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1. Introduction

This paper proposes a simple origin of aggregate shocks. It develops the view that a large part

of aggregate fluctuations arises from idiosyncratic shocks to individual firms. This approach

sheds light on a number of issues that are difficult to address in models that postulate aggregate

shocks. Although economy-wide shocks (inflation, wars, policy shocks) are no doubt important,

they have difficulty in explaining most fluctuations (Cochrane 1994, Summers 1986). Often, the

explanation for year-to-year jumps of aggregate quantities is elusive. On the other hand, there is

a large amount of anecdotal evidence for the importance of idiosyncratic shocks. For instance, in

December 2004, the $24 billion one-time Microsoft dividend boosted growth in personal income

from 0.6% to 3.7%.1 A macroeconomist would have difficulty in explaining this jump in personal

income without examining individual firm behavior. The OECD (2004) analyzes that in 2000,

Nokia contributed 1.6 percentage points of Findland’s GDP growth. Likewise, shocks to GDP

may stem from a variety of events, such as successful innovations by Wal-Mart, the difficulties

of a Japanese bank, new exports by Boeing, a strike at General Motors.2

Since modern economies are dominated by large firms, idiosyncratic shocks to these firms

can lead to non-trivial aggregate shocks. For instance, in Korea, the top two firms (Samsung

and Hundyai) together account for 35% of exports, and the sales of those two firms account for

22% of Korean GDP (di Giovanni and Levchenko 2009). In Japan, the top 10 firms account for

35% of the exports (Canals et al. 2007). For the U.S., Figure 1 reports the total sales of the top

50 and 100 firms as a fraction of GDP. On average, the sales of the top 50 firms are 24% of GDP,

while the sales of the top 100 firms are 29% of GDP. The top 100 firms hence represent a large

part of the macroeconomic activity, and so understanding their actions gives a good insight into

aggregate economy.

In this view, many economic fluctuations are not due, primitively, to small diffuse shocks

that directly affect every firm. Instead, many economic fluctuations are attributable to the

incompressible “grains” of economic activity, the large firms. I call this view the “granular”

hypothesis. In the granular view, idiosyncratic shocks to large firms have the potential to

generate small aggregate shocks that affect GDP, and via general equilibrium, all firms.

The granular hypothesis offers a microfoundation for the aggregate shocks of real business

cycle models (Kydland and Prescott 1982). Hence, real business cycle shocks are not, at heart,

mysterious “aggregate productivity shocks” or “a measure of our ignorance” (Abramovitz 1956).

Instead, they are well-defined shocks to individual firms. The granular hypothesis sheds light

1Source: Bureau of Economic Analysis, January 31, 2005.
2The example of Nokia is extreme but may be useful. In 2003, worldwide sales of Nokia were $37 billion,

representing 26% of Finland’s GDP of $142 billion. This is not sufficient for a proper assessment of Nokia’s
importance, but gives some order of magnitude, as the Finnish base of Nokia is an important residual claimant
of the fluctuations of Nokia International.
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Figure 1: Sum of the sales of the top 50 and 100 non-oil firms in Compustat, as a fraction of
GDP. Hulten’s theorem (Appendix B) motivates the use of sales rather than value added.

on a number of other issues, such as the dependence of the amplitude of GDP fluctuations

on GDP level, the microeconomic composition of GDP, the distribution of GDP and firm-level

fluctuations.

In most of this paper, the standard deviation of the percentage growth rate of a firm is

assumed to be independent of its size.3 This explains why individual firms can matter in the

aggregate. If Wal-Mart doubles its number of supermarkets and thus its size, its variance is not

divided by two – as would be the case if Wal-Mart was the amalgamation of many independent

supermarkets. Instead, the newly acquired supermarkets inherit the “Wal-Mart” shocks, and

the total percentage variance of Wal-Mart does not change. This paper conceptualizes these

shocks as productivity growth, but the analysis holds for other shocks.4

The main argument is summarized as follows. First, it is critical to show that 1/
√
N di-

versification does not occur in an economy with a fat-tailed distribution of firms. A simple

diversification argument shows that, in an economy with N firms with independent shocks, ag-

gregate fluctuations should have a size proportional to 1/
√
N . Given that modern economies

3The benchmark that the variance of the percentage growth rate is approximately independent of size (“Gibrat’s
law” for variances) appears to hold to a good first degree, see section 2.5.

4The productivity shocks can come from a decision of the firm’s research department, of the firm’s chief
executive officer, of how to process shipments, inventories, or which new line of products to try. They can also
stem from changes in capacity utilization, and particularly strikes. Suppose a firm, which uses only capital and
labor, is on strike for half the year. For many purposes, its effective productivity that year is halved. This paper
does not require the productivity shocks to arise from any particular source.
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can have millions of firms, this suggests that idiosyncratic fluctuations will have a negligible

aggregate effect. This paper points out that, when firm size is power-law distributed, the con-

ditions under which one derives the central limit theorem break down, and other mathematics

apply (see Appendix A). In the central case of Zipf’s law, aggregate volatility decays according

to 1/ lnN , rather than 1/
√
N . The strong 1/

√
N diversification is replaced by a much milder

one that decays according to 1/ lnN . In an economy with a fat-tailed distribution of firms,

diversification effects due to country size are quite small.

Section 4 then investigates accordingly the proportion of aggregate shocks that can be ac-

counted for by idiosyncratic fluctuations. I construct the “granular residual” Γt, which is a

parsimonious measure of the shocks to the top 100 firms:

Γt :=

Ã
KX
i=1

Salesi,t−1

!−1Ã KX
i=1

Salesi,t−1 (git − gt)

!
,

where git−gt is a simple measure of the idiosyncratic shock to firm i. Regressing the growth rate

of GDP on the granular residual yields an R2 of roughly one third. Prima facie, this means that

idiosyncratic shocks to the top 100 firms in the U.S. can explain one third of the fluctuations of

GDP and the Solow residual.

Having established that idiosyncratic shocks do not die out in the aggregate, I show in

section 5 that they are of the correct order of magnitude to explain business cycles. A result

based on Hulten (1978) shows that, if firm i has a productivity shock dπi, these shocks are

i.i.d., and there is no amplification mechanism, then the standard deviation of TFP growth

is σTFP = σπhS , where σπ is the standard deviation of the i.i.d. productivity shocks, and

hS is the sales Herfindahl of the economy. Using the estimate of volatility of productivity of

σπ = 12%/year, the sales Herfindahl of hS = 6.1% for the US in 2002, one predicts a TFP

volatility equal to σTFP = 12% · 6.1% = 0.9%. Standard amplification mechanisms generate the
order of magnitude of business cycle fluctuations, σGDP = 1.4%. Non-US data leads to even

larger business cycle fluctuations. I conclude that idiosyncratic volatility seems quantitatively

large enough to matter at the macroeconomic level.

Previous economists have proposed mechanisms that generate macroeconomic shocks from

purely microeconomic causes. A pioneering paper is Jovanovic (1987), whose models generate

non-vanishing aggregate fluctuations owing to a multiplier proportional to
√
N , the square root of

the number of firms. However, Jovanovic’s theoretical multiplier of
√
N ' 1000 is much larger

than is empirically plausible.5 Nonetheless, Jovanovic’s model spawned a lively intellectual

quest. Durlauf (1993) generates macroeconomic uncertainty with idiosyncratic shocks and local

5 If the actual multiplier was so large, the impact of trade shocks, for instance, would be much higher than we
observe.
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interactions between firms. The drivers of his results are the non-linear interactions between

firms, while in this paper it is the skewed distribution of firms. Bak, Chen, Scheinkman, and

Woodford (1993) apply the physical theory of self-organizing criticality. While there is much to

learn from their approach, it generates fluctuations more fat-tailed than in reality, with infinite

means. Nirei (2006) proposes a model where aggregate fluctuations arise from (s,S) rules at the

firm level, in the spirit of Bak et al. (1993). These models are conceptually innovative, but

they they are hard to work with theoretically and empirically. The mechanism proposed in this

paper is tractable, and relies on readily observable quantities.

Long and Plosser (1983) suggest that sectorial (rather than firm) shocks might account for

GDP fluctuations. As their model has a small number of sectors, those shocks can be viewed as

mini-aggregate shocks. Horvath (1998, 2000) and Conley and Dupor (2003) explore this hypoth-

esis further. They find that sector-specific shocks are an important source of aggregate volatility.

Finally, Horvath (1998) and Dupor (1999) debate whether N sectors can have a volatility that

does not decay according to 1/
√
N . I find an alternative solution to their debate, which is,

formalized in Proposition 2. My approach relies on those earlier contributions, and clarifies that

the fat-tailed nature of the sectoral shocks is important theoretically, as it determines whether

the central limit theorem applies.

Studies disagree somewhat on the relative importance of sector specific shocks, aggregate

shocks, and complementarities. Shea (2002) quantifies that complementarities play a major role

in aggregate business cycle fluctuations. Caballero, Engel and Haltiwanger (1997) find that

aggregate shocks are important, while Horvath (1998) concludes that sector-specific shocks go a

long way toward explaining aggregate disturbances. Many of these effects in this paper could be

expressed in terms of sectors. Carvahlo (2009) studies granular effects in the economy viewed

as a network, by looking at the size of sectors and their interconnectedness.

Pareto (1896) was the first to discover that the income distribution follows a power law. A

growing number of other economic variables appear to follow power laws: in particular Zipf’s

law, which is a power law with an exponent close to 1. This includes the size of cities (Zipf

1949, Gabaix 2009), firms (Axtell 2001, Fujiwara et al. 2004, Okuyama et al. 1999), mutual

funds (Gabaix et al. 2006), Internet sites (Barabasi and Albert 1999). The origin of this Zipf

distribution is becoming better understood (Simon 1955, Gabaix 1999, 2009, Luttmer 2007,

Rossi-Hansberg and Wright 2007).

Granular effects are likely to be even stronger outside the U.S, as the U.S. is more diversified

than most other countries. One number reported in the literature is the value of the assets

controlled by the richest 10 families, divided by GDP. Claessens, Djankov and Lang (2000) find

a number equal to 38% in Asia, including 84% of GDP in Hong Kong, 76% in Malaysia, 39% in

Thailand. Faccio and Lang (2002) also find that the top 10 families control 21% of listed assets

in their sample of European firms. It would be interesting to transpose the present analysis to
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those countries, and to other entities than firms — for instance, business groups, or sectors.

This paper is organized as follows. Section 2 develops a simple model. Section 3 provides

a richer model that gives a foundation for the measurement of idiosyncratic shocks, and spells

out how production linkages can make all microeconomic and macroeconomic variables comove.

Section 4 shows directly that the idiosyncratic movements of firms appear to explain, year by

year, about one third of actual fluctuations in GDP and the Solow residual. Section 5 provides

a calibration that indicates that the effects are of the right order of magnitude to account for

macroeconomic fluctuations. Section 6 concludes.

2. The Core Idea

2.1. A Simple “Islands” Economy

This section uses a concise model to illustrate the idea. In this economy there are only idiosyn-

cratic shocks to firms. Let Sit represent firm i’s production in year t. It experiences a growth

rate:
∆Si,t+1
Si,t

=
Si,t+1 − Sit

Sit
= σiεi,t+1 (1)

where σi is firm i’s volatility and εi,t+1 are uncorrelated random variables with mean 0 and

variance 1. Total GDP is:

Yt =
NX
i=1

Sit (2)

and GDP growth is

∆Yt+1
Yt

=
1

Yt

NX
i=1

∆Si,t+1 =
NX
i=1

σi
Sit
Yt

εi,t+1.

As the shocks εi,t+1 are uncorrelated, the standard deviation of GDP growth is σGDP =³
var∆Yt+1

Yt

´1/2
:

σGDP =

Ã
NX
i=1

σ2i ·
µ
Sit
Yt

¶2!1/2
. (3)

Hence the variance of GDP, σ2GDP , is the weighted sum of the variance σ
2
i of idiosyncratic shocks

with weights equal to
³
Sit
Yt

´2
, the squared share of output for which that firm i accounts. If the

firms all have the same volatility σi = σ, we obtain:

σGDP = σh (4)
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where h is the square root of the sales Herfindahl of the economy:

h =

"
NX
i=1

µ
Sit
Yt

¶2#1/2
. (5)

For simplicity, h will be referred to as the “Herfindahl” of the economy.

This paper works first with the basic model (1)-(2), which can be viewed as the linearization of

a host of richer models, such as the one in section 3. The arguments apply if general equilibrium

mechanisms are added.

2.2. The 1/
√
N Argument for the Irrelevance of Idiosyncratic Shocks

Macroeconomists often appeal to aggregate (or at least sector-wide) shocks, since idiosyncratic

fluctuations disappear in the aggregate if there is a large number of firms N . Consider firms

of initially identical size equal to 1/N of GDP, and identical standard deviation σi = σ. Then

(4)-(5) gives:

σGDP =
σ√
N
.

To estimate the order of magnitude of the cumulative effect of idiosyncratic shocks, take an

estimate of firm volatility σ = 12% from Section (5), and consider an economy with N = 106

firms6. Then

σGDP =
σ√
N
=
12%

103
= 0.012% per year.

Such a GDP volatility of 0.012% is much too small to account for the empirically-measured

size of macroeconomic fluctuations of around 1%. This is why economists typically appeal to

aggregate shocks. More general modeling assumptions predict a 1/
√
N scaling, as shown by the

next Proposition, whose proof is in Appendix B.

Proposition 1 Consider an islands economy with N firms whose sizes are drawn from a distri-

bution with finite variance. Suppose that they all have the same volatility σ. Then the economy’s

GDP volatility is:

σGDP =
E
£
S2
¤1/2

E [S]

σ√
N
. (6)

Proposition 1 will be contrasted with Proposition 2 below, which shows that different models

of the size distribution of firms lead to dramatically different results.

6Axtell (2001) reports that in 1997 there were 5.5 million firms in the United States.
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Figure 2: Log frequency ln f (S) vs log size lnS of U.S. firm sizes (by number of employees) for
1997. OLS fit gives a slope of 2.059 (s.e.= 0.054; R2 =0.992). This corresponds to a frequency
f (S) ∼ S−2.059, i.e. a power law distribution with exponent ζ = 1.059. This is very close to
Zipf’s law, which says that ζ = 1. Source: Axtell (2001).

2.3. Empirical Evidence that for the Fat-Tailed Distribution of Firms

Empirical evidence suggests that a good parameterization for the firm size distribution is a

power law distribution:

P (S > x) = ax−ζ . (7)

for x > a1/ζ . To estimate (7), it is useful to take the density f (x) = ζa/xζ+1, and its logarithm

ln f (x) = − (ζ + 1) lnx+C (8)

where C is a constant. An extensive literature has estimated the size distribution of firms, but

typically the sample includes only firms listed in the stock market. Axtell (2001) extends the

literature by using the Census, which lists all the U.S. firms.

I reproduce his plot of (8) in Figure 2. The horizontal axis shows lnx, where x is the size of

a firm in number of employees. The vertical axis shows the log of the fraction of firms with size

x, ln f (x). We expect to see a straight line in the region where (8) holds, and indeed the Figure

shows a very clear fit.7 An OLS fit of (8) yields an estimate of R2 = 0.992, and ζ = 1.059±0.054.

7Power law fits are typically less good at the two extremes of the distribution. In Axtell’s data, which are
binned in powers of 3, the fit is less good for firms between 1 and 3 employees. This does not affect our analysis,
which deals with large firms. The fit may also be less good in the last bin, for the firms between 311 =309,000 and
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The size distribution of U.S. firms is well approximated by the power law with exponent ζ = 1.8

The rest of the paper will pay special attention to the case ζ = 1, the “Zipf” value. This

value (ζ ' 1) is often found in the social sciences, for instance in the size of cities (Zipf 1949),
and in the amount of assets under management of mutual funds (Gabaix et al. 2003) and banks

(Pushkin and Hassan 2004).9 The origins of this distribution are becoming better understood10.

The power law distribution (7) has fat tails, and thus produces some very large firms. The

next section studies its implications for GDP fluctuations.

2.4. The Failure of the 1/
√
N Argument when the Firm Size Distribution is

Power Law

The next Proposition examines behavior under a “fat-tailed” distribution of firms. The proof is

in Appendix B.

Proposition 2 Consider an islands economy with a large number N of firms with volatility of

growth rate σ, and whose size distribution is a power law distribution P (S > x) = ax−ζ with

exponent ζ ≥ 1. Then its GDP volatility is:

σGDP ∼
vζ
lnN

σ for ζ = 1 (9)

σGDP ∼
vζ

N1−1/ζ σ for 1 < ζ < 2 (10)

σGDP ∼
vζ

N1/2
σ for ζ ≥ 2 (11)

where vζ is a random variable that is independent of N and σ.

The firm size distribution has thin tails, i.e. finite variance, if and only if ζ > 2. Proposition

1 states that if the firm size distribution has thin tails, then σGDP decays according to as 1/
√
N .

In contrast, Proposition 2 states that if the firm size distribution has fat tails (ζ < 2), σGDP

decays much more slowly than 1/
√
N .

In the limit case of Zipf’s law (ζ = 1), larger countries are barely more diversified than small

countries.11 The reason is that, if Zipf’s law holds, the top K firms of a country account for

312 =920,000 employees. But there are so few such firms, that it is unclear whether the deviation is statistically
significant.

8Okuyama et al. (1999) and Fujiwara et al. (2004) also find that ζ ' 1 for Japanese and European firms
respectively.

9Axtell (2001) shows also ζ ' 1 for sales.
10See Simon (1955), Gabaix (1999), Gabaix (2009) for a survey of various candidate explanations, and Luttmer

(2007) and Rossi-Hansberg and Wright (2007) for recent developments.
11 If there are N identical firms, 1/h2N = N . So 1/h2N reveals the “effective” number of firms in the economy, for

diversification purposes. So, in a Zipfian world (where ζ = 1), the effective number of firms is not N but (lnN)2.
For 1 < ζ < 2, the effective number of firms scales as N2−2/ζ . This notion of the “effective” number of firms
is important as long as diversification plays a role, as is the case in Caballero and Engel (2004) and the present
paper.
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a finite, as opposed to infinitesimal, fraction of the total output.12 To see the result, take two

countries, 1 and 2, and suppose that country 2 is twice as large as country 1, in the sense that

it has twice as many firms as country 1. Firms in both countries are drawn from the same

distribution. If Zipf’s law holds, then the largest firm of country 2 will be, on average, twice as

large as the largest firm in country 1. Indeed, the largest K firms will be, on average, twice as

large in country 2 than in country 1. Hence, the relative share of the top K firms will be the

same in country 2 and country 1. The Herfindahls are the same, and, as GDP volatility comes

only from firm-level volatility in the scenario considered in Proposition 2, GDP volatilities are

the same. If the distribution is a power law with exponent ζ between 1 and 2, the same reasoning

holds, except that the largest firms in country 2 are 21/ζ larger than in country 1, so their share

of GDP is 21/ζ−1 < 1 that of country 1. Thus the volatility of country 2 is that of country 1,

times 21/ζ−1, as given by equation 10.

Proposition 2 offers a resolution to the debate between Horvath (1998, 2000) and Dupor

(1999). Horvath submits evidence that sectorial shocks may be enough to generate aggregate

fluctuations. Dupor (1999) debates this on theoretical grounds, and claims that Horvath is able

to generate large aggregate fluctuations only because he uses a moderate number of sectors

(N = 36). If he had much more disaggregated sectors (e.g. 100 times as many), then aggregate

volatility would decrease in 1/
√
N (e.g. 10 times smaller). Proposition 2 illustrates that both

viewpoints are correct, but apply in different settings. Dupor’s reasoning holds only in a world

of small firms, when the central limit theorem can apply. Horvath’s empirical world is one where

the firm size distribution of firms is sufficiently leptokurtic that the central limit theorem does

not apply. Instead, Proposition 2 applies, and GDP volatility remains substantial even if the

number N of subunits is large.

Though the benchmark case of Zipf’s law is empirically relevant, and theoretically clean and

appealing, most of the arguments in this paper do not depend on it. The results only require

that the Herfindahl of actual economies is sufficiently large. For instance, if the distribution of

firm sizes was lognormal with a sufficiently high variance, then quantitatively very little would

change.

2.5. GDP Volatility When the Volatility of a Firm Depends on its Size

I now study the case where the volatility of a firm’s percentage growth rate decreases with firm

size. I examine the functional form σFirm (S) = kS−α, from equation 12. If α > 0, then large

firms have a smaller standard deviation that small firms. This was Hymer and Pashigan (1962)’s

original finding. A series of papers (Stanley et al. 1996, Amaral et al. 1997, Canning et al.

1998) quantify the relation more precisely, and showed that (12) holds for firms in Compustat,

12This is true up to a slowly varying factor, 1/ lnN .
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with α ' 1/6.
It is unclear whether the conclusions from Compustat can generalize to the whole economy.

Compustat only comprises firms traded on the stock market and these are likely to be more

volatile than non-traded firms, as small volatile firms are more likely to seek outside equity

financing, while large firms are in any case very likely to be listed in the stock market. This

selection bias implies that the value of α measured from Compustat firms alone is likely to be

larger than in a sample composed of all firms. It is indeed possible α may be 0 when estimated

on a sample that includes all firms, as random growth models have long postulated. Axtell

and Teitelbaum (2005), using on two years of data from the U.S. census, conclude that α ' 0.
Further research is needed to verify this on a comprehensive set of large firms over a long time

period.

In any case, any deviations from Gibrat’s law for variances are likely to be small, i.e. 0 ≤
α ≤ 1/6. If there is no diversification as size increases, then α = 0. If there is full diversification,
and a firm of size S is composed of S units, then α = 1/2. Empirically, firms are much closer to

the “Gibrat” benchmark of no diversification, α = 0.

The next Proposition extends Propositions 1 and 2 to the case where firm volatility decreases

with firm size.

Proposition 3 Consider an islands economy, with N firms that have power law distribution

P (S > x) = x−ζ for ζ ∈ [1,∞). Assume that the volatility of a firm of size S is

σFirm (S) = kS−α (12)

for some α > 0. Define

α0 = min

µ
1

2
, 1 +

α− 1
ζ

¶
(13)

GDP fluctuations have the form:

∆Yt
Yt

= kN−α0gt if ζ > 1 (14)

∆Yt
Yt

= k
N−α0

lnN
gt if ζ = 1 (15)

such that when N →∞, gt converges to a non-degenerate distribution. When ζ > 1, gt converges
to a Lévy stable distribution with exponent min {ζ/ (1− α) , 2}.

In particular, the volatility σ (S) of GDP growth decreases as a power law function of GDP

11



S:13

σGDP (S) ∼ S−α
0
. (16)

To see the intuition for Proposition 3, we apply the case of Zipf’s law (ζ = 1) to the two-

country example of Proposition 2.14 Country 2 has twice as many firms as country 1. Its largest

K firms are twice as large as the largest firms of country 1. However, scaling according to (12)

implies that their volatility is 2−α times the volatility of firms in country 1. Hence, the volatility

of country 2’s GDP is 2−α times the volatility of country 1’s GDP, i.e. (16). Putting this another

way, under the case presented by Proposition 3, and ζ = 1, large firms are less volatile than

small firms (equation 12). The top firms in big countries are larger (in an absolute sense) than

top firms in small countries. As the top firms determine a country’s volatility, big countries have

less volatile GDP than small countries (equation 16).

Also, one can reinterpret Proposition 3 by interpreting a large “firm” as a “country” made up

of smaller entities. If these entities follow a power-law distribution, then Proposition 3 applies

and predicts that the fluctuations of the growth rate ∆ lnSit, once re-scaled by S−αit , follow a

Lévy distribution with exponent min {ζ/ (1− α) , 2}. Amaral et al. (1997) and Canning et al.
(1998) plot this empirical distribution, which looks roughly like a Lévy stable distribution. It

could be that the fat tails distribution of firm growth come from the fat tail distribution of the

subcomponents of a firm.15

A corollary of Proposition 3 may be worth highlighting.

Corollary 1 (Similar scaling of firms and countries.) When Zipf’s law holds (ζ = 1) and

α ≤ 1/2, we have α0 = α, i.e. firms and countries should see their volatility scale with a similar

exponent:

σFirms (S) ∼ σGDP (S) ∼ S−α. (17)

Interestingly, Canning et al. (1998) and Lee et al. (1998) present evidence that supports

(17), with an small exponent α ' α0 ' 1/6 (see also Koren and Tenreyro 2007). A more

systematic investigation of this issue would be interesting.

3. A Model with Comovement

The previous section has shown that how idiosyncratic firm shocks might explain a significant

portion of aggregate fluctuations. This section considers whether they can also create plausibly

13 In this paper, f (S) ∼ g (S) for some functions f, g, means that the ratio f (S) /g (S) tends, for large S, to be
a positive real number. So f and g have the same scaling “up to a constant real factor”.
14When ζ = 1, the limiting distribution of g is a more complicated distribution, a ratio of two non-independent

Lévy distributions. Logan et al. (1973) provide an analysis of some such ratios.
15See Sutton (2002) for a related model; and Wyart and Bouchaud (2003) for a related analysis, which acknowl-

edges the contribution of the present article (which was first circulated in the Fall 2001).
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the strong comovements between the various firms or sectors of the economy, as observed, for

instance, by Long and Plosser (1983), Shea (2002), Franco and Philippon (2008) and Foerster,

Sarte and Watson (2008). Horvath (1998), Long and Plosser (1983) and Shea (2002) present

models that generate comovement.16 Horvath (2000) calibrates a dynamic general equilibrium

model with many sectors. I present a simplified version of those models. Its main virtue is that

it is solvable in closed form, so that the mechanisms are fairly transparent.

After a shock to firm i, all the other firms adjust instantaneously, rather than over time

through the input-output matrix. There is an aggregate good. Each intermediate good firm i

uses Li,Ki,Xi of labor, capital and aggregate good, to produce:

Qi =
Ai

¡
Lα
i K

1−α
i

¢b
X1−b
i

bb (1− b)1−b
(18)

GDP is production net of the intermediate inputs, the Xi’s:

Y =

ÃX
i

Q
1/ψ
i

!ψ

−
X
i

Xi (19)

with ψ > 1. b is the share of intermediate inputs, and will also be the ratio of value added to

sales, both at the level of the firm, and of the economy.

The representative agent’s utility function is U = C− L1/ξ.17 There is no investment, so

C = Y . Thus the social planner’s program is: max{K i,Li,Xi} Y − L1/ξ subject to
P

Ki =

K;
P

Li = L.

To abstract from a potential inefficiency arising from positive markups, I assume that the

prices equal marginal cost. Several devices can generate this assumption. Firms could be com-

petitive because there is free entry — markets are contestable in the sense of Baumol (1982).

Another interpretation is that the “firms” are sectors made of competitive firms. A last pos-

sibility is that the government may have set an input subsidy equal to ψ for the intermediary

firms. In any case, even if there was a strictly positive, constant markup, the formulas for the

main results of this section (Proposition 4) would be unaffected.

16Long and Plosser (1983) impose a Cobb-Douglas structure, which imposes zero idiosyncratic movement in
the sales per employee and dollar sales.
17Here the utility function C− L1/ξ simply captures the flexibility of labor supply along the business cycle, as

formalized in equations (26)-(27). The linearity in C is for convenience only, as the model abstracts from interest
rate movements and capital accumulation.
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The model gives:

GDP : Y = ΛLαK1−α (20)

TFP : Λ =

ÃX
i

A
1/(ψ−1)
i

!(ψ−1)/b
(21)

Sum of sales : H =
X

piQi = Y/b (22)

Salesi
GDP

:
piQi

Y
=

µ
Ai

Λb

¶1/(ψ−1)
/b (23)

The result is standard, except for the b term in Eq. (21), which indicates that 1/b is a

“productivity multiplier”. If all firms increase their productivity Ai by 1%, TFP increases by

1/b %. This effect comes from the fact that a Hicks-neutral productivity shock increases gross

output (sales), not just value added, and has been analyzed by Domar (1961), Hulten (1978)

and Jones (2009).18

I use the “hat” notation to indicate a proportional change: bZ = dZ/Z.19 I assume that

we start from a steady state equilibrium, and that, in the short run, labor but not capital is

reallocated across firms.20

Models such as (18) always deliver a Sales / Employees ratio that is independent of the

firm’s productivity.21 The reason for this almost surely counterfactual prediction, is that labor

is assumed to be costlessly adjustable. To capture the realistic case of labor adjustment costs, I

assume that a fraction 1−λ of labor is a quasi-fixed factor, in the sense of Oi (1962). Technically,
I represent: Li = Lλ

V,iL
1−λ
F,i , where LV,i and LF,i are respectively the variable part labor and the

quasi-fixed part of labor. After a small shock, only LV,i adjusts. The disutility of labor remains

L1/ξ, where L = Lλ
V L

1−λ
F is aggregate labor.22 Likewise, I assume that capital is quasi-fixed in

the short run.23

One can now study the effect of a productivity shock bAi to each firm i. I call Si = piQi the

18To see this effect most clearly, consider an economy with a production function which, at the level
of the representative firm, is Q = A (L/b)b (X/ (1− b))1−b, where X is the intermediary inputs. GDP is
Y = maxX A (L/b)b (X/ (1− b))1−b − X. Solving for X yields Y = A1/bL. Though TFP is A at the firm
level, it is A1/b at the aggregate level.
19The rules are well-known, and come from taking the logarithm and differentiating. For instance, \XαY βZγ =

αX + βY + γZ.
20This formulation allows for other variants. For instance, if both capital and labor can be reallocated, then

one replaces α, the current share of labor, by 1.
21 If the sales are Si = f (Ai)L

θ
i , the frictionless optimum labor supply maximizes f (Ai)L

θ
i − wLi, and so at

the optimum, the ratio of sales per employee, Si/Li = w/θ, is independent of the productivity Ai.
22Alternatively, one could formulate the disutility of labor as any function v (LV , LF ). ξ is then defined as:

ξ = λ/ LV
∂2v/∂2LV
∂v/∂LV

+ 1 .
23Proposition 4 describes the short term behavior. In a next iteration of this paper, the long term analysis

should be provided, including with the adjustment of quasi-fixed labor, and capital. One can anticipate that these
extensions will not change materially the calibration for the short run.
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dollar sales of firm i.

Proposition 4 Suppose that each firm i receives a productivity shock bAi. Macroeconomic vari-

ables change according to:

TFP : bΛ =X Si
Y
bAi =

X Salesi
GDP

bAi (24)

GDP : bY =
1

(1− αξ)
bΛ (25)

Employment : bL = ξ bY (26)

Wage : bw = (1− ξ) bY (27)

and firm-level variables change according to:

Dollar sales : bSi = bXi = β bAi + (1− βb (1− αξ)) bY (28)

Production : bQi = ψβ bAi + (1− ψβb (1− αξ)) bY (29)

Price : bpi = − (ψ − 1)β bAi + (ψ − 1)βb (1− αξ) bY (30)

Employment : bLi = λβ bAi + λ (ξ − βb (1− αξ)) bY (31)

Dollar sales per Employee :\Si/Li = (1− λ)β bAi + (1− λξ − (1− λ)βb (1− αξ)) bY (32)

where

β = 1/ (ψ − bαλ− 1 + b) (33)

Equation (24) is Hulten’s (1978) equation. TFP is entirely the sum of idiosyncratic firm-level

shocks. Otherwise equations (25)-(27) are standard. GDP growth is TFP growth, multiplied by

an amplification mechanism, labor supply.

The new results are the firm-level changes, in equations (28)-(32). The economy behaves

like a one-factor model, with an “aggregate shock”, the GDP shock bY . Again, this shock stems
from a multitude of idiosyncratic shocks. The “aggregate shock” causes all firm-level quantities

to comove. Aggregating, industry-level quantities would comove too. Economically, when firm

i has a positive shock, it makes the aggregate economy more productive (equations 21 and 24),

and affect the other firms in three different ways. First, other firms can use more intermediary

inputs produced by firm i, hence increasing their production. Second, firm i demands more

inputs from the other firms (equation 28), which leads their production to increase. Third,

given firm i commands a large share of output, it will use more of the inputs of the economy,

which tends to reduce the other firms’ output.24 The net effect depends on the magnitudes of

the elasticities.

24 In a more general framework (e.g., Acemoglu 2002), firm i could use less of some inputs.
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I calibrate the model using conventional parameters to the extent possible.25 The labor

share is α = 2/3. For the share of intermediate inputs Jorgensen, Gollop and Fraumeni (1987),

updated in 1996, provide b = 1/2.26 The elasticity ψ is a conventional ψ = 1.2. 27 To set

ξ ∈ (0, 1), I am guided by (26)-(27). In the business cycle, the volatility of hours is greater

than the volatility of the compensation, which means ξ ∈ (1/2, 1). Indeed, the ratio of these
volatilities is about 2.5 empirically28, which together with (26)-(27) implies ξ = 0.7. By contrast,

there is little inherited guidance about the share of labor that is flexible in the short run, λ.

Given λ is between 0 and 1, I rely on Laplace’s principle and set λ = 1/2.

Of particular interest is the measure used in section 4, the change in sales per employee,
\Si/Li. It varies with the true productivity bAi, with a coefficient, (1− λ)β. Hence, idiosyncratic

movements in\Si/Li are a good measure of the idiosyncratic shocks in productivity. The above

parameter values generate a coefficient of (1− λ)β = 0.94 in equation (32), which is very close

to one. Hence, labor productivity is a good measure of true productivity.

All the variables in Proposition 4 have a positive loading on the GDP factor bY , i.e. they

all comove positively with GDP. I conclude that the above model is a useful benchmark to

understand comovement the business cycle.

4. Tentative Empirical Evidence from the Granular Residual

4.1. The Granular Residual: Motivation and Definition

This section presents tentative evidence that the idiosyncratic movements of the top 100 firms

explain an important fraction (one third) of the movement of total factor productivity (TFP).

The key challenge is to identify idiosyncratic shocks. Large firms could be volatile because of

aggregate shocks, rather than the other way round. I use a variety of ways to attempt to do

this.

25Model (18) allows only for 1 firm-level shock, Ai, which generates a perfect correlation between firm-specific
movements in sales and employment. However, the data shows the an imperfect correlation between sales and
employement of about 1/2, and a correlation between employment and labor productivity (as measured by sales /
employees) of about -1/2, which indicates two shocks — perhaps one Hicks neutral productivity or demand shock,
and one labor-saving shock. This type of difficulty is familiar, and there is no consensus solution. Hence, the
above calibration can only be indicative a definitive one would require a richer model with two types of firm-level
shocks. See Altig, Christiano, Eichenbaum and Linde (2005) for a calibration that takes into account many
relevant frictions
26 I thank Susanto Basu for providing this updated number.
27A higher ψ may be required to better fit the short run behavior. As Golosov and Lucas (2007) note, this

implies that a 10% reduction in price induces a very high quantity response of ψ/ (ψ − 1) × 10% = 60%, which
is probably unrealistically large as a short-run response response. Hence, for the purposes of a calibration of
short-run shocks, one may need a higher ψ. This problem, they point out, is “endemic” in constant elasticity of
substitution models. Other frictions need to be included to solve this problem. I do not attempt to resolve the
problem. For the limited purposes of this calibration, ψ = 1.2 is probably a good benchmark.
28 Indeed, in Cooley and Prescott (1995, p.30), the volatility of hours is 1.64% while the volatility of the wage

is 0.65%.
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I start with a parsimonious proxy for the labor productivity of firm i, the log of its sales per

worker:

zit := ln
Sales of firm i in year t

Number of employees of firm i in year t
. (34)

This measure is selected as it requires only basic data that is more likely to be available for

non-US countries, unlike more sophisticated measures such as a firm-level Solow residual. Most

studies that construct productivity measures from Compustat data use (34). I define the pro-

ductivity growth rate as git = zit−zit−1. I focus on the K = 100 firms that had the largest sales

in year t− 1. (Results are similar for other choices of K).
Many models, including the model of section 3 (eq. 32) predict that labor productivity

growth rate behaves according to:

git = ft + γ bAit. (35)

where ft is a factor (proportional to GDP growth in equation 32), and bAit is the growth rate of

total factor productivity of firm i. The same models also support the following decomposition:

git = at + aIi(t) + εit (36)

where at is a shock common to all firms, aIi(t) is a shock specific to the industry Ii of firm i,

and εit is a shock that is purely idiosyncratic to firm i. Hence equations 35 and 36 link firm

total productivity growth bAit to market and industry factors, and an idiosyncratic component.

Section 4.3 analyzes more complex models.

Hulten (1978)’s theorem, and the model of section 3, predict that TFP in the economy

evolves according to: bΛt =X Salesi
GDP

bAit =
X Si

Y
bAit (37)

My goal is to investigate whether εit, the idiosyncratic component of the total factor productivity

growth rate bAit of large firms, can explain aggregate TFP.29 Owing to the relationship betweenbAit and git, this leads to the definitions:

Definition 1 The granular residual Γt is defined as:

Γt :=

PK
i=1 Salesi,t−1 (git − gt)PK

i=1 Salesi,t−1
. (38)

29The same analysis, with Γt, can be used to explore the weak form of the granular hypothesis, namely that
idiosyncratic industry level shocks affect a large part of GDP.
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where gt is the equal—weighted average productivity growth rate of the top K firms:

gt = K−1
KX
i=1

git. (39)

Definition 2 The granular residual with industry de-meaning Γindt is defined as:

Γindt =

PK
i=1 Salesi,t−1

¡
git − gI(i)t

¢PK
i=1 Salesi,t−1

(40)

where gI(i)t is the equal—weighted average productivity growth rate, amongst the top Q largest

firms, for the for firms in i’s industry:

gIit = Mean of gjt, for firm j belonging to firm i’s industry, (41)

and in the top Q firms by sales at t− 1.

The justification for the definitions is as follows. In the residual Γt, the term gt removes the

common shock at if (36) holds. In the residual Γindt , the term gIit removes the industry shock

at+aIi(t) if (36) holds. Although Γ
ind
t offers a better control than Γt for industry shocks, it does

not have uniformly better properties than Γt. Indeed, if the common component of volatility

is much greater than industry-specific fluctuations (as often found, for instance in Stock and

Watson 2005, and also predicted by the model in section 3), then Γindt is a noisier proxy for the

true residual bΛt than Γt, as Lemma 1 in Appendix B indicates. In addition, the Γindt requires

more data. In any case, Γt and Γindt are highly correlated, and I use both in the empirical

analysis.

Lemma 1 in Appendix B indicates that the definition of Γt and Γindt is optimal, in the

sense of maximizing the correlation with TFP while purging common shocks.30 Also, the online

appendix to this paper shows that identification is achieved if the number K of firms in the

granular residual is very large.31

A simple example illustrates the granular residual.32 Suppose that the economy is made of

one big firm, which produces half of output, a hundred small ones. The standard deviation of all

growth rates is 10%, and growth rates are given by git = at + εit, where at is a common shock.

30Finally, an alternative definition would be to place GDP in the denominator of (38). In practice, such a
measure is well correlated with the granular residual, and yields very similar results.
31As the online appendix to this paper shows, with small K, the R2 is underestimates the true R∗2 of the

idiosyncratic shocks, by a factor 1 − 1
KHK

, where HK = K
i=1 S

2
i /

K
i=1 Si

2

is about 0.6. Hence, if R2

empirically found R2 is 1/3, the R2 of true idiosyncratic shocks is R∗2 = 1/2. On the other hand, if the number
of firms K becomes very large, 1− 1

KHK
tends to 1, and the R2 becomes unbiased. I do not pursue that route,

because for very large K the homogeneity postulate (36) is less likely to hold.
32 I thank Olivier Blanchard for this example.
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Suppose that in a given year, GDP increases by 3%, and the big firm has growth of, say, 6%,

while the average of the small ones is close to 0%. What can we infer on the origins of shocks?

If one thinks of all this being generated by an aggregate shock of 3%, then the distribution of

implied idiosyncratic shocks is 3% for the big firm, and −3% on average for all small ones. The

probability that the average of the i.i.d. small ones is −3%, given the law of large number for
these firms, is very small. Hence, it is more likely that the average shock at is around 0%, and

the economy-wide growth of 3% comes from an idiosyncratic shock to the large firm equal 6%.

The estimate of the aggregate shock is captured by gt, which is close to 0%, and the estimate

of the contribution of idiosyncratic shocks is captured by the granular residual, Γ = 3%.

4.2. Empirical Implementation

I use annual U.S. Compustat data from 1951 to 2008. For the granular residual, I take for each

year t − 1 the K = 100 largest firms in Compustat that are not in the oil or energy sector.33

Compustat contains some large outliers, which may result from extraordinary events, such as

a merger. To handle potential outliers, I winsorize the extreme growth rates. Specifically, I

construct:

Γt :=

Ã
KX
i=1

Salesi,t−1

!−1Ã KX
i=1

Salesi,t−1T (git − gt)

!
(42)

Γindt =

Ã
KX
i=1

Salesi,t−1

!−1Ã KX
i=1

Salesi,t−1T (git − gIit)

!
(43)

using the trimming function T (x) = x if |x| ≤ M , T (x) = sign (x) ·M if |x| > M . (I use

M = 20%, but the results are not materially sensitive to this threshold.) In other words, when a

growth rate is larger than 20%, I replace the growth rate by 20%, and I do the same for negative

growth rates.

Table 1 presents regressions of GDP growth and the Solow residual on the granular residual.

These regressions are supportive of the granular hypothesis. The granular residual, and its lagged

values, explain slightly over 1/3 of the fluctuations of GDP growth and the Solow residual.

If only aggregate shocks were important (ft in Eq. 35), then the R2 of the regressions in Table

1 would be zero. Hence the good explanatory power of the granular residual is inconsistent with

a representative firm framework. It is also inconsistent with the hypothesis that most firm-level

volatility might be due to a zero-sum redistribution of market shares.

[Insert Table 1 about here]

33For firms in the oil and energy sector, the wild swings in world-wide energy prices make (34) too poor a proxy
of total factor productivity.
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Table 1 indicates that the lagged granular residual predicts GDP growth. This may reflect

several mechanisms: autocorrelation at the firm level; imitation dynamics, where a successful

technology is imitated by other firms; time aggregation; and the propagation of shocks along

supply and demand chains, as in Long and Plosser (1983).

[Insert Table 2 about here]

We next turn to the granular residual with industry-specific de-meaning, Γindt , using 2 digit

SIC codes to define the industries. Table 2 presents the results, which are consistent with those

in Table 1. The R2’s are slightly higher, with an average of 41% (and 38% for the adjusted R2)

across specifications. The similarity of the results is not surprising, as the correlation between

Γt and Γindt is 0.84.

In conclusion, idiosyncratic movements of the top 100 firms seem to explain a large fraction

of the Solow residual and GDP fluctuations.

4.3. Robustness Checks

The main objection to the granular residual is that the control for the common factors may

be imperfect. This section shows that the explanatory power of the granular residual is not

diminished by controlling for previously studied common shocks. Following the work of Hamilton

(2003) and Romer and Romer (2004), I control for oil and monetary policy shocks. To arrive at

an annual frequency, I sum the shocks over the years.

Table 3 characterizes the explanatory power of those variables. Monetary and oil shocks

explain 21% of GDP growth.

[Insert Table 3 about here]

[Insert Table 4 about here]

Table 4 shows the explanatory power of the granular residual, controlling for oil and monetary

shocks. The mean R2 across specifications is 53%. Hence, if oil and monetary shocks explain

22% of GDP shocks, the granular residual explains a minimum of 31% of GDP fluctuations.

This estimate is close to the one of 1/3 found in section 4.2.

I conclude that adding controls for oil and monetary shocks confirms the initial estimate

of good explanatory power of the granular residual, of approximately 1/3 of GDP fluctuations.

Further analysis shows that the results seem reasonably robust to changes in the number of large

firms K, the number of firms for the industry controls Q, and the trimming level.

Another potential objection to the granular residual is that, while Γindt controls for industry

shocks and common shocks in model (36), it may not control well for them in an alternative

model such as:

git = βiat + β0iaIi(t) + εit (44)
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Given the short sample, if the βi’s are completely unconstrained, there does not seem to be

any manageable way to estimate (44) and obtain clean enough estimates of the εit to form

a granular residual of their weighted sum, and test the granular hypothesis.34 Thus, some

parametric restriction seems necessary. The most natural is that the sensitivity to shock might

depend on firm size. Accordingly, I consider the following model:

git =
£
1 + b

¡
lnSi,t−1 − lnSj,t−1;,j∈Ii

¢¤
gIit + εit, (45)

where εit is orthogonal to gIt, and lnSj,t−1;,j∈Ii is the mean log size of firms in i’s industry. I

estimate it by running the OLS regression:

git − gIit = b
¡
lnSi,t−1 − lnSj,t−1;,j∈Ii

¢
gIit + noiseit (46)

which yields b = −0.34 (s.e. 0.04).35 This result mean that large firms are actually less sensitive
to aggregate shocks than small firms. Hence, in the definition of Γt (respectively Γindt ), gt
(respectively gIit) adds a negative loading on the industry and GDP shocks. Hence the results

from Γt and Γindt are biased against the granular hypothesis. I conclude that consideration of

models such as (45) reinforces the previous results, rather than contradicts them.

The above results are considered provisional. The situation is the analogue, with smaller

stakes, to that of the Solow residual.36 Solow understood at the outset that there are very strong

assumptions in the construction of his residual, in particular fully capacity utilization, no fixed

cost etc. But a “purified” granular residual took decades to construct (e.g., Basu et al. 2006),

and requires much better data, is harder to replicate in other countries, and relies on special

assumptions as well. Because of that, the Solow residual still endures, at least as a first pass.

In the present paper too, it is good to have a first step in the granular residual, together with

caveats that may help future research do construct a better residual. The conclusion of this

article contains some other measures of granular residuals that build on the present paper.

4.4. A Brief Narrative of GDP and the Granular Residual

Figure 3 plots a time series of the simple and industry-demeaned granular residual. Figure 4

presents a scatter plot with Γt + Γt−1, a choice motivated by the fact that Γt and Γt−1 have

similar coefficients in the regressions of Table 1.

While a full narrative is outside the scope of this paper, this section proposes an interpretation

34For instance, if one regresses git on GDP, and take the residuals, then tautologically the residuals will be
orthogonal to GDP, which by construction contradicts the granular hypothesis. Also, oil and monetary shocks
are not good instruments, as they can affect an industry directly.
35Estimating: git − gt = b lnSi,t−1 − lnSj,t−1 gt+noiseit, gives a similar b = −0.21 (s.e. 0.03).
36 I thank Steve Durlauf for this intepretation.
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Figure 3: Time series of per capita GDP growth, the granular residual Γt, and the granular
residual industry de-meaning Γindt , computed over the largest 100 firms by sales in the previous
year.

of the most extreme points.37 A general caveat is that the direction of the causality is generally

hard to assess definitively, as the measures gt for aggregate economy-wide and industry-wide

movements are imperfect.

The bottom right quadrant of Figure 4 contains two outliers. 1954 can be attributed to the

end of the Korean War. 1982 is commonly called the Volcker recession.

An interesting “granular year” may be 1955, which experiences a high GDP growth, and

a reasonably high granular residual. The likely microfoundation is a boom in car production.

Two main specific factors seem to explain the car boom: the introduction of new models of cars

(Gordon 1980), and the fact that car companies engaged in a price war (Bresnahan 1987). In

1955, the granular residual is 1.5%, of which 81% is solely due to General Motors.38 In 1956,

the price war in cars ends, and sales drop back to their normal level (the sales of General Motors

decline by 17%). The granular residual is -3.0%, of which 57% is due to General Motors. Hence,

one may provisionally conclude the 1955-1956 boom-bust episode was in large part a granular

event driven by new models and a price war in the car industry.39

An extreme negative granular residual occurs in 1970. This year features a major strike at

General Motors, which lasts ten weeks (September 15 to November 20). Sales of GM fall by

37Gordon (1980), Temin (1998), and the reports of the Council of Economic Advisors provide useful narratives.
38This number is the fraction due to General Motors in the numerator of equation 38. By this definition, the

sum of the shares is 1.
39To completely resolve the matter, one would like to control for the effect of the Korean war.
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Figure 4: Growth of GDP per Capita against Γt + Γt−1, the granular residual and its lagged
value. The display of Γt + Γt−1 is motivated by Table 1, which yields regression coefficients on
Γt and Γt−1 that are similar in magnitude.

31%. Hence, it is plausible to interpret 1970 as a granular year, whose salient event was the GM

strike.40 Additionally, one can interpret the positive granular shock in 1971 (which appears in 4

as label “72”, for representing the sum of the granular residuals in 1971 and 1972) as a rebound

from the negative granular 1970 shock. Hence the General Motors strike may explain the very

negative “70” (1969+1970) point and the very positive “72” (1971+1972) point.

Another interesting granular event happens in 1971. The Council of Economic Advisors

(1972, p.33) reports that “prospects of a possible steel strike after July 31st [1971], the expiration

day of the labor contracts, caused steel consumers to build up stock in the first seven months

of 71, after which these inventories were liquidated.” Here, a granular shock — the possibility

of a steel strike — creates a large swing in inventories. Without exploring inventories here, one

notes that such a plausibly orthogonal inventory shock could be used in future macroeconomic

studies.41

Figure 4 reveals that in the 1990s, granular shocks are smaller. Likewise, GDP volatility is

40Temin (1988) notes that the winding down of the Vietnam War (which ended in 1975) may also be responsible
for the slump of 1970. This is in part the case, as during 1968 to 1972 the ratio of defense outlays to GDP was 9.5,
8.7, 8.1, 7.3, 6.7%. On the other hand, the ratio of total government outlays to GDP were respectively 20.6, 19.4,
19.3, 19.5, 19.6% (source: Council of Economic Advisors, 2005, Table B-79). Hence the aggregate government
spending shock was very small in 1970.
41Although 1974 is not a granular year, the low value of the granular residual reflects the fact that the top three

car companies, and particularly General Motors, were disproportionately affected by the shock. It is likely that,
if large companies were producing more fuel efficient models, the granular residual would have been closer to 0,
and the slump of 1974 could have been much more moderate.
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smaller, a phenomenon explored in the literature42, though of course that needs to be reassessed

with the financial crisis that started in 2007.43 Under a granular view, this might be because

firm-level shocks were minor, particularly for large firms. Indeed, it seems that the average

firm volatility has decreased since 1976 in the USA (Davis et al. 2006), even though firms in

Compustat experienced a rise in volatility (Comin and Philippon 2005), perhaps because of a

selection effect (it is the most volatile firms, with the largest growth options, that choose to raise

money on the stock market).44 Further research is needed to assess this hypothesis.

5. Empirical Evidence on Concentration and Firm-Level

Volatility

This section illustrates that idiosyncratic fluctuations are indeed of the correct order of magni-

tude to explain aggregate shocks.

5.1. Large Firms are very Volatile

Most estimates of plant-level volatility find very large volatilities of sales and employment, with

an order of magnitude σ = 30% to σ = 50% per year (Caballero and Engel 2004, Caballero,

Engel and Haltiwanger 1997, Davis, Haltiwanger, Schuh 1996). Also, the volatility of firm size

in Compustat is a very large 40% per year (Comin and Mulani 2006). Much of the work has

been focused on the median firm, but the present paper requires an estimate of the volatility

of large firms. This sub-section therefore studies the volatility of the top 100 non-oil industry

firms each year.

Measuring firm volatility is difficult, because various frictions and identifying assumptions

provide conflicting predictions about links between changes in total factor productivity and

changes in observable quantities such as sales and employment (Proposition 4). I consider

the volatility of three measures of growth rates: ∆ ln (Salesit/Employeesit), ∆ lnSalesit and

∆ lnEmployeesit. For each measure and each year, I calculate the cross-sectional variance

amongst the top 100 firms of the previous year, and take the average.45 I find a standard

42See, for example, Blanchard and Johnson (2001), McConnell and Perez-Quiros (2000), and Stock and Watson
(2003).
43 It would be interesting to exploit the hypothesis that the financial crisis was largely caused by the (ex-post)

mistakes of a few large firms, e.g. Lehman and AIG. Their large leverage and interconnectedness amplified into
into a full-fledged crisis, what could have been a run-of-the-mill drop in asset values affecting on average the
financial sector. Of course, those ideas are very tentative at this stage.
44As per Eq. 3, the weighing for the relevant “average” firm level volatility is the square of the sales, not

the sales. This weighing gives an enormously higher weight to the top firms. A future paper will develop this
point, which requires some statistical care, as standard analysis based on standard errors cannot be applied. Most
moments here are infinite.
45 In other term, for each year t, I calculate the cross-sectional variance of growth rates, σ2t = K−1 K

i=1 g
2
it −
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deviation of 12%, 12% and 14% for, respectively, for growth rates of the sales per employee,

of sales, and of employees. Also, amongst the top 100 firms, the sample correlations are 0.023,

0.073 and 0.033 respectively, for each of the three measure.46 Hence the correlation between

growth rates is small. At the firm level, most variation is idiosyncratic.47

In conclusion, the top 100 firms have a volatility of 12% based on sales per employee. In

what follows I use σ = 12% per year for firm-level volatility as baseline estimate.

5.2. Herfindahls and Induced Volatility

This sub-section discusses the theoretically appropriate measure of the firm size, for use in

constructing the Herfindahl index. The key is given by Hulten’s (1978) result, which shows that

total sales, rather than value added, is the appropriate measure. Consider an economy with

several competitive firms or sectors, and let firm i have a Hicks-neutral productivity growth dπi.

Hulten (1978) shows that the increase in TFP is:

dTFP
TFP

=
X
i

Sales of firm i

GDP
dπi. (47)

The weights add up to more than 1. This reflects the fact that productivity growth in a firm

generates an increase in the economic value of all the inputs it uses. The firms’ sales are the

proper statistics for that social value. For completeness, Appendix B rederives and generalizes

Hulten’s theorem.

I now draw the implications for GDP volatility. Suppose productivity shocks dπi are uncor-

related with standard deviation σπ. Then, the variance of productivity growth is:

var
dTFP
TFP

=
X
i

µ
Sales of firm i

GDP

¶2
var (dπi) ,

and so the volatility of the growth of TFP is:

σTFP = hSσπ, (48)

K−1 K
i=1 git

2

, with K = 100. The corresponding average standard deviation is [T−1 T
t=1 σ

2
t ]
1/2.

46For each year, we measure the sample correlation ρt =
1

K(K−1) i6=j gitgjt / 1
K i g

2
it , with K = 100.

The correlations are positive. Note that a view that would attribute the major firm-level movements to shocks to
the relative demand for a firm’s product compared to its competitors, would counterfactually predict a negative
correlation.
47Hence another indirect measure is the volatility of idiosyncratic stock market returns. If a firm produces ait

per year, of which a fraction f is paid in dividends, and the dividend grows at a rate μ, then the Gordon formula
predicts a stock price pt = atf/ (R− μ), where R is the discount rate. In particular, the volatility of returns
is equal to the volatility of productive capacity a. For the top 100 largest firms, I find an average annualized
volatility of idiosyncratic returns of σ = 27%.
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where hS is the sales Herfindahl

hS =

Ã
NX
i=1

µ
Salesit
GDPt

¶2!1/2
. (49)

Hulten’s theorem allows us to simplify the analysis. For the total volatility, one does not

need to know the details of the input-output matrix. The sales Herfindahl is a sufficient statistic.

The international Herfindahls are from Acemoglu, Johnson and Mitton (2009). They analyze the

Dun and Bradstreet dataset, which has a good coverage of the major firms in many countries.48

[Insert Table 5 about here]

Almost all models predict that GDP growth bY is proportional to TFP growth bΛ, when there
are no other disturbances. For instance, in equation (25), bY = μbΛ with μ = 1/ (1− αξ). IfbΛ is a geometrical random walk, in the neoclassical growth model where only capital can be

accumulated, bY = μbΛ in the long run, with μ = 1/α, which gives μ = 1.5.49 So both in the

short run and long run, one gets a relation of the type: σY = μσTFP , i.e.

σGDP = μσπhS. (50)

The calibration of section 3 gives μ = 1/ (1− αξ) = 1.9, which is the value I use for short

term volatility. As seen above, a baseline estimate for the firm-level volatility is σπ = 12%.

Table 5 displays the results. The sales Herfindahl hS is quite large: hS = 22% average over

all countries, and hS = 6.1% for the U.S. By Eq. 48 this implies a GDP volatility σGDP =

1.9 × 12% × 6.1% = 1.4% for the U.S., and σGDP = 1.9 × 12% × 22% = 5.0% for a typical

country. This is very much in the order of magnitude of GDP fluctuations. As always, further

amplification mechanisms can increase the estimate. I conclude that idiosyncratic volatility

seems quantitatively large enough to matter at the macroeconomic level.

6. Conclusion

This paper shows that the forces of randomness at the micro level create a inexorable amount

of volatility at the macro level. Because of random growth at the micro level, the distribution of

48There may be problems with multinationals. For instance, the sales of G.M. are probably counted as the
worldwide sales of G.M.
49 If Yt = ΛtK

1−α
t Lα, Λt ∼ eγt, and capital is accumulated, then in balanced growth path, Yt ∼ Kt ∼ Λ

1/α
t . In

the long run, ∆ lnYt = μ∆ lnΛt, with μ = 1/α. This holds also with stochastic growth. If lnΛt is a Brownian
motion with drift, lim var (lnYt/Y0) /t = α−2var (lnΛt/Λ0) /t.
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firm sizes is very fat tailed (Simon 1955, Gabaix 1999, Luttmer 2007). That fat-tailness makes

the central limit theory break down, and idiosyncratic shocks to large firms (or, more generally,

to large subunits in the economy), affect aggregate outcomes.

This paper illustrates this effect by taking the example of GDP fluctuation. This paper

argues that idiosyncratic shocks to the top 100 firms explain a large fraction (one third) of ag-

gregate volatility. While aggregate fluctuations such as changes to monetary, fiscal and exchange

rate policy, and aggregate productivity shocks, are clearly important drivers of macroeconomic

activity, they are not the only contributors to GDP fluctuations. Using theory, calibration and

direct empirical evidence, this paper makes the case that idiosyncratic shocks are an important,

and possibly the major, part of the origin of business-cycle fluctuations.

The importance of idiosyncratic shocks in aggregate volatility leads to a number of implica-

tions and directions for future research. First, and most evidently, to understand the origins of

fluctuations better one should not focus exclusively on aggregate shocks, but concrete shocks to

large players, such as Wal-Mart, Intel, and Nokia.

Second, shocks to large firms (such as a strike, a new innovation or a CEO change), initially

independent of the rest of the economy, offer a rich source of shocks for VARs and impulse

response studies — the real-side equivalent of the “Romer and Romer” shocks for monetary

economics.

Third, this paper gives a new theoretical angle for the propagation of fluctuations. If Wal-

Mart innovates, its competitors may suffer in the short term and thus race to catch up. This

creates rich industry-level dynamics (that are already actively studied in the industrial orga-

nization literature) that should be useful for studying macroeconomic fluctuations, since they

allow one to trace the dynamics of productivity shocks.

Fourth, this argument could explain the reason why people, in practice, do not know “the

state of the economy”. This is because “the state of the economy” depends on the behavior

(productivity and investment behavior, among others) of many large and interdependent firms.

Thus the integration is not easy, and no readily-accessible single number can summarize this

state. This contrasts with aggregate measures, such as GDP, which are easily observable. Con-

versely, agents that focus on aggregate measures may make potentially problematic inferences

(see Veldkamp and Wolfers (2007) for research along those lines). For example, the aggregate

dividend-price ratio is often used as a key business cycle variable. However, changes in aggregate

dividends may stem only from the policies of a small number of firms, as found by DeAngelo

et al. (2004). This paper therefore could offer a new mechanism for the dynamics of “animal

spirits”.

Finally this mechanism might explain a large part of the volatility of many aggregate quan-

tities other than output, for instance, inventories, inflation, short- or long-run movements in

productivity, and the current account. Fluctuations of exports due to “granular” effects are
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explored in Canals et al. (2007) and di Giovanni and Levchenko (2009). The latter paper in

particular finds that lowering trade barriers increases the granularity of the economy (as the

most productive firms as selected), and imply an increase in the volatility of exports. Blank,

Buch and Neugebauer (2009) construct a “banking granular residual” and find that negative

shocks to large banks impact negatively small banks. Malevergne, Santa-Clara and Sornette

(2008) find that the granular residual of stock returns (the return of large firm, minus a re-

turn of the average firm) is an important priced factor in the stock market, and explains the

performance Fama-French factor models.

In sum, this paper suggests that the study of very large firms can offer a useful angle of

attack on some open issues of macroeconomics.
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Appendix A: Lévy’s Theorem

The basic theorem can be found in most probability textbooks, e.g. Durrett (1996, p.153).

Theorem 5 Suppose that X1,X2, ... are i.i.d. with a distribution that satisfies:

(i) limx→∞ P (X1 > x) /P (|X1| > x) = θ ∈ [0, 1]
(ii) P (|X1| > x) = x−ζL (x)

with ζ ∈ (0, 2) and L (x) slowly varying50. Let sn =
Pn

i=1Xi, and

an = inf {x : P (|X1| > x) ≤ 1/n} and bn = nE
£
X11|X1|≤an

¤
As n→∞, (sn − bn) /an →d Y where Y is a Lévy distribution with exponent ζ.

The most typical use of Lévy’s theorem is the case of a distribution with zero mean and power-

law distributed tails, P (|X1| > x) ∼ (x/x0)−ζ . Then an ∼ x0n
1/ζ , bn = 0, and

¡
x0N

1/ζ
¢−1PN

i=1Xi →d

Y , where Y follows a Levy distribution. The sum
PN

i=1Xi does not scale as N1/2, as it does in

the central limit theorem, but it scales as N1/ζ . This is because the size of the largest units Xi

scales as N1/ζ .

A symmetrical Lévy distribution with exponent ζ ∈ (0, 2] has the distribution λ (x, ζ) =
1
π

R∞
0 e−k

ζ
cos (kx) dk and the cumulative Λ (x, ζ) = 1

2 +
1
π

R∞
0 e−k

ζ sin(kx)
k dk.

For ζ = 2, a Lévy distribution is a Gaussian. For ζ < 2, the distribution has power law tail

with exponent ζ.

Appendix B: Longer Derivations

6.1. Hulten’s Theorem with and without Instantaneous Reallocation of
Factors

For clarity, I re-derive and extend Hulten (1978)’s result, which says that a Hicks-neutral pro-

ductivity shock dπi to firm i causes an increase in TFP equal to:

TFP growth =
X
i

Sales of firm i

GDP
dπi.

There are N firms. Firm i produces good i, and uses a quantity Xij of intermediary inputs

from firm j. It also uses Li units of labor, Ki units of capital. It has productivity πi. If

production is: Qi = eπiF i (Xi1, ...,XiN , Li,Ki). The representative agent consumes Ci of good

50L (x) is said to be slowly varying (e.g. Embrechts et al. 1997, p.564) if ∀t > 0, limx→∞ L (tx) /L (x) = 1.
Prototypical examples are L (x) = a and L (x) = a lnx for a non-zero constant a.
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i, and has a utility function is U (C1, ..., CN ). Production of firm i serves as consumption, and

intermediary inputs, so: Qi = Ci +
P

kXki. The optimum in this economy reads:

max
Ci,Xik,Li,Ki

U (C1, ..., CN ) subject to

Ci +
X
k

Xki = eπiF i (Xi1, ...,XiN , Li,Ki) ;
X
i

Li = L;
X
i

Ki = K

The Lagrangian is:

W = U (C1, ..., CN ) +
X
i

pi

"
eπiF i (Xi1, ...,XiN , Li,Ki)−Ci −

X
k

Xki

#

+ w

"
L−

X
i

Li

#
+ r

"
K −

X
i

Ki

#
.

Assume marginal cost pricing.51 GDP is this economy is Y = wL+ rK =
P

i piCi. The value

added of firm i is wLi + rKi, and its sales are piQi.

If each firm i has a shock dπi to productivity, I differentiate the expression ofW to find TFP

growth:

dW

W
=
1

W

X
i

pi
£
eπiGi (Xi1, ...,XiN , Li,Ki) dπi

¤
=
X
i

Sales of firm i

GDP
dπi,

which is Eq. 47.

The above analysis shows that Hulten’s theorem holds even if, after the shock, the capital,

labor, and material inputs are not reallocated. This is a simple consequence of the envelope

theorem. Hence Hulten’s result also holds if there are frictions to adjust labor, capital, or

intermediate inputs.

6.2. Proof of Proposition 1

Since σGDP = σh, I examine h.

N1/2h =

³
N−1PN

i=1 S
2
i

´1/2
N−1PN

i=1 Si

The law of large numbers ensures that N−1PN
i=1 S

2
i →a.s. E

£
S2
¤
, and N−1PN

i=1 Si →a.s. E [S].

This yields: N1/2h→a.s. E
£
S2
¤1/2

/E [S] .

51Basu and Fernald (2001) provide an analysis with imperfect competition.
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Proof of Proposition 2

Since σGDP = σh, I examine h.

h =

³PN
i=1 S

2
i

´1/2
PN

i=1 Si
(51)

I treat the cases where ζ > 1 and ζ = 1 separately. When ζ > 2, the variance of firm sizes is

finite, and we use Proposition 1.

When 1 < ζ ≤ 2. By the law of large numbers,

N−1
NX
i=1

Si →d E [S] .

In addition, S2i has power law exponent ζ/2 ≤ 1, as shown by:

P
¡
S2 > x

¢
= P

³
S > x1/2

´
= a

³
x1/2

´−ζ
= ax−ζ/2.

So to handle the numerator of (51), I use Lévy’s Theorem from Appendix A. This implies:

N−2/ζ
NX
i=1

S2i → u,

where u is a Lévy distributed random variable with exponent ζ/2. So

N1−1/ζh =

³
N−2/ζPN

i=1 S
2
i

´1/2
N−1PN

i=1 Si
→d u1/2

E [S]
.

When ζ = 1. Additional care is required, because E [S] =∞. Lévy’s Theorem 5 in Appendix
A gives bn = n lnn, hence:

N−1
Ã

NX
i=1

Si −N lnN

!
→d g,

where g is a Lévy with exponent 1. I conclude lnN · h→d u1/2/g.

Proof of Proposition 3

As ∆Si/Si = S−αi ui:
∆Yt+1
Yt

=

PN
i=1∆Sit
Yt

=

PN
i=1 S

1−α
i uitPN

i=1 Si
. (52)

31



When ζ > 1, by the law of large numbers:

N−1Yt = N−1
NX
i=1

Si → S.

To tackle the numerator, I observe that S1−αi has power law tails with exponent ζ 0 =

ζ/ (1− α). I consider two cases.

If ζ 0 < 2, xi = S1−αi ui, which has power law tails with exponent ζ 0, and by Lévy’s theorem:

N−1/ζ0∆Yt = N−1/ζ0
NX
i=1

S1−αi uit →d g,

where g is a Lévy with exponent ζ 0.

If ζ 0 ≥ 2, S1−αi ui has finite variance, and N−1/2∆Yt →d g, where g is a Gaussian.

In both cases:

N−max(1/2,1/ζ0)∆Yt →d g

for a distribution g. So, when ζ > 1:

N1−max(1/2,1/ζ0)∆Yt+1
Yt

→d g

S
g.

Hence the proposition holds, with

α0 = 1−max
¡
1/2, 1/ζ 0

¢
= 1 +min

¡
−1/2,−1/ζ 0

¢
= min

¡
1/2, 1− 1/ζ 0

¢
= min

µ
1/2, 1− 1− α

ζ

¶
.

When ζ = 1, a lnN correction appears, as in the proof of Proposition 2.

Proof of Proposition 4

Step 1. Frictionless equilibrium. I define:

H =

ÃX
i

Q
1/ψ
i

!ψ

(53)

The price of firm i is: pi = ∂H
∂Qi
, so: Si/H = piQi/H = Qi

∂H
∂Qi

/H, and

Si
H
=

µ
Qi

H

¶1/ψ
(54)

Because H is homogenous of degree 1, H =
P ∂H

∂Qi
Qi =

P
Si. H is the sum of sales in the
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economy.

Firm i solves: maxKi,Li,Xi piQi−Xi−wLi, which gives: (Ki, Li,Xi) = ((1− α) b/r, αb/w, 1− b)Si ∝
Si. I use ∝ to mean that the variables are proportional, up to a factor that does not depend
on i. So, Sψ

i ∝ Qi ∝ AiSi by (18), so Si ∝ A
1/(ψ−1)
i . Calling B =

P
A
1/(ψ−1)
i , and using

the adding up constraint
P
(Ki, Li,Xi) = (K,L,X), we find the constant of proportionality:

(Ki, Li,Xi) = (K,L,X)A
1/(ψ−1)
i /B. Plugging this in (53), we get:

H = Bψ−1
µ
LαK1−α

b

¶bµ
X

1− b

¶1−b
Now, we solve for X, i.e. solve maxX H −X. The solution is: Y = H −X = B(ψ−1)/bLαK1−α,

i.e. the announced relation.

Also, as Y = H −
P

Xi, and Xi = (1− b)Si, Y = H −
P
(1− b)Si = bH.

Step 2. Changes, assuming λ = 1. To keep the proof streamlined, I first consider the case

λ = 1, i.e. the case no frictions in the adjustment of labor.

We now look at the changes. TFP growth comes from (21), and is also Hulten’s formula.

Y = bH gives bY = bH. As the total production is: Y = ΛDLα, for a constant D, the optimal

labor supply L maximizes ΛDLα − L1/ξ, so L = Λ
1

1/ξ−α times a constant, and bL = ξ
1−αξ

bΛ.
This implies that bY = bΛ + αbL = ³

1 + αξ
1−αξ

´ bΛ = 1
1−αξ

bΛ, the announced relation. The wage
is w = 1

ξL
1/ξ−1, so: bw =

³
1
ξ − 1

´ bL, which gives the announced value. It is convenient that
one can solve for changes in the macroeconomic variables without revisiting the firms’ decision

problems.

We now turn to the firm-level changes. Optimization of the demand for labor gives wLi =

(1− b)αSi, so bLi = bSi − bw. We have, from (18), bQi = bAi + (1− b)αbLi + bbSi. Eq. (54) givesbQi = ψ bSi + (1− ψ) bH , and using bY = bH,
bQi = ψ bSi + (1− ψ) bY = bAi + (1− b)α

³bSi − (1− ξ) bY ´+ bbSi,
which gives the announced expressions for bSi and bQi.52 bLi comes from bLi = bSi − bw. Si was

defined as Si = piQi, which gives bpi = bSi− bQi.

Step 3. With a general λ ∈ [0, 1] .
After the changes bAi, only LV,i can adjust. First, we remark that the utility function is

Lξ =
³
Lλ
V L

1−λ
F

´1/ξ
, so the elasticity associated with LV is ξ0 = ξ/λ, while the production share of

LV is α0 = αλ. Hence, the expression (25) for GDP holds, replacing (α, ξ) by (α0, ξ0) = (αλ, ξ/λ).

As α0ξ0 = αξ, (25) is invariant in λ.

Furthermore, the planner solves: maxLV ΛL
αλ
V Lα

FK
1−α −

³
Lλ
V L

1−λ
F

´1/ξ
. There are now

52 In (33), bαλ+ 1− b is the share of flexible factors, i.e. of the factors that adjust in the short run.
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two wages, wV and wF , which are the marginal products of respectively LV and LF . One

finds: LV ∼ Λ1/(λ/ξ−αλ), i.e. λbLV = ξbΛ/ (1− αξ). As total employment varies as: bL =

λbLV + (1− λ) bLF = λbLV = ξbΛ/ (1− αξ), we get (26). Likewise, bwV = bY − bLV , bwF = bY , and
the weighted wage changes as: bw = λ bwV + (1− λ) bwF = bY − ξbΛ/ (1− αξ) = (1− ξ) bΛ. Hence
expressions (24)-(27) do not change with a general λ.

For the firm-level variables, one replaces (α, ξ) by (α0, ξ0) = (αλ, ξ/λ), which delivers the

expressions (28)-(30) and (33). The expression for employment becomes:

bLV,i = β bAi + (ξ − βb (1− αξ)) bY
as so total employment in firm i varies as bLi = λbLV,i, which gives expression (31). The expression

for (32) follows immediately from\Si/Li = bSi − bLi.

Lemma 1

The following Lemma is used in section 4.

Lemma 1 Suppose a world where git = ft + γ bAit, bΛt = Pi
Si
Y
bAit, and the productivity shocksbAit are uncorrelated and have equal variance. Consider the class of residuals of the form Γ0t =

KX
i=1

wigit, with weights (wi)i=1...K satisfying
KX
i=1

wi = 0, so that Γ0t is not affected by ft. One seeks

residuals Γ0t that have the greatest correlation with bΛt, i.e. which solve maxwi corr
Ã

KX
i=1

wigit,
PN

i=1
Si
Y
bAit

!
subject to

P
wi = 0. The highest correlation is achieved by any multiple of the granular residual

Γt given in (38).

Proof of Lemma 1. Given for any k > 0, corr
³bΛt, kΓ0t´ is independent of k, one first looks

at the residuals Γ0t with a given variance, say 1. The problem is then: maxwi cov
³bΛt,Γ0t´ s.t.

var (Γ0t) = 1 and
KX
i=1

wi = 0. Calling σ2 = var bAit, one forms the Lagrangian

L = cov
³bΛt,Γ0t´− λvar

¡
Γ0t
¢
− μ

X
wi

= cov

ÃX
i

Si
Y
bAit,

X
i

wiγ bAit

!
− λvar

³X
wiγ bAit

´
− μ

X
wi

= Y −1γσ2
X
i

Siwi − λγ2σ2
X

w2i − μ
X

wi

Forming 0 = ∂L/∂wi = Y −1γσ2Si−2λγ2σ2wi−μ, so the optimal weights are of the form: wi =

aSi+ b, with a and b independent of i. Condition
P

wi = 0 gives: wi = a
³
Si −K−1PK

j=1 Sj

´
,

and a residual Γ0t = a
P

Si (git − gt), which proves the Proposition.
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Appendix C: Data Appendix

Firm level data. The firm-level data comes from Compustat, North America, Industrial Annual.

The frequency is annual, the years 1950 to 2008. I download the following variables: company

name (CONAME), industry name (INAME), industry classification code (DNUM), DATA 3 —

Investments — Total ($MM), DATA 6 — Assets — Total ($MM), DATA 12 — Sales (Net) ($MM),

DATA 29 — Employees (M), DATA 78: Inventories - Finished goods ($MM).

I filter out oil and oil-related companies (DNUM=2911, 5172, 1311, 4922, 4923, 4924 and

1389), and energy companies (DNUM between 4900 and 4940), as fluctuations of their sales come

mostly from worldwide commodity prices, rather than real productivity shocks, and financial

firms (DNUM between 6,000 and 7,000), because their sales do not mesh well with the meaning

used in the present paper.53 To exclude foreign firms based in the US, I filter out companies

whose name ends with -ADR, -ADS, -PRE FASB.

An important caveat is in order for U.S. firms. With Compustat, the sales of Ford, say,

represent the worldwide sales of Ford, not directly the output produced by Ford in the U.S. There

is no simple solution to this problem, especially if one wants a long time series. An important

task of future research is to provide a version of Compustat that corrects for multinationals.

Macroeconomic data. GDP per capita comes from the Bureau of Economic Analysis. The

Solow residual is the multifactor productivity of the private business sector from the Bureau of

Labor Studies. The data for the Romer and Romer (2004) monetary policy shocks come from

David Romer’s web page. Their original series (RESID) is monthly, from 1966 to 1996. Here

the yearly Romer-Romer shock is the sum of the 12 monthly shocks in that year. For the years

not covered by Romer and Romer, the value of the shock is assigned to be 0, the mean of the

original data. This assignment does not bias the regression coefficient under simple conditions,

for instance if the data is i.i.d. It does lower the R2 by the fraction of years in which the

assignment is done, which is 0.4.

The data for the Hamilton (2003) oil shocks come from James Hamilton’s web page. A

quarterly Hamilton shock is the amount by which oil price exceeds the maximum price over the

previous year, zero otherwise. This paper’s yearly shock is the sum of the quarterly Hamilton

shocks.
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GDP growtht GDP growtht Solow Residualt Solow Residualt
Granular Residual Γt 0.574 0.747 0.756 0.871

(0.193) (0.186) (0.155) (0.163)
Granular Residual Γt−1 0.675 0.843 0.410 0.506

(0.187) (0.183) (0.147) (0.156)
Granular Residual Γt−2 0.628 0.320

(0.180) (0.154)
R2 0.26 0.41 0.37 0.42
Adjusted R2 0.24 0.37 0.34 0.39
Observations 57 56 50 49

Table 1: Explanatory Power of the Granular Residual. For the year t = 1952 to 2008, per capita
GDP growth and the Solow residual are regressed on the granular residual Γt of the top 100
non-oil industry firms (equation 42). The firms are the largest by sales of the previous year.
Standard errors in parentheses.

GDP growtht GDP growtht Solow Residualt Solow Residualt
Granular Residual Γindt 1.003 1.279 0.931 1.074

(0.228) (0.215) (0.185) (0.199)
Granular Residual Γindt−1 0.804 1.183 0.407 0.499

(0.196) (0.203) (0.159) (0.187)
Granular Residual Γindt−2 0.801 0.313

(0.180) (0.166)
R2 0.34 0.53 0.36 0.41
Adjusted R2 0.32 0.50 0.33 0.37
Observations 57 56 50 49

Table 2: Explanatory Power of the Granular Residual, with industry de-meaning. For the year
t = 1952 to 2008, per capita GDP growth and the Solow residual are regressed on the granular
residual Γindt of the top 100 non-oil industry firms (equation 42), removing the industry mean
within this top 100. The firms are the largest by sales of the previous year. Standard errors in
parentheses.
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GDP growtht GDP growtht GDP growtht
Oilt -5.1e-06 .000037

(.00015) (.00016)
Oilt−1 -.000643 -.000616

(.00028) (.00028)
Monetary Shockt .003464 -.00268

(.05784) (.05602)
Monetary Shockt−1 -.099848 -.077234

(.04805) (.04757)
R2 0.18 0.06 0.22
Adjusted R2 0.15 0.02 0.15
Observations 49 53 49

Table 3: Explanatory Power of oil and monetary shocks. The shocks are the yearly aggregations
of the measures of Hamilton (2003) and Romer-Romer (2004). Standard errors in parentheses.

With Simple Granular Residual With Industry Granular Residual
Granular Residualt 0.565 0.778 0.902 1.188

(0.224) (0.218) (0.261) (0.258)
Granular Residualt−1 0.677 0.936 0.699 1.118

(0.214) (0.212) (0.218) (0.234)
Granular Residualt−2 0.654 0.728

(0.206) (0.203)
R2 0.40 0.53 0.43 0.58
Adjusted R2 0.32 0.45 0.35 0.50
Observations 49 48 49 48

Table 4: Explanatory Power of the Granular Residual, with controls for oil and monetary shocks.
For the year t = 1952 to 2001, per capita GDP growth is regressed on the granular residual Γt of
the top 100 non-oil industry firms (equation 42-43), and the contemporaneous and lagged values
of the Romer-Romer and Hamilton shocks. The firms are the largest by sales of the previous
year. Standard errors in parentheses.

All Countries USA
Sales Herfindahl hS 22.0 6.1
GDP volatility induced by
idiosyncratic firm-level shocks

σGDP = μσπhS 5.0 1.4

Table 5: Sales herfindahl hS (eq. 49) in 2002, and induced GDP volatility. Units are in %. For
the induced GDP volatility, I take σGDP = μσhS , with a firm-level volatility σ = 12% (eq. 50),
and an amplification factor μ = 1.9, as discussed in the text. Source: Acemoglu, Johnson and
Mitton (2009) for the international data, and Compustat for the U.S. data.

44


