signs, both roots of (3.9) are real and positive; furthermore, it is easy

to show that one is less than unity while the other is greater than unity.

Hence, if z1 1s the stable root and z, is the unstable root, picking AO to be

Readers whose tolerance for grinding is low and are willing to trust my
derivation, can proceed immediately to equation (3.15), which is the desired
solution.
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on the stable arm in Figure 4 is tantamount to picking K2 = 0, The full

solution to (3.8) therefore takes the form;
t
3. =
(3.10) Kt Klzl + ft
where ft is a particular solution to the inhomogenous part of (3.8). That is,

ft must satisfy;

3. - = -
(3.1D) ft Bft_l + (l+r)ft_2 bnst_l,

which makes it obvious that the form of ft depends on the time structure of
€ which in turn depends on the nature of the stochastic process generating
demand shocks.

One further result will prove useful in finding particular solutions.

Setting t=1 in (3.7) gives:

(3.12) Kl - KO = rAO + b(nl—n)

By the usual identity:

)5

n, -n = (nO - n) + (yO - XO

and substituting in from (3.5) and (3.6) leads to:

n, - n = (nO - n) + (c+ﬂ)x0 - ey .

Substituting this into (3.12) gives:

(3.13) A, = A, = [r + blctm)]r. + b(no-ﬁ> - brme

1 0 0 0
3.3 Finding a Particular Solution
Under the AR(l) process described by (2.5), e, = pteo. (Recall that e_ is

the mean of the demand shock expected in period t.) The method is to try a
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solution of the form;

and use equation (3.11) to determine the unknown coefficient A. Specifically,

since A must satisfy:

t-1 t-2 3 t-1

t- = -~ [
Alp €y = Ro €9 + (1+1)p EO] = -bmp €42
we obtain:
2 2
- -b
(3.14) A = — bTp = ng)
o " Bp+(1l+r)

Notice that the quadratic form in (3.14), which I have abbreviated Q(p), is
identical to the quadratic in equation (3.9). Thus it factors into (p—zl)(p—zz),
a fact that will prove useful.

The last step in the derivation is to use this particular solution to
solve for XO’ the initial value of the shadow price of inventories. To do so,

write (3.10) for t=0 and t=1:

>
[]
~
N
+
Fh
[]
S
>
(@]
|
Hh
(@]
ph—
N
=
+
H

Subtracting yields:

z
Ay - Ag = Ao(zl—l) +E - zlfo = Ag(g-1y + Aey (1- 510

broe,

b

= Ao(zl-l) + 2
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where the factorization of Q(p) in (3.14) has heen used, Equating this to
(3.13) gives a-simple.equation which can be solyed for AO to yield

Tz

2
zz-p EO}

(3.15) A. =b[lL+r -z +b(ctm)] T (5 - ng +

0 1

Since I have earlier shown that Yor %p° and ny all depend on XO’ every-
thing we need to know about the economics of the problem is embedded in
(3.15). I proceed now to ferret out the implications,

Proposition 1: 1In response to a positive (negative) shock to demand,

the firm increases (decreases) output, sales, and price, and reduces (raises)

inventory investment.

Proof: It follows from (3.4) - (3.6) that:

dy 3A
(3.16) =2 = 2
o0 o0
(3.1 %y CRN
de, - "= 57
€0 20
(3.18) °(my-my oA
e = (c+m) 3.7 ,
0 0
and from the demand curve that:
ap X
(3.19) =2 = %<1+ =2).
0 0
Hence the proposition is proved if we can show that:
3 A
0 « 5 0 < i
EO T+C

The first inequality follows by inspection of (3.15) since z, is less than 1,

and z, 1s greater than 1 (and thus surely greater than p).
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The second inequality can he rewritten;

b (T+c) %)
(l+r—zl) + b (m+c) Z,~ 0

To prove this, it is useful to establish first the following equivalence:

1-z
(3.20) b(mte = L

) (l+r—zl)

Proof: By (3.9),

2
21 = [2+ £+ b(etm)] zp +1+r =0,

So:

z, b (n+c) z. -

1 2, = (l+r)zl + (1+r)

(1l +r - zl)(l -z ),

1

from which (3.20) follows. Using (3.20) to eliminate b(m+¢) and simplifying,

the inequality to be proven becomes:

And this follows from the fact that 2122’ the product of the roots of the
characteristic equation (3.19), equals l+r.
QED

There is certainly nothing surprising about Proposition 1. Our interest,
of course, centers on how the derivatives referred to in the propositon vary
with changes in the parameters b and p. Consider first the parameter b,
which indicates the degree of convexity of the inventory carrying cost function.
Firms with high (low) b find it very costly (cheap) to vary inventory levels.

Hence b measures (with sign reversed) the "flexibility' of invento holdings.
y ry

The following proposition sums up the effects of b on the firm's adjustment



p=
D

procedures,

Proposition 2: As b rises, i.e,, as output gets less "inyentoriable,"

demand shocks elicit:
(1) larger output responses;
(ii) smaller sales responses;
(i1ii) larger price responses;
(iv) smaller (in absolute value) responses of inventory investment.
with res-

Proof: By inspection of the derivatives of x and n

0’ Yo Po 1™

pect to €y it can be seen that the proposition follows if we can establish

~that
4 ( 319-) >0
db aeo :

Use (3.20) to rewrite (3.15) as:

1-z _ nzz
(3.2D) K, = gz [m-ny+ zy-5 g0l >
from which it follows that:
IA z z, - (1+r)
S T
since 2,2, = l+r. Thus by direct computation:
3A dz
_Q_( 0 ) = ¢ T ) ( 2 ) z2 - p- [22 - (1+1r)]
db de T+c db
0 <; _ )2
z, =
7 (I+r-¢) dzz
T 2
e (z,~0) db

So the proposition follows if we can prove that dzz/db is positive, This

follows by differentiating (3.9) with respect to b, recalling that dB/db



20

or
E _z( TT+C)
db 22 -8

Since 2z, is, by the quadratic formula, 8~+J B"-4(1+r) , the above expression
is surely positive when evaluated at z=z,-

QED

The intuition behind this result is really quite simple. Firms that can
vary inventories rather painlessly (i.e., firms with low b) will use their
inventories to absorb most shocks. They will therefore change output and
price rather little, while making big sales responses via inventory changes.
Firms that lack this flexibility because b is high must rely more on output
and price responses.

Before leaving this topic, it is useful ‘to examine two special cases.

As b > =, output becomes essentially non-storable because n cannot be
changed except at prohibitive cost. In that case, it follows from the pre-

9

i 8> ; ; — L
vious proof that 22 > 5> and therefore (3.22) implies that BEO - ——

By (3.16) and (3.17) the sales and output responses both approach gﬁz-,

and therefore the inventory response to shocks goes to zero. (The price

T+ke

e 1.) As stated at the outset, as com—

response in (3.19) goes to
pared with a firm that can vary its inventories, a firm that cannot vary its
inventories exhibits stronger price and output responses to a demand shock. Put
differently, firms with flexible inventory storage technologies will smooth
production and limit price fluctuations.
Now turn to the other extreme: a linear inventory cost function

(b=0), the case treated by both Zabel (1972) and Amihud and Mendelson (1980).
(Reagan (1980) assumed that carrying costs are zero for all levels of N, and

hence b=0 for her, too.) A glance at (3.9) shows that z. -~ 1+r as b - 0, so

2
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(3.22) says that:

3,
lim = 0.
b0 2%

This case is really quite special since it implies that as b - 0

3y
50 0
0

3X
o,

360

P9 1
SEO 2

A firm with such a linear cost Structure does not change its production at all

in the face of fluctuations in demand, even if these fluctuations are quite

persistent. This is certainly not something we expect to be true intuitively.
Now turn to the effect of ¢ on the way the firm adjusts to changes

in demand. Remember that ¢ measures the "temporariness'" of shocks. p =1

means that all shocks are permanent (a random walk), while ¢ = 0 means that

shocks are i.i.d. The following proposition summarizes the results.

Proposition 3: As P rises, i.e., as demand shocks become more persistent,

these shocks elicit:
(1) larger output responses;
(ii) smaller sales responses;
(ii1) larger price responses
(iv) smaller (in absolute value) responses of inventory investment.

Proof: Once again, the statements follow immediately if we can es-

I
tablish that-gg (,529-) > 0. But now this is obvious from (3.22).
! O .

QED
The intuition here is really quite straightforward. If shocks are

relatively permanent, it does not pay to use inventory fluctuations to buffer
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them. Output and price respond relatiyely strqngly. On the other hand,
inventories do play a major role in buffering relatively transitory shocks.
Here price and output do not respond much, but sales do (as inventories are
disgorged or accumulated).

Theorem 1 is simply the combination of Propositions 1-3, and hence

is proven,

4, Further Results on Inventories

4.1 Reactions to Inventory Disequilibrium

The last section derived results on how the firm's output, sales,
and price respond to changes in demand. This section uses the same apparatus
to study how the firm responds to changes in its initial level of inventories,
n,. First we summarize the effects of n

0 0

Proposition 4:1 Other things equal, a higher initial level of inventories

on optimal yo, Xy Py and ny -

leads the firm to produce less, sell more, charge a lower price, and reduce its
inventory investment.
Proof: We saw in Section 3 that the only stable path to the saddle

point in Figure 4 was negatively sloped. It therefore follows that:

ako
(4.1) ™ < 0.
0
Since optimal Yo is defined by (3.5),
Syo BAO
5n. ¢ on < 0,
0 0
so that Yo is a decreasing function of n,- Since optimal X4 is defined by (3.6),
axo aAO
n s In > 0,
0 0

so that X5 is increasing in ng. Since the demand curve slopes down, this last

This proposition provides the microfoundations for the Blinder-Fischer
(1981) model.



finding also implies that PO is decreasing in nQ, The response of n, - no
=Y - xO follows by simple arithmetic,

QED

Once again, the proposition is intuitively appealing. Firms stuck

with high inventories would normally be expected to cut production and "run

a sale," which is just what the proposition says. However, the proposition

is a bit more fragile than might be expected. For example, suppose that in-
ventory carrying costs are linear, as the previous studies have all assumed.

Then b = 0, the 4X = 0 locus in Figure 4 is horizontal, and A . is independent

0

1 . , o . , ,
of g Quite contrary to intuition, the shadow value of inventories is

independent of the amount of inventory on hand. This is one reason why ex-

tending the results to a nonlinear B(n) function is crucial,

4.2 The Concept of Desired Inventories

The concept of "desired inventories'" has proven to be an elusive onme
for students of empirical inventory behavior. Typically it is assumed, for
no good reason, that desired inventories are an increasing linear function of

current sales:

(4.2) n? = a.  + a,x_, a; > 0,

or perhaps of expected sales. I propose the following definition of "desired
inventories" which seems natural in the context of this model.

Definition: Desired inventory ni, is the level of inventory that
would make desired inventory change exactly zero, once the current demand
shock is realized.

The linear-quadratic structure of the problem enables us to put some
empirical teeth on this concept. Define n% as the value of n that would make

0 0

optimal 0y equal to ng, that is, would make optimal inventory investment equal

In taking the l1imit as b +0, it is important that the ratio bl/b approaches
some finite comnstant.
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to zero, The exact solution can be worked out by using (3.5) and (3,6)
to find the value of XQ that equates Yq and Xy and then using (3,15) to

find the value of nO that produces this value of KO. The answer is:

_ m(1+r—p)
(4.3) ng = @ - (z,70) (I-2 ) 0

iotice that even vhen chocliis are coupletelr tromzitory (0=0), desired
inventories still respond to the current demand shock. Specifically, when

p = 0:

QU
=]
[@F 3
[
o

- 1+r
- 22-(l+r)

Q
™
(e]

At the other extreme, if all shocks are permanent (p=1), (4.3) becomes:

Tre

n% = 5__2_
0 b (c+r)

In this case, we have what amounts to complete admustment of n to any observed
demand shock because, as can be verified from the definition of n, the response

of n% to au is identical to the response of n to wo/w (which is the intercept

G

of the demand curve).

The two optimal inventorv conceots. nX Aand p, nrovide a riecorous

basis for Feldstein and Auerbach's (1976) intuitive "target adjustment" model.
The long-run target, 5, depends on production costs, inveﬁtory carrying -
costs, the rate of interest, and the long-run position of the

firm's demand curve. It would not be expected to change very often or very
quickly. This period's desired inventory stock, however, will deviate from
the long-run target to reflect the current state of demand. The two concepts
are far apart when shocks are transitory (p = 0), close together when shocks
are permanent (p = 1).

Finally, a bit more algebra gives us the "inventory investment equation"”

implied by the model:
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(4.4) nf - n = l+r—zl+b(c+ﬂ) ] (ng - no) = (l—zl)(ns - no),

: b (c+rm)
o - |

which clearly brings out the partial adjustment nature of inventory investment.
The positive adjustment coefficient, l—zl, depends on the convexity of the
inventory carrying cost function, b, the rate of interest, r, the convexity

of the production cost function, ¢, and the slope of the demand curve, =

(see equation (3.9)). 1In particular, it is worth noting that since %;8 z, = 1,
the partial adjustment feature of inventory change is entirely lost when
marginal inventory costs are constant--~the case dealt with in the earlier liter-

ature,

There 1s, however, one feature of the model that is troublesome
empirically. Since 0 £ < 1, z, > 1, and z) < 1, the coefficient of 9
in equation (4.3) is negative; the current demand shock reduces desired
inventory holdings. In contrast, when equations like (4.2) are embedded in
an empirical model and estimated, the parameter 3 is invariably estimated to

be positive. This seems to be the one instance in which reality contradicts

the model. I address this problem in a subsequent paper.

4.3 What Kinds of Firms React Stroungly to Inventory Disequilibrium?
Finally, I present and prove a theorem analogous to Theorem 1 that
summarizes how the sensitivity of a firm's decisions (yo,

its initial holdings of inventories (no) varies with its characteristics

X5s Py and nl) to

(b and p).

Theorem 2: Firms whose outputs are more "inventoriable," i.e., which
have lower b, change their optimal levels of output, sales, price, and inventory
investment less in response to inventory disequilibrium than firms whose

outputs are less inventoriable. The degree of persistence of demand shocks,
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however, is irrelevant to the magnitude of the firm's reactions to inventory
disequilibrium.
Proof: Given the apparatus already developed, the proof is almost

immediate. Start by observing that (3.5), (3.6) and (3.21) imply:

axo BXO .
(4.7) 5-1_% = —TTE = e (l—zl)
3y ax
0 0 c
(4.8) — = ¢ — = - (1-z.)
ano ano T+c 1
- 3
(4.9) °(ryny) N I - (-2
BnO ano Bno 1
ap 09X
(4100 -9 _ _ 1 o _ _ __1_ (1-z.)
8no 27 Bno 2(n+c) 1

L have already shown in an earlier proof that:

dzl - zl(c+ﬂ)

db 221—8

which is negative since 0 < zg < 1l and 3 > 2, Thus as b falls, z1 rises toward
unity, and by (4.7) - (4.10) the sales, production, price, and inventory-
investment responses all fall in absolute value (without changing sign). The

rest of the proposition follows by noting that p appears nowhere in any of these

expressions.

QED
The intuition behind this theorem is again clear. Firms whose inventory
carrying costs rise rapidly when they have excessive (or deficient) inven-
tories will have to take decisive actions to correct their inventory dis-
equilibrium whereas firms whose inventory cost functions are relatively linear

can afford the luxury of waiting things out.
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5. Macroeconomic Implications

While the results presented here stand on their own as part of the
theory of monopoly under uncertainty, my own interest in them is from the
point of view of providing microfoundations for macroeconomics. Viewed from
this perspective, the model has several interesting implications.

5.1 Price Rigidity

On the surface, it would appear that the analysis provides an ex-
planation for the macroeconomic phenomenon of price rigidity which is comn-
sistent with maximizing behavior: prices tend to move sluggishly in industries
whose outputs are inventoriable. Thus industries with perishable output (e.g.
agriculture) are more likely to be "flexprice" industries while those with
easily storable output are more likely to be "fixprice" industries.

However, such a conclusion would be a bit hasty. The macroeconomic
phenomenon that needs explanation is the stickiness of absolute prices, while
the model presented here--like those of Zabel (1972), Amihud-Mendelson (1980)
and Reagan (1980)--provides an explanation for rigidity in relative prices.

The firm's nominal price in this model will respond less than completely to the
general price level only if its nominal cost functions respond less than
completely. Thus, it would appear, price ridigity is "explained" only by
assuming cost (i.e., wage) rigidity. This is a feature shared by all attempts
to provide microfoundations for nominal price rigidity because demand and supply
curves derived from maximizing behavior are always homogenous of degree zero
in all nominal magnitudes.

Let us consider what relative price rigidity means in an inflationary
enviromment. A firm that behaves according to the model presented here,

but that finds itself in an economy with a persistently rising price level,

This is easily seen by inspecting the solutions. If all nominal parameters
doubled, say, the firm's price would also double and nothing real would change.
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wants its relative price to move sluggishly, To accomplish this, it must
continually raise its absolute price more or less in line with the overall
rate of inflation, In such a world, we would not observe stickiness of nominal
prices; they would change quite frequently, (In fact, if they did not change
frequently enough, relative prices would change more than firms desire.)
Instead, we would find a tendency for the actual inflation rate of particular
products to gravitate toward the expected aggregate inflation rate. Then,
if it is the case that expected inflation rate can be nudged downward only by
decreasing the actual inflation rate (a point which is vigorously disputed by
the rational expectationists), we will have a very sluggish inflation rate
which stubbornly resists disinflationary policy, but which responds quickly to
permanent changes in the rate of increase of costs.

In any case, the general lesson seems to be that microfoundations of price
rigidity seem only to push the question back one stage. Instead of asking:
why is the inflation rate so persistent?, we must ask instead: why 1is it so
hard to reduce inflationary expectations? Looking across industries, however,
the model does seem to imply that the rate of relative price change will be
more sluggish where output is most "inventoriable" (durable goods producers?)

and less sluggish where output is least "inventoriable" (agriculture?).

5.2 Stockouts and Downward Price Rigidity

It is often supposed--with little supporting evidence, I believe--
that prices are more rigid downward than upward. If the model presented
here is altered to prohibit negative inventories ("unfilled orders'), then it
will generate asymmetrical price responses; prices will react more strongly
to increases in demand than to decreases in demand. Since this asymmetry is
the major point of the papers by Amihud-Mendelson (1980) and Reagan (1980),
and since I am far from convinced that it is of great empirical importance,

I develop it only briefly here.
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For this purpose, it is natural to set K7 the critical level of inven-
tories, equal to zero (so that n=N) and to impose the constraint N(t) 2 0 for
all t. When the firm does not stock out, thé constraint is not binding, and
the dynamic system follows the same equations as before. However, if the

firm stocks out (NO = 0), and the unconstrained solution would be calling

for Nl < NO’ the constraint Nl > 0 becomes binding. As we know, Nl = NO only when
the shadow value of inventories takes on the value XO = F%E'EO’ so that by
(3.17):
ax D
0 _ 0 TC
5e Td- ) =
O €O T+c .

By comparison, in the unconstrained case it was proven earlier (see the proof

a}‘o axO TC
of Proposition 1) that: z— < - and hence that —— > Io—
Beo T+C aeo T+c

the sales response is smaller when the firm has stocked out, and hence the

In a word,

price response must be greatey. This is the asymmetry result.

At the macro level, it appears likely that the number of firms experiencing
a stockout is greater at higher levels of macroeconomic activity. Hence price
responses to demand shocks should be greater at high levels of activity than

at low levels.

5.3 Investing in Flexibility

The findings of the model can be placed in a broader context. How
does a firm plan for and react to fluctuations in demand? The conventional
view is that there is little or no advance planning and there are two ways
to react when a shift in demand occurs: change price or change .output.
If these are the only avenues of response, then they clearly must be alternatives:
the more one is used the less the other is needed.

The model presented here shows that once a third method of adjustment
~-~building up or drawing down inventories--is allowed, sales and production

can, and normally will, respond to shoeks differently, and strong
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Price responses may he associated with strong output responses rather than
with weak ones. Thinking in a somewhat longer time frame, of course, firms
understand the greater flexibility in dealing with unanticipated events that
variable inventory stocks can buy for them, and shoﬁld plan their inventory
storage facilities accordingly, They should be willing to invest in ac-
quiring flexibility (i.e., reducing b) by organizing their production and
inventory procedures to make their outputs more inventoriable. How much

they are willing to invest in lowering b depends, of course, on the costs and
benefits of such investments,

Furthermore, inventories are not the only possible vehicle for enhancing
flexibility, The phenomenon of labor hoarding has often been noted in
empirical macroeconomics, especially in the context of explaining the procyclical
pattern of labor productivity. Holding excess supplies of labor in reserve
is another way that the firm can achieve flexibility. That is, inventories
of labor may be partial substitutes for inventories of goods.l Similar remarks
may be made about plant and equipment. It may well be rational for firms
facing stochastic demand to invest in more capacity than they expect to use
in normal times so they are better positioned to take advantage of periods in

which demand is higher than normal.

6. Summary

1. When output is not storable, firms can react to increases in demand
only by raising prices or by boosting production. The more they do of one,
the less they have to do of the other.

2. However, when output is storable, the same firms that raise prices
a lot may also raise production a lot, while other firms may raise both price

and output rather little. Firms in the latter category will take up

This idea is developed more fully in some work in preparation by Robert Topel.
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the slack by selling a lot out of inventories.

3. Firms whose marginal costs of inventory hqlding are relatively con-
stant and whose demand shocks are very transitory will fely heavily on in-
ventory changes to absorb shocks, and will vary price and output rather little.
Conversely, firms with sharply rising marginal imventory costs and/or rather
permanent demand shocks will rely less on inventories as buffer stocks and
will exhibit larger price and output fluctuatioﬁs.

4. The previous literature has assumed that inventory carrying costs
are linear (or zero). As long as stockouts are avoided, this extreme assump-
tion leads to the conclusion that production is totally unresponsive to
fluctuations in demand. In macroeconomic terms, the critical link between
fluctuations in demand and fluctuations in employment is missing in such
models.

5. Other things equal, firms with higher inventories will produce less,
charge lower prices (i.e., sell more), and accumulate fewer additional in-
ventories. Thus, at the macro level, production, employment, and prices
should all respond negatively to high levels of inventories.

6. The reactions of output, price, and sales to inventory stocks are
strongest when the firm's inventory carrying cost function is most convex,
weakest when it is close to linear.

7. Inventory investment is characterized by the "partial adjustment' spe-
cification that is so popular in empirical work: inventory change is pro-
portional to the gap between desired and actual inventory holdings. Desired
inventories in the model are a gggfeasing function of the current demand
shock,

8. The model helps provide an explanation for sluggish relative prices,
not sluggish absolute prices. However, under certain circumstances, sluggish

reactions of relative prices may help explain the persistence of inflation.
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9, If negatiye inyentories are impossible, and stockouts occux in-
stead, prices will be more sensitive to positive demand shocks than to
negative demand shocks.

10. Investment in inventory carrying capacity can be viewed as one
of several ways for a firm to acquire greater flexibility in reacting to

unanticipated events,
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