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I. Introduction 

Between 2001 and the end of 2005, the Standard and Poor’s/Case-Shiller 20 City 

Composite Index rose by 46% in real terms and then fell by about one-third before reaching a 

plateau in the first quarter of 2009.  The volatility of the Federal Housing Finance Agency 

(FHFA) repeat-sales price index was less extreme but still severe.  That index rose by 53% in 

real terms between 1996 and 2006 and then fell by 10 percent between 2006 and 2008.  As many 

financial institutions had invested in or financed housing-related assets, the price decline helped 

precipitate enormous financial turmoil. 

Much academic and policy work has focused on the role of interest rates and other credit 

market conditions in this great boom-bust cycle.  One common explanation for the boom is that 

easily available credit, perhaps caused by a “global savings glut,” led to low real interest rates 

that substantially boosted housing demand and prices (e.g., Himmelberg, Mayer and Sinai 

(hereafter HMS), 2005,  Mayer and Sinai, 2009; Taylor, 2009).  Others have suggested that easy 

credit market terms, including low down payments and high mortgage approval rates, allowed 

many people to act at once and helped generate large, coordinated swings in housing markets 

(Khandani, Lo and Merton, 2009).  Favilukis, Ludvigson and Van Nieuwerburgh (2010) have 

argued that the relaxation of credit constraints combined with a decline in housing transactions 

costs can account for much of the recent boom.  These easy credit terms may themselves have 

been a reflection of agency problems associated with mortgage securitization (Keys et al., 2009, 

2010; Mian and Sufi, 2009, 2010; Mian, Sufi and Trebbi, 2008). 

If correct, these theories provide economists with the comfortable sense that we 

understand one of the great asset market gyrations of our time; they would also have potentially 

important implications for monetary and regulatory policy.  However, economists are far from 

reaching a consensus about the causes of the great housing market fluctuation.  Shiller (2005, 

2006) long has argued that mass psychology is more important than any of the mechanisms 

suggested by the research cited above.  Skeptics of an especially strong role for interest rates 

include Glaeser and Gyourko (2008) and Greenspan (2010).  Bubb and Kaufman (2009) provide 

a counter view to the argument that agency conflicts within mortgage securitization programs 

contributed to the issuance of significantly riskier loans. 
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This leads us to reevaluate the link between housing markets and credit market 

conditions, to determine if there are compelling conceptual or empirical reasons to believe that 

changes in credit conditions can explain the past decade’s housing market experience.  For credit 

markets to be able to explain the large recent price movements, the impact of credit markets must 

be large and there must have been a substantial change in credit market conditions during the 

periods when housing prices were booming and busting.  Certainly, the real long rate dropped 

substantially during the housing boom, and the implied impact of interest rates on house prices is 

quite large according to the static version of Poterba’s (1984) asset market approach to house 

valuation.   

Between 1996 and 2006, the real ten-year Treasury yield fell by 120 basis points, and 

declined by an even larger 190 basis points from 2000 to 2005, when housing prices boomed the 

most.  Recent research implies a semi-elasticity of housing prices with respect to real rates of 

over 20 (HMS, 2005), meaning that a 100 basis point change in rate rates should be associated 

with roughly a 20 percent increase in price.1  The combination of a nearly 200 basis point decline 

in real interest rates and semi-elasticity of 20 suggests that the change in real rates could account 

for the bulk of the 50%-plus boom in prices experienced in the aggregate U.S. data. 

But there are two reasons to question this conclusion.  First, a more comprehensive 

dynamic model, which we present in Section II of this paper, predicts much lower price impacts 

than suggested by those using Poterba’s (1984) framework (e.g., HMS (2005)).  Second, the 

actual empirical relationship between house prices and interest rates is much weaker than that 

implied by the standard pricing model used in housing market analysis.   

The model analyzed in Section II illustrates various reasons why the impact of interest 

rates in particular may be much less strong than has been traditionally suggested by the asset 

market approach to house prices.  In a setting where interest rates are volatile and mean revert, as 

in Cox, Ingersoll and Ross (1985), we show that expected mobility and the ability to refinance 

can reduce the predicted interest rate elasticity of house prices by three-quarters. If buyers in low 

interest rate environments anticipate having to sell their homes in periods with higher rates, the 

 

1 The semi-elasticity is defined as the derivative of the logarithm of housing prices with respect to the real interest 
rate. 
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link between current rates and house prices is weakened.  Another mechanism muting the impact 

of higher rates is that buyers may anticipate the ability to access lower rates in the future via 

refinancing.  As long as buyers also anticipate that current rates will not remain low (or high) in 

perpetuity, the interest rate elasticity of house prices will be lower. 

 We also show that the link between house prices and interest rates can be reduced 

substantially by weakening the connection between private discount rates and market interest 

rates.  The standard asset market approach presumes that private discount rates and market rates 

always move together.  This relationship means that lower current rates raise the present value of 

future appreciation, and hence increase current willingness to pay.  The sizeable impact of 

current discount rates on the value of future gains leads standard models to predict a large impact 

of interest rates on prices, especially in high price growth environments.  But if private discount 

rates do not move with market rates, because buyers are credit constrained, then this channel is 

eliminated, and the connection between interest rates and prices is substantially muted. 

 The nature of housing supply provides yet another reason why interest rate effects need 

not be large, at least in some markets.  If supply is highly elastic in the relatively short run, then 

house prices should be pinned down by fundamental production costs, as suggested by Glaeser, 

Gyourko and Saiz (2008).  In that case, any demand shifter, whether interest rate-related or not, 

simply engenders sufficient new production to keep prices from rising above the level where 

developers can cover all production costs and earn a normal entrepreneurial profit. 

While it certainly is possible that buyers are not as forward-looking as our extensions of 

the Poterba model presume, the essence of any asset market approach to house valuation is that 

buyers form expectations about future price changes.  More generally, we are quite open to the 

possibility that buyers are far less rational than these models suggest, but there is no consensus 

yet on the right alternative to rational expectations.  Certainly, it is a mistake to think that 

standard economic reasoning necessarily predicts an extremely strong relationship between 

interest rates and housing prices.   

As we document below in Section III, the data largely are consistent with the modest 

implied semi-elasticity of house prices with respect to interest rates implied by our expanded 

model.  For example, the simple bivariate relationship between log house prices and the real long 
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rate, as measured by the 10-year Treasury rate corrected for inflation expectations, implies that a 

100 basis point fall in rates is associated with barely a 7% increase in house prices, as measured 

by the FHFA index between 1980 and 2008.  Larger price effects are found by restricting the 

sample to years after 1984, but they do not survive inclusion of a simple national time trend.  As 

theory suggests, we find that real rates have their strongest impact when rates are low and in 

markets where housing supply is relatively inelastic.  Our results support HMS’s (2005) insight 

that price impacts should be stronger at lower initial rates of interest, but even when rates change 

from a low base, a 100 basis point fall in real rates is associated with only an 8% rise in real 

house prices, independent of trend.   

While there are good reasons to question the empirical authority of less than 30 years of 

time series data, these results are quite in line with the predictions of our model.  Thus, both 

theory and data suggest that lower real rates cannot account for more than one-fifth of the boom 

in house prices.   

Our results should not, however, be interpreted as suggesting that monetary policy was 

either wise or appropriate.  Housing is only part of the economy, and monetary policy should be 

evaluated in a broader context.  Even within the housing sector, it is possible that a sharp rise in 

the Federal Funds rate could have substantially limited price increases by interacting with 

buyers’ expectations during the boom.  But this speculation only highlights the need for more 

research on the broader issue of buyers’ expectations. 

In Section IV, we investigate two other changes in mortgage credit markets:  mortgage 

approval rates and down payment requirements.  One difficulty with assigning much credit, or 

blame, for the boom to these factors is that neither appears to have changed substantially over the 

housing cycle.  For example, Home Mortgage Disclosure Act (HMDA) data show that approval 

rates were 78% in 2000 and in 2005.  The median loan-to-value ratio among buyers in our data 

was no higher in 2005 than in 1999.  And, our data indicate that there is nothing new about 

having at least 10 percent of purchasers buying with little or no equity.2   

 

2 The loan-to-value data are from DataQuick, a private data vender to the real estate industry, and are discussed 
more fully later in the paper. 
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That said, there is good reason to be skeptical of the quality of both data series.  For 

example, if the quality of loan applicants declined substantially during the boom, then relatively 

constant approval rates or loan-to-value ratios could, in fact, reflect much easier credit 

conditions.  The number of applications did trend up sharply during the boom, and characteristics 

of that pool also changed (e.g., the number of single applicants as opposed to two-person 

applications spiked, minority applicants increased more than white applicants, etc.).  We try to 

control for potential selection biases in creating an adjusted approval rate series which corrects 

for the changing characteristics of the applicant pool.  This series looks very similar to the 

unadjusted approval rates, with no apparent increase during the peak of the housing market.  

However, our quality controls are imperfect at best and may not capture important changes in 

unobservables. 

If one were to take our adjusted approval rates and loan-to-value ratios at face value, the 

fact that they change only modestly implies that extremely large marginal effects on prices 

would be needed for these variable to account for much of the housing boom.  Our model 

predicts only modest impacts for each.  Down payments should matter when private discount 

rates and market rates are not identical.  After all, if you can borrow and lend at the same rate, 

you are indifferent between paying all cash or leveraging your home purchase.  Even if 

borrowers are credit constrained and private discount rates are very high (i.e., well above 10%), 

the implied semi-elasticity of lowering down payments never exceeds two, according to our 

model.  Hence, even very large changes of 10 percentage points in loan-to-value ratios would 

lead to no more than a 20% change in house prices.   

The most natural interpretation of a higher approval rate is that it boosts the demand for 

housing.  Thus, if lenders change from approving 50 percent of would-be buyers to approving 60 

percent of would-be buyers, that essentially reflects a 20 percent increase in the market demand 

for housing.  Given standard housing demand elasticity estimates of less than one, this would be 

associated with less than a 20 percent increase in prices in perfectly inelastically supplied 

markets.  In more typical markets, the semi-elasticity of prices with respect to approval rates is 

predicted to be around one-third times one over the approval rate.   

The model’s predictions of modest marginal effects on prices are largely confirmed in the 

data.  However, important endogeneity concerns make robust analysis of these variables 
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difficult.  Empirically, we do not have strong instruments to deal with the likelihood that bank 

behavior regarding lending conditions not only could influence the housing market, but could be 

influenced by it.  This combination of standard econometric concerns about the robustness of 

estimated marginal effects on prices with worries about the measurement of these two credit 

market variables themselves means that no firm conclusions can be reached about the role of 

these particular aspects of the credit market.  We find no evidence that these factors did account 

for the boom and bust in house prices, but that is very different from convincingly concluding 

they did not play a more prominent role.  More research with different and better data will be 

needed to pin down their effects empirically. 

In Section V, we use our estimated coefficients to assess the portion of the price increase 

that can be explained by credit market conditions over different time periods:  (a) the full boom 

period of 1996-2006; (b) the period of largest change in the relevant credit market variable, 

which typically is in the early- to middle part of the previous decade; and (c) the housing bust of 

2006-2008.  Assuming that the semi-elasticity of prices with respect to the interest rate is 6.8, the 

120 basis point drop in the real long rate between 1996 and 2006 predicts a price increase of 

about 8 percent, which is less than one-fifth of the actual increase in prices over this period.  If 

we cherry-pick the time period and focus on the years from 2000-2005 during which real rates 

changed most, we find that declining rates can explain almost 45 percent of the 29 percent real 

price increase that actually occurred.  But, this truly is cherry picking, as real rates also fell 

during the bust since 2006, and obviously cannot account for the fall in prices in that period. 

 Since approval rates don’t trend up between 1996 and 2006 even in our adjusted series, 

we could not possibly find that they explain the boom over that period.  When we examine 

shorter periods such as that from 2000-2003, when approval rates did increase by 5.4 percentage 

points, the largest estimated marginal price impact from our regression analysis suggests that this 

factor can account for almost half of the price rise over this shorter time period.  But the same 

earlier caveat about cherry picking the time period applies.  It is during the bust from 2006-2008 

that this factor is best able to account for house price changes—in this case, a rapid decline. 

Similar conclusions hold for loan-to-value ratios.  Since they did not increase by much 

over the boom, they could not explain it, even if we had estimated large marginal effects on 
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house prices.  Unlike interest rates and like approval rates, loan-to-value ratios move in the right 

direction to help account for the 2006-2008 bust.   

We doubt that any single or simple story can explain the movement in house prices, 

especially over the past decade.  While our analysis indicates that one plausible explanation of 

that boom, easy credit conditions—and low interest rates especially—cannot account for most of 

what happened to prices, we are not able to offer a compelling alternative hypothesis.  We 

suspect that Case and Shiller (2003) are correct and the over-optimism illustrated by their 

surveys of recent home-buyers was critical, but this just pushes the puzzle back a step.  Why 

were buyers so overly optimistic about prices?  Why did that optimism show up during the early 

and middle years of the last decade, and why did it show up in some markets but not others?  

Irrational expectations are surely not exogenous, so what explains them?   

 

II. The Theoretical Link Between Interest Rates and Housing Prices 

In this section, we follow the path laid out by Poterba (1984) and re-evaluate the 

theoretical predictions about the connection between interest rates and housing prices.  In the 

first sub-section, we assume that the housing stock is fixed, rents are constant and prices are 

determined so that buyers will be financially indifferent between owning and renting.  Within 

that framework, we provide a closed form solution when interest rates are time-invariant and 

simulated results when interest rates follow a stochastic process.  In the second sub-section, we 

endogenize housing supply in the location in question.  In that case, home buyers are not only 

indifferent between buying and renting, but also between living in the impacted community and 

a reservation locale. 

 

Fixed Housing Supply and Fixed Interest Rates 

We focus on the choice of a consumer moving to a particular area in year t, who is 

deciding whether to buy or rent a home.  Equilibrium requires the marginal consumer to be 

indifferent between the two choices, and if consumers are homogeneous, then everyone will be 

indifferent between buying and renting. 
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In this sub-section, we treat housing supply and rent as exogenous.  We further assume 

that the homeowners and renters are homogenous, risk-neutral, and face random mobility shocks.  

With probability δ each period, a shock will force the consumer to vacate her new home or rental 

property.  This shock might be a taste shock (e.g., a divorce or a marriage) or an economic shock 

(e.g., a new job opportunity elsewhere). 

If the consumer chooses to rent, she pays the rental rate ܴ௧ା௝ in each period ݐ ൅ ݆ ൒  as ݐ

long as she remains in this unit.  If she chooses to buy, she is required to make a down payment 

of ߠ times the price, which is denoted ௧ܲ.  Homeowners finance the rest of the mortgage, rolling 

over the debt each period at an interest rate ݎ௧ା௝ from period ݐ ൅ ݆ െ 1 to period ݐ ൅ ݆.  Thus the 

nominal debt is kept constant at ሺ1 െ ሻߠ ௧ܲ until they move out.  We deflate the interest rate cost 

by 1 െ ߮, where ߮ should be thought of as the relevant tax rate, to reflect the deductibility of 

mortgage payments (all costs should be thought of as being paid in after-tax dollars).  Owners 

must also pay property taxes (also corrected for federal tax deductibility) and maintenance costs 

in period ݐ ൅ ݆ equal to ߬ሺ1 ൅ ݃ሻ௝ ௧ܲ, where g is the growth rate of maintenance expenditures. 

 Our first approach to valuing the home follows the usual method of treating the rental 

flow as exogenous, and derives a standard pricing formula.  We assume that there are no cash 

constraints, and that renting and owning must have equal expected costs spread over the 

(uncertain) duration of the individual in the locale. 

 We consider the discounted flow of costs as of time t.  That is, expenditures at time ݐ ൅ ݆ 

are discounted with a term-specific discount rate ߩ௧
௧ା௝, so that a dollar spent at time ݐ ൅ ݆ is 

valued at ൬ ଵ

ଵାఘ೟
೟శೕ൰

௝
 at time t.  We assume that rental and interest payments come at the end of 

each period.  The expected outlays from renting over the duration of the lease are therefore: 

(1)  ∑ ൬ ଵିఋ

ଵାఘ೟
೟శೕ൰

௝ ଵ
ଵିఋ

ܴ௧ା௝ିଵஶ
௝ୀଵ . 

If the discount rate is constant, so that ߩ௧
௧ା௝ ൌ  ௧, and rents grow at a constant rate ݃ equal to theߩ

growth of maintenance costs, so that ܴ௧ା௝ ൌ ሺ1 ൅ ݃ሻ௝ܴ௧, then the net present value of expected 

rental payments equals ோ೟
ఘ೟ାఋାఋ௚ି௚

. 
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 In the case of buying with a down payment of ߠ ௧ܲ, the expected costs of ownership are 

the expected value of: 

ߠ  (2) ௧ܲ ൅ ∑ ൬ ଵିఋ

ଵାఘ೟
೟శೕ൰

௝
ஶ
௝ୀଵ

ଵ
ଵିఋ

ቊ
௧ା௝ሺ1ݎ െ ߮ሻሺ1 െ ሻߠ ௧ܲ ൅ ߬ሺ1 ൅ ݃ሻ௝ିଵ ௧ܲ

െൣߜ ௧ܲା௝ െ ሺ1 െ ሻߠ ௧ܲ൧
ቋ. 

The first term, ߠ ௧ܲ, represents the required down payment.  To this is added the sum of future 

expected interest rate payments (equal to ݎ௧ା௝ሺ1 െ ߮ሻሺ1 െ ሻߠ ௧ܲ in each period) and future 

maintenance and property tax payments (equal to ߬ሺ1 ൅ ݃ሻ௝ିଵ ௧ܲ in each period).  Finally, we 

subtract capital appreciation (equal to ௧ܲା௝ െ ሺ1 െ ሻߠ ௧ܲ when the sale finally occurs). 

To build intuition, we assume constant interest rates and discount rates, so that ߩ௧
௧ା௝ ൌ  ௧ߩ

and ݎ௧ା௝ ൌ  In that case, prices will rise at the same rate as rents and maintenance costs, and  .ݎ

the net present value of housing costs to an owner equals: 

(2’)  ௧ܲ ቆ 
ఏఘ೟ାሺଵିఏሻሺଵିఝሻ௥ି௚ାఛା௚ሺଵିఏሻሺଵିఋሻ

ഐ೟షሺభషകሻೝ
ഐ೟శഃ

ఘ೟ାఋା௚ఋି௚
ቇ. 

If the net present values of renting and owning costs are equal, then the rent-to-price ratio will 

satisfy: 

(2”)   ோ೟
௉೟
ൌ ௧ߩߠ ൅ ሺ1 െ ሻሺ1ߠ െ ߮ሻݎ െ ݃ ൅ ߬ ൅ ݃ሺ1 െ ሻሺ1ߠ െ ሻߜ ఘ೟ିሺଵିఝሻ௥

ఘ೟ାఋ
. 

This purely static formula is analogous to the one used by Poterba (1984) and HMS (2005).  This 

formula does not allow us to consider three of the issues that we will highlight later— mean 

reversion of interest rates and refinancing, mean reversion of interest rates and mobility, and 

elastic housing supply—but it does allow us to explore a fourth critical issue: the connection 

between the private discount rate and market interest rates. 

 The asset market approach to housing prices typically assumes that future costs are 

discounted at the market rate of interest net of taxes.  This is natural if individuals are investing 

funds at this market rate.  In that case, an investment of one dollar at time t yields a return of 

ሾ1 ൅ ሺ1 െ ߮ሻݎሿ௝ at time ݐ ൅ ݆, and the rent-to-price formula simplifies to ோ೟
௉೟
ൌ ሺ1 െ ߮ሻݎ െ ݃ ൅ ߬.  

This formula can also be understood in real terms.  If the inflation rate is denoted ߨ, the real 
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growth of the rental rate (and housing prices) is denoted ො݃ and the real interest rate is denoted ̂ݎ, 

then ோ೟
௉೟
ൌ ሺ1 െ ߮ሻ̂ݎ െ ො݃ െ ߨ߮ ൅ ߬.  As Poterba (1984) taught us, higher rates of inflation will 

increase the tax subsidy to housing and raise the level of prices relative to rents.  These standard 

formulae also suggest that down payment requirements have no impact since the market and 

private rates of interest are identical. 

 But individuals need not discount the future at the market interest rate.  Some 

homebuyers, especially young ones, are likely to have little or no other assets and be credit-

constrained in their spending on other goods (Mayer and Engelhardt, 1996; Haurin, Wachter, and 

Hendershott, 1995).  If so, they may discount future gains at a rate that is both higher than the 

market rate and potentially varies independently of the market rate.  To explore the implications 

of this, we let ߩ௧ ൌ ሻݎොሺ̂ߩ ൅ ሺ1 െ ߮ሻߨ, so that the real private discount rate, ߩොሺݎሻ, can respond to 

the market interest, ̂ݎ, but need not move one-for-one.  The rent-to-price ratio is then: 

ோ೟
௉೟
ൌ ሻݎොሺ̂ߩߠ െ ߨ߮ ൅ ሺ1 െ ሻሺ1ߠ െ ߮ሻ̂ݎ െ ො݃ ൅ ߬ ൅ ሺ ො݃ ൅ ሻሺ1ߨ െ ሻሺ1ߠ െ ሻߜ ఘෝሺ௥̂ሻିሺଵିఝሻ௥̂

ఘෝሺ௥̂ሻାሺଵିఝሻగାఋ
. 

If rents (ܴ௧), inflation (ߨ) and the growth rate of rents and maintenance ( ො݃) are held constant, the 

derivative of the log price with respect to the real market rate of interest (̂ݎሻ is: 

(3)  డ௅௡ሺ௉೟ሻ
డ௥̂

ൌ െ
ሺଵିఝሻቂଵିఏିሺ೒ෝశഏሻሺభషഇሻሺభషഃሻഐෝሺೝෝሻశሺభషകሻഏశഃ ቃାఘෝᇱሺ௥̂ሻ൤ఏା

ሺ೒ෝశഏሻሺభషഇሻሺభషഃሻ൫ሺభషകሻሺೝෝశഏሻశഃ൯
ሺഐෝሺೝෝሻశሺభషകሻഏశഃሻమ

൨

ఏఘෝሺ௥̂ሻିఝగାሺଵିఏሻሺଵିఝሻ௥̂ି௚ොାఛାሺ௚ොାగሻሺଵିఏሻሺଵିఋሻ ഐෝሺೝෝሻషሺభషകሻೝෝ
ഐෝሺೝෝሻశሺభషകሻഏశഃ

. 

This quantity is decreasing with ߩොԢሺ̂ݎሻ, so a higher sensitivity of private discount rates to public 

interest rates makes those interest rates more powerful in determining prices. 

Two natural benchmarks for this relationship are when ߩොԢሺ̂ݎሻ ൌ ሺ1 െ ߮ሻ, which is the 

case assumed by the asset market approach (i.e., private home buyers discount at the market 

rate), and when ߩොԢሺ̂ݎሻ ൌ 0, where discounting depends purely on private preferences and is 

independent of real market rates. 

To calibrate benchmark semi-elasticities, we assume that ො݃ ൌ 0.01, which corresponds to 

an average real growth rate of housing prices of one percent.  We let ߨ ൌ 0.032, which 

corresponds to the average inflation rate over the past quarter century.  The real interest rate is 
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assumed to be four percent (̂ݎ ൌ 0.04), which corresponds to a nominal rate of 7.2 percent.  The 

marginal tax rate is assumed to be 25 percent (߮ ൌ 0.25).  We assume a 20 percent down 

payment requirement (ߠ ൌ 0.2).  In line with previous work in this area, we assume that non-

interest costs of homeownership equal to 3.5 percent per year (i.e., τ=0.035;  Poterba and Sinai, 

2008).  Individuals have a six percent chance of moving each year (ߜ ൌ 0.06ሻ, which is 

substantially lower than the typical U.S. rate of changing residences (which is 15.5 percent) to 

reflect the lower mobility of homeowners.3  Perhaps most importantly for this calculation, we 

assume that ߩොሺ̂ݎሻ ൌ ሺ1 െ ߮ሻ̂ݎ ൌ 0.03, which implies that the private discount rate equals the 

marginal rate at the point where we are taking a derivative.  This assumption, which we drop 

when we investigate time-varying interest rates, allows us to focus on the fact that the private 

rate may not move with the market rate, rather than the possibility that the private rate is 

substantially different from the market rate.4 

With these parameter values and assumptions, െడ௅௢௚ሺ௉೟ሻ
డ௥̂

ൌ 8.3 ൅  ሻ.  WhenݎොԢሺ̂ߩ10.2

ሻݎොԢሺ̂ߩ ൌ 0, the semi-elasticity equals 8.3; when ߩොԢሺ̂ݎሻ ൌ 1 െ ߮, the semi-elasticity rises to 16.  

The connection between ߩො and ̂ݎ increases the predicted relationship between prices and interest 

rates by 90 percent.  Lower levels of ̂ݎ or higher levels of ො݃ will raise the predicted relationship, 

but the sensitivity to ߩොԢሺ̂ݎሻ remains.  For example, if ො݃ ൌ 0.02, then െడ௅௢௚ሺ௉೟ሻ
డ௥̂

ൌ 9.3 ൅

 .ሻ, in which case the semi-elasticity ranges from 9.3 to 20.3ݎොԢሺ̂ߩ14.7

There are two reasons why the connection between market and private discount rates can 

matter so much.  First, when private discount rates and market interest rates move together as in 

the standard asset market approach, higher market rates make future appreciation less valuable to 

a buyer, dampening housing demand.  Similarly, lower rates increase the value of future price 

growth, raising demand and increasing the sensitivity of house prices to interest rates.  However, 

if private discount rates do not move with market rates, then future price gains do not become 

more (less) valuable as market rates fall (rise).  The second reason for the difference comes from 

the opportunity cost of the down payment.  In the asset market approach, higher interest rates 

 

3 Ferreira, Gyourko and Tracy (2010) report a two-year mobility rate for homeowners of twelve percent. 
4 Technically, we are assuming that the private rate is epsilon larger than the market rate, so that market rate remains 
slightly below the private discount rate when the derivative is taken. 
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increase the opportunity cost of the down payment, but with a private discount rate, that no 

longer need be the case. 

  

Fixed Housing Supply and Volatile Interest Rates 

While we have so far assumed a constant interest rate, time-varying interest rates can 

have an important impact on the housing market.  Unfortunately, the model becomes intractable 

with volatile interest rates, so we turn to simulations in order to compute housing prices and their 

elasticity with respect to interest rates.  We predict housing price-to-rent ratios in six cases, 

assuming that equilibrium requires the expected payments to be the same for renting and owning. 

We present all of our results separately for two different assumptions about the private 

discount rate.  In Table 1, we assume that the market rate and the private discount rate are the 

same, so that ߩොሺ̂ݎሻ ൌ ሺ1 െ ߮ሻ̂ݎ; and then in Table 2, we assume that these variables are 

decoupled.  All of the other parameter values are the same across the tables.  Results are reported 

for a range of interest rates.  In addition, we consider four separate assumptions about 

prepayment and mobility in each table.  The first presumes that there is no mobility or 

prepayment.  These results are identical to those discussed above arising from a setting in which 

interest rates are fixed and there is no mobility.  After all, if the individual never moves and 

never refinances, then the interest rate at the time of the purchase determines payments in 

perpetuity.  Our second case assumes prepayments exist, but mobility does not.  We model 

prepayment by assuming that the individual always immediately refinances when the interest rate 

falls, and locks in that rate until a better refinancing opportunity appears.  Our third case allows 

for mobility, but not prepayment.  Our fourth case looks at prices and elasticities when there is 

both prepayment and mobility. 

We assume a fixed inflation rate of ߨ ൌ 0.032.  The nominal interest rate is presumed to 

follow a discrete version of a standard Cox-Ingersoll Ross dynamic model, ݀ݎሺݐሻ ൌ െߛሺݎሺݐሻ െ

ݐሻ݀ݎ ൅  ,௧ is a Weiner process.  In the discrete version of the processߤ ௧, whereߤሻ݀ݐሺݎඥߪ

ݐሺݎ ൅ 1ሻ ൌ ሺ1 െ ሻݐሺݎሻߦ ൅ ݎߦ ൅ ߦ ௧; we assume thatߤሻݐሺݎඥߪ ൌ ݎ ,0.25 ൌ 0.067 and ߪ ൌ 0.082, 
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which adapts parameter values from Cairns (2004).  Appendix A discusses the details of the 

simulation process. 

Table 1 provides estimates of semi-elasticities for values of ̂ݎ that range from 0.03 to 

0.07, assuming that the private discount rate equals ሺ1 െ ߮ሻݎ.  The first column gives results for 

the case with no mobility and no prepayment, which is identical to the permanent interest rate 

case discussed above.  When the real interest rate is 0.03 (and hence the real private discount rate 

is 0.0225), the semi-elasticity is -26, as reported in column 1.  This represents a very high degree 

of price response that is comparable to that discussed by HMS (2005).  The elasticity drops to 16 

if the real interest rate is 0.04, which is reported in the next row of column 1.  As the real rate 

rises to 0.07, the elasticity drops down to about 11, but these results suggest a large impact of 

interest rates on prices unless real rates themselves are quite high. 

The second column continues to assume that there is no mobility, i.e., ߜ ൌ 0, but we now 

allow prepayment.  This mutes the interest rate sensitivity of prices because buyers know that 

when rates later drop, they will be able to refinance.  Our results presume no refinancing costs, 

so they should be seen as an extreme example of what the refinancing option does to the implied 

interest rate elasticity.  At a real rate of three percent, the interest rate semi-elasticity remains 

well above 20, so it still is quite high.  This reflects the fact that when rates are low, the 

possibility of future refinancing is fairly remote.  Yet, as soon as the real interest rate rises to 

0.04, the semi-elasticity drops to 12 and falls even lower if rates are higher.  In other words, the 

ability to refinance lowers the interest rate elasticity of house prices by at least 25% at moderate 

interest rate levels, but the sensitivity of prices to rates remains fairly high when interest rates are 

quite low. 

The third column allows mobility but no prepayment.  In this case, the interest rate 

sensitivity is much lower at all rate levels.  The semi-elasticity is -8 at a real rate of ̂ݎ ൌ 0.03, 

and it equals -6.6 when ̂ݎ ൌ 0.07.  The fact that buyers anticipate selling their house at some 

future time period severely mutes the interest rate effect because they anticipate selling when 

interest rates have returned back towards an average level. 

In the fourth column, we include both mobility and prepayment effects.  In this case, the 

semi-elasticities range from about -6 to -5.  The range is quite tight and is about one-quarter 
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below the previous case with mobility without prepayment.  This leads us to conclude that 

mobility, even more than prepayment opportunities, reduces the predicted sensitivity of home 

prices to interest rates when interest rates mean revert.  While it certainly is possible that buyers 

are not so forward-looking, the essence of the asset market approach to home valuation is that 

buyers are anticipating future price growth.  Since they should also anticipate that low interest 

rates will not remain low in perpetuity, this severely reduces interest rate effects on house prices. 

Columns five and six show the impact of changing two parameter values on predicted 

semi-elasticities when there is both prepayment and mobility.  In column five, we decrease the 

down payment requirement from twenty to two percent.  The semi-elasticities fall slightly and 

are always in a narrow range from -5.4 (when ̂ݎ ൌ 0.03) to -4.4 (when ̂ݎ ൌ 0.07).  In column six, 

we increase the real growth rate to 0.02, while returning the required down payment to its 

baseline 20% value.  The semi-elasticities increase, but the impact is small and they now range 

from -6.7 to just under -5.5. 

The second table reports results when interest rates and discount rates are no longer tied 

together.  In this case, we assume that the discount rate equals 0.055.  We chose this value so that 

ොߩ ൐ ሺ1 െ ߮ሻ̂ݎ for all of our values of ̂ݎ.  It is easy for us to imagine that individuals are more 

impatient than the market, but considerably harder to believe that they are more patient, since 

this would presumably lead them to invest up to the point where their marginal rate of 

substitutions between periods equals the market interest rate. 

In this case, even with no mobility and no prepayments, we find relatively low semi-

elasticities, ranging from -3.8 to -4.5 (column 1 of Table 2).  Allowing mobility and prepayment 

further mutes the relationship.  When both forces operate, the predicted semi-elasticities range 

from -1.9 to -1.5 (column 4 of Table 2).  In columns 5 and 6, we allow different growth and 

down payment parameter values but even when banks only require a two percent down payment, 

the highest interest rate semi-elasticity is -2.5.  When we assume a two percent real price growth 

rate, the highest interest rate semi-elasticity is only -1.8. 

 

The Impact of Down-Payment Requirements on Prices 



15 
 

 
 

Those who argue that easy credit caused the housing boom don’t limit themselves to 

discussing low interest rates.  They also focus on high loan-to-value ratios, easy approval rates 

and a whole range of phenomenon often associated with, but not limited to, subprime lending 

(Coleman et al., 2008).  We now turn to the effect of down-payment requirements and approval 

rates.   

In our core model, there is a fixed supply of housing and essentially an infinite supply of 

homogenous buyers, which implies that there is no way to generate sensible predictions about 

approval rates.  Under these model assumptions, rejecting 10 or 50 percent of prospective buyers 

will make no difference to price.  Hence, we will consider the impact of approval rates only in 

the next section when we allow heterogeneity of buyers and an elastic housing supply.   

 The basic model can, however, generate implications about the impact of changes in 

down payment effects.  In the case of a constant interest rate, differentiating the log of house 

price with respect to ߠ, the downpayment level, yields: 

(4) డ௅௡ሺ௉೟ሻ
డఏ

ൌ െ
ሺఘෝሺ௥̂ሻିሺଵିఝሻ௥̂ሻቀଵି ሺ೒ෝశഏሻሺభషഃሻ

ഐෝሺೝෝሻశሺభషകሻഏశഃቁ

ఏఘෝሺ௥̂ሻିఝగାሺଵିఏሻሺଵିఝሻ௥̂ି௚ොାఛାሺ௚ොାగሻሺଵିఏሻሺଵିఋሻ ഐෝሺೝෝሻషሺభషകሻೝෝ
ഐෝሺೝෝሻశሺభషകሻഏశഃ

. 

This equals zero when individuals discount at the market rate, i.e. ߩොሺ̂ݎሻ ൌ ሺ1 െ ߮ሻ̂ݎ.  In other 

words, in the classic asset market approach to housing prices, down payment levels shouldn’t 

matter since home buyers discount at the market rate and are indifferent between paying cash 

and borrowing.  An easier ability to borrow won’t matter if people aren’t credit constrained.   

 Downpayment levels do, however, start to matter if  ߩොሺ̂ݎሻ ൐ ሺ1 െ ߮ሻ̂ݎ, meaning that the 

buyer would like to borrow more at the market rate (this requires ߩොሺ̂ݎሻ ൅ ሺߜ െ ߮ሻߨ ൅ ߜ ൐ ො݃ሺ1 െ

 ሻ, which we assume).  In a sense, the connection between down payment requirements andߜ

prices therefore becomes something of a test of whether individuals are credit constrained. 

For example, Table 3 shows the implied semi-elasticity if ො݃ ൌ ߨ ,0.01 ൌ ݎ̂ ,0.032 ൌ

ߜ ,0.04 ൌ 0.06, ߮ ൌ 0.25, and ߬ ൌ 0.035, and we vary the value of both  ߠ and ߩො.  If the private 

real discount rate is 0.09 or less (columns 1 and 2), the implied elasticity is less than 0.77 even at 

very low down payments of one percent.  If we choose very high real private discount rates of 

0.15 or above (columns 3 and 4), the implied semi-elasticity can climb to 2 if down payment 
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requirements are very low.  If the private discount rate is around 0.2, a 5 percentage point change 

in the down payment requirement could create a price increase of as much as 10 percent.  Given 

standard economists’ belief about discount rates, we would expect to find a semi-elasticity 

between 0.4 and 0.8.  These effects don’t change significantly when we allow for time-varying 

interest rates, and are not particularly sensitive to our other parameter values.   

Our model assumes that buyers are homogenous, so that the characteristics of the 

marginal buyers are unchanged when the down payment rate varies.  If lower down payments 

allow less patient, or more overly optimistic, people to borrow, the impact on prices could be 

larger.   

 

Endogenous Housing Supply and the Price Impact of Approval Rates 

We now expand the model to incorporate worker heterogeneity and housing supply.  In 

order for this expanded model to be tractable, we make it non-stochastic.  Interest rates are fixed 

and mobility is eliminated, so individuals live in their new homes permanently.  We assume that 

there is a distribution of potential buyers, some of whom value the city more than others.  In this 

case, we focus on overall housing demand instead of the own-rent arbitrage relationship.  

Ensuring that workers are on the margin between owning and renting would not pin down the 

number of people in the area, which is needed to determine the housing demand.  Thus we focus 

on the decision of whether to buy in the community or not, and don’t focus on the unit’s capital 

structure.  In this framework, the net discounted cost of buying a house equals  ቀߠ ൅

ሺଵିఏሻሺଵିఝሻ௥
ఘ೟

൅ ఛ
ఘ೟ି௚

ቁ ௧ܲ, which reduces to ቀ1 ൅ ఛ
ఘ೟ି௚

ቁ ௧ܲ if ሺ1 െ ߮ሻݎ ൌ  .௧ߩ

Each year, potential buyer i receives a nominal dollar-denominated flow of utility from 

living in the house of ܣ௧ሺ݅ሻ ൌ ሺ1 ൅ ݃ሻ௧ܣሺ݅ሻ, where ܣሺ݅ሻ is the person-specific taste for the area.  

 ଵ/ఊ buyers at time t withିܣܭ ሺ݅ሻ has a Pareto distribution with parameter 1/γ, so there areܣ

valuations ܣሺ݅ሻ that are greater than ܣ.  We also assume that only an independently distributed 

fraction ߙ of buyers get approved for mortgages.  As a result, if there are ௧ܰ buyers at time t, 

then there will be ሺܭߙሻఊ ௧ܰ
ିఊ approved buyers with values of ܣሺ݅ሻ greater than ܣ.  Since the 
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marginal buyer at time t compares the discounted future value of housing flow utility to the 

present-value cost of buying, housing demand satisfies: 

(5)   ሺଵା௚ሻ೟

ఘ೟ି௚
ሺܭߙሻఊ ௧ܰ

ିఊ ൌ   ቀߠ ൅ ሺଵିఏሻሺଵିఝሻ௥
ఘ೟

൅ ఛ
ఘ೟ି௚

ቁ ௧ܲ. 

Our second key assumption is that ܫ௧ new homes are built each period and that the price 

of supplying new homes is ሺ1 ൅ ݃ሻ௧ܿܫ௧ఉ (for ܫ௧ ൒ 1ሻ.  At each point in time, the number of 

homes being sold must equal ௧ܰ, so the housing supply equation is: ሺ1 ൅ ݃ሻ௧ܿ ௧ܰ
ఉ ൌ ௧ܲ.  

Together housing supply and demand yield: 

(6)  ௧ܰ ൌ ൭ ሺఈ௄ሻം

௖൬ఏఘ೟ାሺଵିఏሻሺଵିఝሻ௥ି௚ఏି௚
ሺభషഇሻሺభషകሻೝ

ഐ೟
ାఛ൰
൱

భ
ഁశം

, and 

(7)    ௧ܲ ൌ
ሺଵା௚ሻ೟൫ఈഁ௄ഁ௖൯

ം
ഁశം

ቀఏఘෝሺ௥̂ሻାሺଵିఏሻሺଵିఝሻ௥̂ିఝగି௚ොାఛିሺ௚ොାగሻሺଵିఏሻሺభషകሻೝෝషഐෝሺೝෝሻഐෝሺೝෝሻశഏሺభషകሻቁ
ഁ

ഁశം
. 

The semi-elasticity of prices with respect to the interest rate equals 

(8)  డ௅௡ሺ௉೟ሻ
డ௥̂

ൌ െ ఉ
ఉାఊ

ఏఘෝᇱሺ௥̂ሻାሺଵିఏሻሺଵିఝሻିሺ௚ොାగሻሺଵିఏሻሺଵିఝሻ൫ഐෝሺೝෝሻశഏሺభషകሻ൯షഐෝᇲሺೝෝሻሺೝෝశഏሻ
൫ഐෝሺೝෝሻశഏሺభషകሻ൯మ

ఏఘෝሺ௥̂ሻାሺଵିఏሻሺଵିఝሻ௥̂ିఝగି௚ොାఛିሺ௚ොାగሻሺଵିఏሻሺభషകሻೝෝషഐෝሺೝෝሻഐෝሺೝෝሻశഏሺభషകሻ

. 

 If ො݃ ൌ ߨ ,0.01 ൌ ݎ̂ ,0.032 ൌ ߠ ,0.04 ൌ 0.2, ߬ ൌ 0.035, ߮ ൌ 0.25, and ߩොሺ̂ݎሻ ൌ 0.03, then 

this expression becomes  െ ఉ
ఉାఊ

ሺ17.5ߩොԢሺ̂ݎሻ ൅ 2.8ሻ , which ranges from െ2.8 ఉ
ఉାఊ

 when ߩොԢሺ̂ݎሻ ൌ 0 

to െ16 ఉ
ఉାఊ

 when ߩොԢሺ̂ݎሻ ൌ 1 െ ߮.  Personal discounting reduces interest rate sensitivity, but so 

does increasing supply elasticity.  If ߚ goes to infinity when housing supply is perfectly inelastic, 

then the semi-elasticity goes to  െ17.5ߩොᇱሺ̂ݎሻ െ 2.8, while the semi-elasticity goes to zero when 

housing supply is perfectly elastic. 

What is a reasonable value of ఉ
ఉାఊ

?  The supply elasticity ௗ௅௡ሺூ೟ሻ
ௗ௅௡ሺ௉೟ሻ

 equals 1/ߚ.  Saiz (2008) 

reports supply elasticities ranging from as low as 0.6 to as high as 5 across different markets; 

Topel and Rosen (1988) found a national supply elasticity of 2, which would imply a value of 

ߚ ൌ 0.5.  The value of ߛ reflects the demand elasticity, but this demand is somewhat non-
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standard, as it refers to demand on the extensive margin (the number of buyers in an area) rather 

than on the intensive margin (the individual demand for an amount of housing services).  The 

literature suggests the latter elasticities are around 0.7 (Polinsky and Ellwood, 1979).  If, for lack 

of a better alternative, we can take 0.7 as a measure of ߛ and 0.5 as a measure of ߚ, then supply 

elasticity leads the interest rate-price relationship to fall by more than one-half.  Supply elasticity 

provides us with yet another reason why the impact of interest rates on prices will be lower than 

in the canonical model.   

This framework also enables us to consider more seriously the impact of approval rates 

and down-payment requirements on prices.  If lower down payment requirements operate by 

enabling credit constrained people to borrow more, their impact on prices will be the formula 

given in equation (4) times ఉ
ఉାఊ

.  Incorporating supply will also weaken the effect on down-

payments prices because of the elastic supply response to heightened demand.  The impact of 

changing down payments becomes stronger if lower down payment requirements effectively 

increase the pool of people who are able to bid for a house (as seems likely).  In that case, 

increased approval rates act similarly to lower down payment requirements, and we can focus on 

the price impact of the approval rate parameter, α: 

(9)   డ௅௡ሺ௉೟ሻ
డఈ

ൌ ఉఊ
ఈሺఉାఊሻ

. 

In a perfectly elastic market where ߚ ൌ 0, the effect of approvals on price is, of course, 

zero.  In a perfectly inelastic market, where ߚ is infinite, then the effect of approvals on price 

equals  ఊ
ఈ
, which is the demand elasticity over the approval rate.  The Polinsky and Ellwood 

(1979) estimates provide one means of capturing ߛ, which is approximately 0.7–0.8.  Saiz (2003) 

provides an alternative estimate.  He found that a nine percent increase in population, due to the 

plausibly exogenous Mariel boatlift, is associated with an 8-11 percent increase in rents in the 
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short run.5  This shock would seem to be equivalent to an increase in the baseline population in 

our model with fixed supply, so his estimates seem to imply that ߛ is approximately one.6 

Using the formula ఉఊ
ఈሺఉାఊሻ

 from equation (9), and a value of ߚ ൌ 0.5, leads us to think that 

ଵ
ଷఈ

 is a reasonable estimate for the impact of changing approval rates.  Hence, if approval rates 

increase from 0.5 to 0.6 (i.e., 10 percentage points), then we should expect prices to rise by 

approximately 6.7 percent.  In a perfectly inelastically supplied market, the same approval rate 

shift would increase prices by more than 15 percent.   

A key assumption needed for these results is that increasing the approval rates essentially 

just shifts out the demand curve.  It is certainly conceivable that higher approval rates 

particularly impact buyers with disproportionately high or low levels of demand.  For example, if 

the poor are particularly likely to be on the approval margin, and if the poor have relatively less 

willingness to pay for housing, then the impact of higher approval rates would be lower than the 

effects discussed here.  If the poor had high private discount rates and, hence, a lower 

willingness to pay for a house, then this would also make approval rates matter less than a 

standard shift out in the demand curve.  Conversely, if higher approval rates disproportionately 

impact buyers with high demand, then the effect of approval rates can indeed be higher.  As 

such, this becomes an empirical matter, but we do believe that theory suggests an approval rate 

price impact that is close to ଵ
ଷൈ஺௣௣௥௢௩௔௟ ோ௔௧௘

.   

 

III.  Empirical Analysis of Interest Rates and Housing Prices 

We begin the empirical section by examining the macro-economic connection between 

interest rates and housing prices.  We supplement this by looking at the connection between 

interest rates and construction activity.  We also examine whether interest rate shocks have a 

 

5 Saiz (2007) finds similar effects looking at increases in immigration throughout the country. 
6 Saiz’s experiment looks at a shock to the entire rental population, not to the flow of new buyers.  We think that this 
suggests that his estimate is likely to be higher relative to a shock to the flow created by an increase in the approval 
rate, but he is looking at renters who may be somewhat more flexible in their preferences. 
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larger impact in areas where housing supply is less elastic or where exogenous variables such as 

January temperature have long predicted positive housing price trends. 

 

National Time Series Data 

 Real house prices are measured using the Federal Housing Finance Agency (FHFA) price 

index, deflated using the full Consumer Price Index (CPI-U, for all urban workers).  Like the 

S&P/Case-Shiller price indices, the FHFA series attempts to correct for the changing quality of 

houses being sold at any point in time by estimating price changes with repeat sales.7  The FHFA 

series begins in 1975, but we use data beginning in 1980 because the vast majority of 

metropolitan areas are covered on a consistent basis from that year onward.  We use the FHFA 

instead of the S&P/Case-Shiller series (which includes home sales financed using non-

conventional loans), because the Case-Shiller data begin in 1987 and include only 20 

metropolitan areas.  Table 4 presents the summary statistics from this data, with Table 5 

providing the analogous information on all other variables used in this section. 

We use annual price data, even though higher frequency FHFA data is available, because 

the problems of inter-temporal correlation of the error terms are reduced by using annual, rather 

than higher frequency data.  Given the slow movement of housing prices, we believe that little is 

lost by focusing on year-to-year changes. 

Real interest rates are constructed following the strategy outlined in HMS (2005).  That 

is, we start with the 10-year Treasury bond rate and then correct for inflation with the Livingston 

Survey of inflation expectations.  A long rate is used to approximate the duration of most 

mortgages.  The Treasury rate rather than the actual mortgage rate is employed to reduce the 

feedback between events in the housing market and market rates. However, we have used 

alternative interest rates measures and found quite similar results.8 

 

7 The FHFA index supplements the repeat sales data with appraisal data, but there is also a purchase-only index 
(available for a shorter time window beginning in 1991 and a smaller number of areas).  We have duplicated our 
results with that shorter time series and there is little change in the findings. 
8 For example, Shiller (2005, 2006) uses a different and simpler real rate that is created by subtracting the actual 
inflation rate from the nominal Treasury yield.  His methodology results in somewhat weaker correlations of house 
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Figure 1 plots real interest rates and real housing prices over our full sample period from 

1980-2008.  The strong negative trend in real interest rates is clear, as real rates fall sharply from 

a peak of 7.5% in 1982 to 3.7% in 1989, before continuing downward at a more moderate pace.  

Ultimately, real ten year rates hit a low of 1.6% in 2005 before rising slightly and then declining 

to 1.1% in 2008 as the Great Recession ensued.  It is noteworthy that real house prices are flat 

over a significant part of this sample period, and the real FHFA index has virtually identical 

values in 1980 and 1997.  Real house prices then appreciated by 49% from 1997 to the FHFA 

index peak in 2006, a period over which long real rates continued to fall. 

Looking solely at this later time period, housing prices and interest rates seem to move in 

strongly opposite directions.  This has lent support to some authors’ claims of a strong 

connection between interest rates and housing prices (HMS, 2005; Taylor, 2009).  However, 

over our nearly three decade sample period, the negative connection between interest rates and 

housing prices is much weaker.  While real rates fell by fifty percent between 1982 and 1989, 

real house prices increased by only fifteen percent.  In some years, such as 1993, real rates 

dropped drastically and real house price growth was flat.  Real house prices actually fell the 

following year, so this is not an issue of a lagged effect.  Prior to the most recent housing boom, 

even extreme changes in real rates had only a modest impact on prices. 

Table 6 more formally documents this relationship by reporting the results of a series of 

regressions of the log FHFA price index on real 10-year interest rates and other covariates.  To 

correct for serial correlation and heteroskedasticity, we employ the standard Newey and West 

(1987) correction.  The simplest bivariate regression of log real prices on real rates suggests that 

a 100 basis point fall in real rates is associated with a 0.0683 log point increase in house values 

(column 1).9  This coefficient is closely in line with the relatively low semi-elasticities reported 

for simulations with mobility allowed.  This finding suggests that a one-standard deviation fall in 

 

prices with interest rates than we report below.  Hence, our method (really HMS’s (2005) method) certainly is not 
biasing the results downward.  Experimentation with other interest measures (e.g., based on longer or shorter rates 
and fixed inflation expectations) do not change the results in an economically meaningful way.  In addition, 
experimentation with different lag structures on rates found that the contemporaneous relationship between rates and 
prices is the strongest. 
9 The model suggests that inflation will also impact prices, and we have also estimated specifications including the 
inflation rate, which did little but increase our standard errors.  Given that actual inflation includes housing-related 
variables, this endogeneity led us to prefer the specifications without inflation. 
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real interest rates (1.57 percentage points in our time period, as reported in Table 4) is unlikely to 

increase housing prices by much more than 10 percent. 

Of course, one should be suspicious that this univariate relationship is biased because of 

reverse causality (e.g., lower housing prices causing a reduction in real rates) or because other 

variables may be correlated, or even cause, movements in both variables.  For example, higher 

levels of economic productivity might push interest rates up and increase the demand for 

housing.  If we include a simple time trend to correct for any bias from omitted variables that are 

trending in one direction and that are correlated with both interest rates and prices, we find that a 

100 basis point decline in long real rates now is associated with only a 1.82 percent increase in 

real house prices (Table 6, column 2).  This effect is not significantly different from zero at 

standard confidence levels, but the standard error of the estimate is sufficiently tight to rule out 

anything more than a four percent impact on real prices from a 100 basis point decline in real 

rates, controlling for trend.10 

These results are not materially affected even if the sample period is restricted to more 

recent years.  That could be appropriate if one thought, for instance, that the early 1980s were 

sufficiently unusual, perhaps because of the volatility and possible mismeasurement of inflation 

expectations during those years.11  Column 3 of Table 6 reports the bivariate relationship 

between house prices and interest rates when the sample period is restricted to 1985-2008.  The 

estimated impact of a 100 basis point fall in real rates increases to 0.105 log points.  However, 

this effect also is very sensitive to inclusion of a simple time trend.  Column 4 shows that the 

estimated coefficient drops to -1.16 when the trend in real prices is controlled for. 

These regressions effectively have presumed that house prices are stationary.  If house 

prices have a unit root, our previous estimates would be invalid.  To address this possibility, in 

column (5) we regress changes in the logarithm of real housing prices on changes in the real 

interest rate.  In this case, the estimated coefficient is -1.44, which is both small and fairly 

 

10 Experimentation with other time varying controls such as real per capita GDP found they generally lowered the 
estimated interest rate elasticity.  Of course, there is the fear that these variables also are endogenous with respect to 
housing prices.  Because adding these controls only reinforces the empirical point that the measured relationship 
between housing prices and interest rates is slight, we report only univariate and detrended results. 
11 The median Livingston Survey inflation forecasts drop sharply from 9.9% to 5.8% between 1980 and 1984, which 
is the largest change (by far) over any five year period in our sample. 
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precisely estimated (standard error equal to 0.53).  Hence, this specification also provides no 

support for a large impact of interest rates on house prices. 

Poterba (1984), HMS (2005), and our model all suggest that changes in rates should have 

a larger impact on prices when rates themselves are lower.  To test for this possibility, we 

estimate a piece-wise linear spline function, with a break at the sample real interest rate median 

of 3.45 percent.  Column 6’s result shows that a 100 basis point decline in real interest rates is 

associated with a significantly higher 13.3 percent increase in real house prices when that change 

occurs within a low rate environment.  However, this effect also is sensitive to including a time 

trend, as our seventh regression shows: detrended prices rise by only 8% when rates fall by 100 

basis points from an already low level (i.e., from somewhere between 1.1% and 3.45%).  Again, 

this estimate is well in line with our simulations that at least allow for mobility. The coefficient 

when rates are high is positive and undistinguishable from zero.  An 8 percent price impact of a 

100 basis point change in real rates certainly is not negligible, but as we shall see, it is far too 

small to explain much of the recent boom. 

One problem throughout all of these estimates is that interest rates may themselves be 

endogenous to house prices.  For example, heavy demand for housing itself could push interest 

rates up.  A crash in housing prices, like that experienced after 2006, might cause the Federal 

Reserve to lower nominal rates.  To address this issue, we tried to use the Romer and Romer 

(2004) measure of monetary policy shocks to instrument for interest rates.  This variable captures 

the component of monetary policy decisions that cannot be explained by variables such as 

macroeconomic conditions and prior rates which are known before the Board meeting.  

Unfortunately, this measure is only weakly correlated with interest rates over the 1980-2008 time 

period (F-statistic of 1).  As such, we don’t use it as an instrument for rates, but simply include it 

an alternative measure of credit availability.  The final regression in column 8 of Table 6 shows 

that this variable essentially is uncorrelated with housing prices.  We interpret this result as 

supporting the view that that the weak connection between interest rates and housing prices 

observed in the data is unlikely to reflect reverse causality. 

 

Interest Rates and House Prices in Areas with Elastically and Inelastic Supply 
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Table 7 reproduces key regressions from Table 6 for different sets of cities in which 

housing is more or less elastically supplied.  Following Glaeser, Gyourko and Saiz (2008), we 

split the sample of metropolitan areas into three groups based on Saiz’s (2008) measure of 

constraints on supply elasticity, which itself is based on area topography.  Summary statistics for 

this measure, and other MSA-specific data are presented in Table 5.  We compute a house price 

index for each tercile of supply elasticity, weighting MSAs by their population in 2000. 

  The results in the first three columns, which are for the markets with most elastic supplies 

of housing, indicate only a very modest housing price-interest rate relationship, as predicted by 

the model.  The bivariate relationship reported in column one implies that a 100 basis point 

decline in real rates is associated with only 1.35% higher house prices (and the effect is not 

significantly different from zero).  In column (2), we control for a trend in price and find an even 

smaller estimated impact of interest rates on prices in elastic markets.  In column (3), we find 

that there is a significant effect when the rate occurs amidst a relatively low interest rate 

environments.  When we include a trend, a 100 basis point fall in real rates at these low levels is 

associated with an 8 percent increase in prices.  In this specification, the coefficient for changes 

in high interest rate environments is inexplicably positive. 

Columns (4)-(6) report analogous results for the most inelastic markets.  As basic price 

theory suggests should be the case in such markets, house prices are more sensitive to interest 

rates as the simple bivariate relationship reports.  Column (4) shows that a 100 basis point 

decline in real rates is associated with 10.9% higher house prices in these markets, but in column 

(5) we find that this coefficient drops by 75 percent when we control for a trend.  Column (6) 

shows that most of this impact arises from rate changes in low interest rate environments.  Still, 

the coefficient of -7.82 is modest compared to the volatility of price changes realized in 

inelastically supplied markets.  Real prices more than doubled during the 1996-2006 boom in 

some of the coastal markets that have the most inelastic supplies of housing, so even large 

declines in interest rates cannot account for much of their price growth.12 

 

 

12 Results using the Wharton Residential Land Use Regulatory Index (WRLURI) reported in Gyourko, Saiz and 
Summers (2008) yielded qualitatively and quantitatively similar results. 
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Summary and Conclusions 

It is hard to be overly confident about results drawn from 30 years of national data, but 

the data gives little support to the view that there is a large robust relationship between interest 

rates and prices.  The strength of the empirical correlation between house prices and interest rates 

is much more consistent with the weaker relationship implied by our model when dynamic 

features are introduced and private discount rates need not equal market ones.  Interest rates have 

very little ability to predict house prices independent of trend.  A 100 basis point change in real 

rates is associated with no more than an 8% change (in the opposite direction) in detrended house 

prices, and that is only when the rate change is from a relatively low level.  

 In addition, there is no evidence that interest rates have a dramatic effect on quantities in 

the housing market.  In Appendix D, we report the regression analogues to Table 6, using 

construction, rather than housing prices, as the dependent variable.  Those findings increase our 

confidence in the robustness of the price impacts.  Construction statistics are thought to be better 

measured than house prices because a permit is required for each house.  Hence, one well might 

be worried about measurement error being responsible for the weak estimated relationship 

between house prices and interest rates if one found a very strong link between interest rates and 

construction.  As Appendix D shows, that is not the case across a variety of specifications. 

 

IV. Approval Rates and Loan-to-Value Ratios 

Interest rates were not the only thing about credit markets that was changing, especially 

during the boom, so perhaps other factors were more important and can more fully account for 

what went on in housing markets.  To investigate those possibilities, we now turn to our other 

credit market variables: approval rates and loan-to-value averages.  In doing so, we can use 

variation across metropolitan areas by year, but we still face two principal problems.  First, there 

is a major endogeneity concern because housing market conditions seem likely to influence bank 

policies.  Second, empirical measures of credit availability are likely to be confounded by the 

changing characteristics of mortgage applicants.  While we try to deal with each concern, they 

remain so considerable that we conclude that our results must be treated as being suggestive 

rather than definitive. 
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Adjusting Approval Rates 

In order to measure the availability of mortgages during the past two decades, we use 

data released by the Federal Financial Institutions Examination Council under the Home 

Mortgage Disclosure Act (HMDA).  These data provide a relatively complete universe 

(203,511,952 observations) of all U.S. mortgage applications between 1990 and 2008. 13 

Figure 2 shows the number of applications in our HMDA sample in each year along with 

the raw approval rate.  The number of applications skyrockets over the period from 1995 to 

2005, nearly tripling over the decade.  The approval rate, on the other hand, is reasonably 

constant, though declining slightly, over this period.  It falls from 78% in 1995 to 66% in 2000, 

and then rapidly jumps back to 78% by 2002.  It increases another percentage point in 2003 

before falling back to 70% by 2005 and then declining to 65% in 2007 and 2008.14 

The lack of an overall trend in approval rates as the housing boom intensified is 

somewhat surprising given that other work finds a substantial easing of credit for marginal 

borrowers during this period (Keys et al., 2010).  On the other hand, Greenspan (2010) reports 

that issuances of adjustable rate mortgages also peaked in 2004, and Bubb and Kaufman (2009) 

question whether increased mortgage securitization actually led underwriting standards to 

deteriorate. 

Nevertheless, the large expansion in the number of applications raises the possibility that 

there was a substantial shift in the composition of mortgage applicants.  A number of the 

individual characteristics included in the HMDA data do change during the sample period.  For 

example, Figure 3 shows the increasing share of applications made by single male and single 

female applicants, typically seen as riskier lending prospects than families.  One important 

 

13 We use the 298 metropolitan areas included in these files in our subsequent empirical analysis.  Applicants are 
dropped if they have an explicit federal guarantee from the FHA, VA, FSA, or RHS, if they withdrew the 
application (following Munnell et al., 1996), or if they have invalid geographic coding.  In addition, we use data on 
all applications, whether for purchase or refinance.  Restricting the analysis to purchases does not change our  
conclusions reported below in any material way.  More specifically, there is no permutation of the data we could 
find that suggested this variable could account for the bulk of the boom in house prices. 
14 This time pattern of approval rates is consistent with that previously reported by Garriga (2009) using recent 
years’ HMDA files. 



27 
 

 
 

question is whether the rise in the number of applicants is itself a reflection of easier lending 

standards or whether it reflects a more general enthusiasm for the market on the part of potential 

buyers (or both).  Figure 4 shows the changing approval rates for the three types of applications.  

The three series mirror each other, showing a decline until the year 2000, a rise between 2000 

and 2004 and a decline after that period.  This suggests that the 2000-2004 increase in applicants 

could be driven by increasing approval rates, but there is less evidence to support such a 

connection outside of those years. 

In order to accurately measure credit availability, we aim to estimate the changing 

approval rate for a marginal buyer of constant attributes.  We attempt to correct for differential 

selection of mortgage applicants by controlling for observable individual characteristics.  In 

order to estimate the ease of a given person getting a loan in each metropolitan area in each year, 

we run the following regression for each year for which we have data: 

(9) Approvali,j = ζ1Personal Characteristicsi,j + ζ2Metro Area-Year Fixed Effectsi + ui,j. 

The dependent variable here, Approvali,j, is a dummy indicating whether the application of 

individual i in metropolitan area j was approved (a value of 1 indicates approval; 0 indicates 

rejection).  Appendix B reports the coefficients on applicant characteristics from one year’s data, 

which include race, sex, and a nonparametric specification of income.  We also control for 

interactions between sex and income in this vector.  We include metropolitan area fixed effects 

in each regression.  They are the focus of this particular effort, as the year-by-metropolitan area-

specific approval rates (controlling for applicant differences as best we can) are used to estimate 

the impact of changing approval rates over time on house prices.  We estimate such rates for the 

19 years of HMDA data that are available, and for 298 metropolitan areas. 

 Our second approach is more nonparametric.  We estimate an approval rate in each year 

and each metropolitan area for each population subgroup, denoted Approvalgroup,j,t, and then form 

a predicted approval rate using the population weights of applications as of 1999.  This 

procedure is meant to hold the characteristics of potential borrowers fixed and let metropolitan 

area level approval rates change only because of changing approval rates within groups.   

Figure 5 shows the time series pattern of raw approval rates for the country as a whole, 

along with these two methods of correcting the approval rate.  There appears to be little upward 



28 
 

 
 

trend in the demographics-corrected approval rates, however we try to measure them.  While we 

cannot control for changes in unobservables, and they may have been considerable, that there is 

no strong trend in either measure of credit availability suggest this factor will not be able to 

explain the housing boom even if we find strong marginal effects on prices.  It is to the 

estimation of those empirical effects that we now turn.   

 

Impact of Approval Rates 

Using metropolitan area-level data pooled across years, we can now examine the impact 

of approval rates on the FHFA local house price index.  In regression (10) below, we regress the 

log price index on our measures of adjusted approval rates taken from the ζ2 vector above and, 

hence, holding borrower characteristics constant. 

(10) Log(FHFA Indexj,t) = Ω1Approval Ratej,t  + Ω2MSAj + Ω3Yeart + Ω4Other Controlsj,t + εj,t. 

Approval Ratej,t is the estimated rate for metropolitan area j in year t, controlling for 

metropolitan area and year fixed effects.  The other controls are interactions between a time trend 

and (a) mean January temperature and (b) the Wharton Residential Land Use Regulatory Index 

(WRLURI).  The latter measures the degree of supply restrictiveness in the area (Gyourko, Saiz 

and Summers, 2008).15 

 Results for different specifications of equation (10) are reported in Table 8.  The first 

regression finds that as raw approval rates increase by one percent, prices rise by 0.0018 log 

points, holding metropolitan area and year fixed. This coefficient is statistically significant and 

shows that prices and approval rates moved together positively.  The second regression shows 

the regression-corrected approval rate, with standard errors corrected for estimation error in the 

approval rate by bootstrapping.16  In this case, the impact of a one percent approval rate increase 

 

15 There are few variables that are available on an annual basis at the metropolitan level, and those that are, such as 
employment rates, seem likely to be endogenous with respect to the housing market. 
16 We use the estimated MSA fixed effects and their covariance matrix from the annual implementations of 
regression (9) to draw 100 realizations of the approval rates used in regression (10).  Note that this ignores the 
covariance between annual fixed effects for a given MSA, but since we have 298 metropolitan areas and 19 years of 
data, incorporating the cross-MSA covariances is more conservative.  Furthermore, we cluster our standard errors in 
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is to increase prices by 0.0021 log points.  Our third regression uses approval rates based on 

1999 applicant weights, as explained above.  In this case, the coefficient falls to 0.14.  In both 

cases, correcting for these group changes causes the estimated effect on prices to fall rather than 

rise. In regression (4), we control for state-year fixed effects so that all our identifying variation 

comes from differences across metropolitan areas within a given state for a given year.  The 

estimated coefficient is stable at 0.20.   

 These estimated effects are roughly in line with our theoretical predictions.  The model 

predicted a semi-elasticity of 1/(3×Approval Rate).  If the approval rate is 0.8, then this predicts 

a semi-elasticity of 0.42, which is somewhat higher than the effect estimated here, but still 

reasonably similar in magnitude.  Certainly, neither the theory nor evidence suggests elasticities 

of one or more.   

 While these estimated price impacts are modest, the observed positive relationship in 

these regressions could reflect reverse causality or omitted variables that drive both prices and 

approval rates.  For example, if banks associate high prices today with even higher price 

appreciation in the future, that could lead them to approve riskier borrowers, which would cause 

the ordinary least squares relationship to be biased upwards.  A second possibility is that higher 

prices lead to lower approval rates, because lenders recognize the longer-term mean reversion in 

housing markets (Glaeser and Gyourko, 2006), which would cause the ordinary least squares 

coefficient to be biased downward.    

This suggests that we should try to sign the direction of bias arising from possible reverse 

causality.  We do so by using the January temperature and Wharton supply constraint index 

variables used above, which influence the demand and supply of local housing, respectively.  

Specifically, we interact these variables with year dummies to create instruments for housing 

prices.  Using these instruments, we estimate the following regression of approval rates on 

prices, with both variables orthogonalized with respect to MSA and year fixed effects: 

(11) Approval Ratej,t = 0.097 × Log(Price)j,t, 
                                    (0.018) 

 

regression (10) by MSA.  Following Mas and Moretti (2009, Appendix), we add the estimated variance of Ωଵ෢  to the 
cross-equation variance of Ωଵ෢  to determine our composite bootstrap standard error. 
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where the estimated coefficient’s standard error is in parentheses.17  Over these years, it seems 

that higher housing prices are associated with higher approval rates, suggesting that our OLS 

estimates from columns 1 and 3 of Table 8 overestimate the causal impact of approval rates on 

prices.  Appendix C.1 provides a statistical model indicating that if this coefficient from equation 

(11) is accurately measured, the actual causal effect of approvals on prices is negative.  While we 

do not believe that, the reverse linkage does raise serious doubt about whether approval rates are 

driving prices in a material way. 

Our second approach is to use as instrumental variables the interaction between year 

dummies and fixed state-level regulatory characteristics towards branch banking and foreclosure.  

These interactions are motivated by the calculations in Appendix C.2, which suggest that 

approval rates will change more with global interest rates in places that have easier collection 

rules. 

Our first state-level variable, taken from Pence (2006), is the average time it takes to 

obtain a foreclosure in a state.  That variable certainly relates to the difficulties involved in 

collecting on a defaulting debtor, and—if the discussion and modeling in Appendix C.2 are 

correct—a higher value should dampen the interest rate sensitivity.  Our second state-level 

variable is a measure of the restrictions on branch banking obtained from Rice and Strahan 

(2010).  When branch banking was deregulated, some states kept restrictions on branch banking 

while others were more open.  Presumably, places with fewer branch banks should have lower 

operating costs, and thus would have a stronger relationship between interest rates and approval 

rates. 

These instruments have two potential problems.  The first is that they may be correlated 

with other non-credit related variables that could impact housing prices.  The second is that they 

could be correlated with other banking policies such as lower down payment requirements that 

also affect housing demand.  We are more troubled by the first problem than the second.  While 

it is certainly true that the approval rate estimates using these instruments may be biased upwards 

 

17 A higher coefficient results if we use only the interaction between January temperature and year dummies as 
instruments. 
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because of correlation with other bank actions, our goal is not so much to estimate a pure 

approval rate effect as to gauge a total effect of credit market policies. 

 The fifth regression of Table 8 reports the results when using these instruments.  This 

regression is the IV analogue to the baseline OLS specification from column 1 discussed above.  

The coefficient on the metropolitan area-specific mortgage approval rate rises to 1.32.  Even 

though this estimated price impact is not large enough to explain much of the housing boom, as 

we discuss below, the larger coefficient is surprising given that our calculations above suggested 

that the OLS estimates probably are biased up, not down.  Moreover, this coefficient is larger 

than published estimates of the price elasticity of the demand for housing, which we have argued 

should set the upper bound for the impact of approval rates.  However, the instruments 

themselves are weak, and if they are correlated with other banking-related actions that foster 

home purchases, then they will overstate the impact of approval rates.  To the extent this is the 

case, this coefficient still has value since our ultimate interest is in the overall impact of credit 

factors on housing prices.  We use it below in that spirit. 

 

Impact of Leverage: Initial Loan-to-Value Ratios 

We now turn to down payment requirements.  To investigate the possible role of this 

factor, we must turn to another data source because the HMDA files do not report the purchase 

price, making it impossible to construct an initial loan-to-value ratio.  One source that does 

collect both purchase price and initial mortgage amount is DataQuick, a well-known data 

provider in the housing industry.18  This source purports to collect the universe of sales in the 

areas it tracks, but it does not cover the entire nation.  DataQuick expanded its survey coverage 

in 1998, so that is the first year we can begin to put together a consistent data set across 

metropolitan areas. 

 

18 We are grateful to Fernando Ferreira and Joe Gyourko for providing these data. 
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We were able to construct initial LTVs at purchase for 89 metropolitan areas across 18 

states and the District of Columbia from 1998-2008.19  The number of transactions used to 

compute LTVs each year is listed in the first column of Table 9.  In any given year, our 89 

metropolitan areas represent between 35%-40% of all home purchases in the nation.20  The time 

series pattern of transactions closely parallels that for that nation, with the number of purchases 

in 2005 being 95% greater than that in 1998, and the number in 2008 being less than half (46%) 

that in 2005. 

The remaining columns of Table 9 detail the distribution of loan-to-value ratios based on 

all observations in our 89 metropolitan area sample.  Because there still are outliers after 

cleaning the sample, we focus on the distribution of leverage between the 10th and 90th 

percentiles of data.21  DataQuick provides information on up to three loans, and we report 

calculations based on the first or primary mortgage, as well as all loans.  The leftmost panel of 

Table 9 reports on the 10th, 25th, 50th, 75th, and 90th percentiles of the loan-to-value ratio, as well 

as the mean, for our full sample using only the first mortgage in the numerator.  The right-most 

panel reports the analogous data using the sum of up to three mortgages in the numerator of the 

loan-to-value ratio. 

There are a number of interesting features about these data.  First, the results suggest that 

having a data source that includes junior liens could be important.  Except for two years (2004 

and 2008), there is a 5-10 percentage point difference in median LTVs, which implies that using 

only first mortgages will underestimate the typical home purchaser’s degree of leverage.  In our 

 

19 The metropolitan areas are from across the United States, but it is not a random sample.  For example, in the 
Northeast Census region, we have consistent data for areas in New Jersey and Pennsylvania only.  New York state 
and the rest of New England either are not surveyed by DataQuick or do not have such data over the full 1998-2008 
time period we are studying in this section.  The Midwest and West regions of the country are better represented.  
States in the Midwest region with metropolitan areas consistently surveyed include Illinois, Michigan, Minnesota, 
Nebraska, Ohio, and Wisconsin.  In the West, the states of Arizona, California, Colorado, Nevada, Oregon, and 
Washington are well covered.  In the South region, metropolitan areas from Florida, Maryland, Oklahoma, and 
Tennessee are represented.  A complete list is available upon request. 
20 For example, we have 3.039 million sales observations in the peak year of 2005.  This is about 37% of the 
combined 8.3 million sales of existing plus new home sales according to the National Association of Realtors and 
U.S. Census. 
21 For example, we only include observations that are coded as arms-length transactions by DataQuick.  We also 
restrict the sample to homes with sales prices between $4,000 and $7,500,000.  This largely eliminates a number of 
$0 trades, as well as a very few extremely expensive homes.  We also winsorize the data so that the bottom and top 
1% of observations are coded at the 1st and 99th percentile values in the distribution.  Even after this cleaning, some 
very high loan-to-value ratios above one remain. 
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statistical analysis below, we use the LTV data based on all mortgage debt.  Second, there has 

long been a large fraction of home buyers who purchase with little or no equity.  At least 10% of 

purchasers in virtually every year are able to buy with no equity.22  At least one-quarter have 

been able to buy their homes with no more than 5% equity (when one counts all the mortgages, 

not just the first lien).  There has been remarkably little change in this fraction over time, too.  

Similarly, the median first mortgage has been for 80% of home value throughout the past 12 

years, and the median LTV using all mortgage debt was no higher in 2005 than it was in 1999.  It 

did peak in 2006 and 2007, before falling sharply in 2008, so there is some interesting variation 

right around the housing market peak.  Third, at least 10% of purchasers each year buy with all 

cash.  And, there is relatively more variation in the fraction of buyers using substantial equity to 

purchase in their homes.  In particular, there has been a sharp increase in the fraction putting 

down at least 60% equity between 2007 and 2008, as shown in the columns reporting LTVs for 

the 25th percentile of our sample distribution. 

The simulation results from our model already suggested that down payment changes are 

unlikely to have a major impact on house prices.  The relative paucity of variation in LTVs over 

time suggests that home buyer leverage will not have much explanatory power empirically, 

either.  While that is indeed the case, as we shall document just below, one needs to be cautious 

about making sweeping judgments about the role of changing down payment ratios with these 

data alone. 

The distribution of loan-to-value ratios themselves is not changing very much over time, 

but we cannot control for changes in the sample of borrowers, including potentially important 

intertemporal differences in their credit quality, private discount rates, etc. because the 

DataQuick files contain no such information on the purchasers.23  This could be important 

 

22 A closer look at the data showed that some borrowers clearly are able to finance more than 100% of their purchase 
price.  In the San Francisco market for example, lenders record a purchase price and an internal appraisal value.  Our 
LTVs are based on the purchase price.  However, internal bank appraisals tend to be higher whenever the LTV is 
greater than one. 
23 DataQuick is one of the few sources that reports both purchase price and mortgage amount.  Unfortunately, it does 
not report any demographic or income data on the buyers.  Further progress on this issue will require the merging of 
data sources such as DataQuick and HMDA.  It also would be useful to include some credit bureau information so 
that one could control for other borrowing, if one were going to use microdata. 
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because we do know that the number of buyers changed substantially over time:  it nearly 

doubled from 1998-2005, before falling by over half between 2005 and 2008. 

Our regression analysis uses data at the metropolitan area-level, where the changes in 

LTVs are no more variable over time than shown in Table 9.24  The final column of Table 8 

reports the results of adding the mean metropolitan area-specific LTV to the MSA-adjusted 

approval rate.  The sample size is smaller than for the approval rate regressions, as we only have 

LTV data beginning in 1998 and we can only cleanly match price, approval, and LTV data for 84 

metropolitan areas.  The 0.36 coefficient taken from the specification reported in column 4 of 

Table 8 implies that as loan-to-value levels rise by 10 percent, prices rise by 3.6 percent.  Note 

that the approval rate coefficient still is higher (0.76) in this OLS estimation, which uses a more 

restricted sample of metropolitan areas and years than the other regressions. 

 We also replicated Table 8 using a measure of construction intensity, rather than prices, 

as the dependent variable.  Those specifications are reported in Table D.2 of Appendix D.  Once 

again we find that these credit market controls do not explain the bulk of the variation in single-

family home construction, nor do they provide evidence that would invalidate the price impact 

results reported in this section. 

 

V. Decomposing Changes in Prices 

How much of the total increase in prices can be explained by lower interest rates, higher 

approval rates and lower down payments?  Our approach is to answering this question is to 

compare the actual price change over a particular time period, with the change in price implied 

by the coefficients suggested by the regressions reported above and by the simulations.  In the 

 

24 For example, every statement made about the aggregate data in Table 9 applies to both Chicago (which did not 
experience a particularly large price boom) and Las Vegas (which did).  Buyers in Las Vegas have long used higher 
leverage on average, with the median home buyer putting down no more than 11% equity in any year from 1998-
2007 (and the equity share was 13% in 2008).  Median LTVs are slightly lower in Chicago, but they are not 
appreciably more variable.  And, at least 10% of buyers in both markets use all debt, and at least 25% use no more 
than 5% equity.  The biggest difference is in the number of buyers over time.  Between 1998 and 2005, the number 
of Chicago metropolitan area buyers expanded by 71%, versus 158% in Las Vegas (benchmarked against a 95% 
increase across all our 90 metropolitan areas).  This raises the possibility that the nature of buyers changed more in 
potentially important ways in Las Vegas.  As noted above, we simply cannot control for this in our analysis. 
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latter case, the simulated impact is determined by multiplying by the changes in the potential 

explanatory variables over the same time period.  We consider three separate time periods: 1996-

2006 (the total boom), 2006-2008 (the bust) and a variable-specific subset of the boom that 

corresponds to the period of the largest change in the credit market variable. 

 The first panel of Table 10 shows our results using real interest rates and prices in the 

entire United States.  We use -6.8 as our predicted semi-elasticity of prices on interest rates (from 

column 1 of Table 6).  This figure is the raw ordinary least squares coefficient and it sits 

comfortably within the estimates from the simulations as well.  Between 1996 and 2006, real 

prices using the FHFA index rose by 0.42 log points.25  Over the same time period, real interest 

rates fell by 1.2 percentage points (or 120 basis points).  As row three of the first panel indicates, 

this drop in real rates predicts a price increase of 8.2 percent, which is less than one-fifth of the 

total change over this period. 

 In order to compare these numbers with our model’s ability to explain the boom, rows 1 

and 2 show elasticities taken from our simulations.  These elasticities come from simulations 

where housing supply is somewhat elastic, the real rate equals 0.04, and we allow for mean-

reverting interest rates with perfect refinancing, mobility, and a 20% down payment 

requirement.26  The simulated elasticities are half to one-sixth the empirical elasticity, and thus 

have even less ability to explain the boom than the OLS coefficient.  We find larger elasticities if 

we eliminate mobility, down payments, or prepayment, or assume a lower starting interest rate, 

but even so we would be hard-pressed to find plausible parameters that generate an elasticity 

large enough to explain a substantial fraction of the price appreciation over this period. 

 The period in which interest rates predict the largest rise in prices is between 2000 and 

2005, when real rates fell by 190 basis points (middle panel of Table 10).  Using our semi-

elasticity estimate of -6.8, this change predicts a price rise of about 0.13 log points.  Yet over this 

period, real prices actually rose by 0.29 log points, so even cherry-picking the time span, interest 

 

25 This is equivalent to the 53% change noted in the Introduction.  We work with log points here because that is the 
metric by which our simulation results are reported. 
26 Except for allowing for a positive supply elasticity, the assumptions are the same as those in column 4 of Tables 1 
and 2. 
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rate declines explain no more than 45 percent of the appreciation.  Again, the simulation results 

predict an even smaller price increase than the OLS coefficient. 

 During the 2006-2008 bust, real interest rates continued to fall—by 110 basis points.  Of 

course, that implies that prices should have risen—by 7.5%, given our elasticity estimate—as 

reported in the bottom panel of Table 10.  During this period prices actually fell by about 11%, 

so it is quite clear that interest rates cannot explain the bust.  Because our simulations also 

predict a negative relationship between house prices and interest rates, they also get the direction 

of price change wrong, but now the prediction error is smaller in magnitude. 

 Table 11 then reports analogous results focusing on inelastically supplied metropolitan 

areas, again defined as the lowest tercile according to Saiz’s (2008) measure of supply elasticity.  

In this case, we again use the raw ordinary least squares estimated coefficient of -10.7 (from 

column 4 of Table 7) as our semi-elasticity.  As the top panel shows, the 1.2 percentage point 

drop in interest rates between 1996 and 2006 predicts about a 0.13 log point increase in housing 

prices, while actual house prices for this group of markets rose by a much larger 0.63 log points. 

Our model can account for even less of the very high price appreciation experienced in 

inelastically supplied markets.  Here we assume fixed supply and use the same parameter values 

as those for the simulations reported in column 4 of Tables 1 and 2.  In both cases, we use 

column 4, where we have included both individual mobility and down payment requirements.  In 

addition, interest rates mean-revert and borrowers refinance continually if they choose to do so.  

We take the elasticities computed at a real rate of 4%, both in the case of linked discount rates 

and a fixed, separate discount rate.  In the former case the elasticity is -5.6, which predicts a 0.7 

log point price increase, and in the latter case the elasticity of -1.7 predicts appreciation of only 

0.02 log points (see the top panel of Table 11). 

The 190 basis interest rate drop between 2000 and 2005 predicts nearly a 0.21 log point 

price bump for this group, which again falls considerably short of the actual 0.42 log point 

increase in housing prices that was experienced by these inelastically supplied markets over 

these years (middle panel of Table 11).  During this specially chosen period, the predicted impact 

of interest rates on prices was considerable, but it still is not enough to explain more than half of 

the true price gain in these markets.  As the bottom panel shows once again for the bust in prices 
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between 2006 and 2008, interest rates have no ability to explain the price drop because their 

predicted impact is to raise prices in this period. 

In Table 12, we turn to the impact of approval rates.  We present results for both the 

ordinary least squares coefficient of 0.26 (from the first column of Table 8) and the instrumental 

variables coefficient of 1.32 (from the fifth column of Table 8).  These two estimates bound most 

reasonable predictions about the impact of approval rates.  While the coefficients estimated off 

of the panel of metropolitan areas look plausible, the overall time series of national approval 

rates certainly does show any trend increase in approval rates, as Figure 2’s plot of the raw 

approval rate and the number of applications confirms.  Indeed, the rate went up sharply early 

last decade and then fell sharply in the middle part of the decade, well before the boom ended.  

The number of applications, however, shows a strong upward trend over our full sample period, 

before declining sharply during the bust.  This visually depicts the potential sample selection 

issues discussed with the empirical results above. 

After correcting for individual characteristics, the national approval rate actually fell by 

just over 9% between 1996 and 2006.  As the top panel of Table 12 reports, multiplying the 9.2 

percent decline by a coefficient of 0.3 predicts a 2.8 percent price fall.  When multiplied by a 

coefficient of 1.3, the change in approval rates predicts a 12 percent decline.  Of course, prices 

actually grew by 0.42 log points over this period. 

 Approval rates increased most, by 5.4 percentage points, from 2000 to 2003.  The second 

panel of Table 12 shows that this change predicts a price gain of 1.6 percent using the 0.3 OLS 

coefficient and a 7 percent gain using the 1.3 IV coefficient.  Using this larger coefficient, it is 

possible that approval rates can explain half of the price growth over the narrow 2000 to 2003 

period, but using the same coefficient, the decline in approval rates from 1996 to 2006 only 

makes the overall boom more puzzling.  As discussed above, on both theoretical and empirical 

grounds, we remain somewhat skeptical of this larger coefficient. 

 During the bust, approval rates fell by six percent.  Using the smaller coefficient, this 

predicts a drop of 1.8 percent.  With the larger instrumental variables estimate, this drop predicts 

a fall of 8%.  If the larger coefficient is correct, then it appears that the fall in the FHFA data can 

be explained by declining approval rates. 
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 The final table (13) looks at the impact of changing loan-to-value levels.  Our estimated 

coefficient is 0.36 (from column 6 of Table 8).  Because the mean LTV did not change between 

1998 and 2006 (when counting all loans, not just the first mortgage, as debt), it cannot explain 

the house price boom over this time span.  Median LTVs are more volatile, rising from 86% in 

1998 to 90% in 2006.  The impact of this four percentage point change is depicted in the top 

panel of Table 13.  Given our estimated coefficient, this predicts about a 2% rise in prices.  The 

actual increase in prices during this period was 0.37 log points, so changes in leverage seem to 

have a very small ability to explain price growth over the full extent of the boom. 

There is a 10 percentage point rise in median LTVs between 2004 and 2006, followed by 

a 10 point decline from 2006-2008.  Given our model and regression results, this change would 

be associated with a 3-6 point change in house prices.  Actual house values fell by about 0.1 log 

points during the 2006-2008 bust, so this variable could be responsible for an economically 

meaningful amount of the drop in prices.  However, it cannot account for much of the boom. 

    

VI. Conclusion: So What Did Cause the Housing Bubble? 

Interest rates do influence house prices, but they cannot provide anything close to a 

complete explanation of the great housing market gyrations between 1996 and 2010.  Over the 

long 1996-2006 boom, they cannot account for more than one-fifth of the rise in house prices.  

Their biggest predictive influence is during the 2000-2005 period, when long rates fell by almost 

200 basis points.  That can account for about 45% of the run-up in home values nationally during 

that half-decade span.  However, if one is going to cherry-pick time periods, it also must be 

noted that falling real rates during the 2006-2008 price bust simply cannot account for the 10% 

decline in FHFA indexes those years. 

There is no convincing evidence from the data that approval rates or down payment 

requirements can explain most or all of the movement in house prices either.  The aggregate data 

on these variables show no trend increase in approval rates or trend decrease in down payment 

requirements during the long boom in prices from 1996-2006.  However, the number of 

applications and actual borrowers did trend up over this period (and fall sharply during the bust), 

which raises the possibility that the nature of the marginal buyer was changing over time.  



39 
 

 
 

Carefully controlling for that requires better and different data, so our results need not be the 

final word on these two credit market traits. 

This leaves us in the uncomfortable position of claiming that one plausible explanation 

for the house price boom and bust, the rise and fall of easy credit, cannot account for the majority 

of the price changes, without being able to offer a compelling alternative hypothesis.  The work 

of Case and Shiller (2003) suggests that home buyers had wildly unrealistic expectations about 

future price appreciation during the boom.  They report that 83 to 95 percent of purchasers in 

2003 thought that prices would rise by an average of around 9 percent per year over the next 

decade.  It is easy to imagine that such exuberance played a significant role in fueling the boom. 

Yet, even if Case and Shiller are correct, and over-optimism was critical, this merely 

pushes the puzzle back a step.  Why were buyers so overly optimistic about prices?  Why did 

that optimism show up during the early years of the past decade and why did it show up in some 

markets but not others?  Irrational expectations are clearly not exogenous, so what explains 

them?  This seems like a pressing topic for future research. 

  Moreover, since we do not understand the process that creates and sustains irrational 

beliefs, we cannot be confident that a different interest rate policy wouldn’t have stopped the 

bubble at some earlier stage.  It is certainly conceivable that a sharp rise in interest rates in 2004 

would have let the air out of the bubble.  But this is mere speculation that only highlights the 

need for further research focusing on the interplay between bubbles, beliefs and credit market 

conditions.  
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Appendix A: Simulation Methodology 

This appendix presents our procedure for computing the price-rent ratio with stochastic 
interest rates. 
 

As in the analytical model, the marginal consumer must be indifferent between renting and 
buying.  If she rents, she pays an amount taken directly from equation 1 in the text: 
 

௧ܷ ൌ ෍ቆ
1 െ ߜ

1 ൅ ௧ߩ
௧ା௝ቇ

௝ 1
1 െ ߜ ܴ௧ା௝ିଵ.

ஶ

௝ୀଵ

 

We assume that the discount rate ߩ௧
௧ା௝ is determined at time t, and is constant over all j.  Thus we 

set ߩ௧
௧ା௝ ൌ ሻݎොԢሺ̂ߩ ௧.  Whether we are in theߩ ൌ ሺ1 െ ߮ሻ case or the ߩොԢሺ̂ݎሻ ൌ 0 case, the 

discounting is determined at time t and unchanged thereafter. 
 

We further assume that ܴ௧ା௝ grows at rate g.  Thus the rental cost can be solved 
analytically, and, as in the deterministic case, is 

௧ܷ ൌ
ܴ௧

௧ߩ ൅ ߜ ൅ ݃ߜ െ ݃. 

 
We define ܬ௧ ൌ

ଵ
ఘ೟ାఋାఋ௚ି௚

 so that ௧ܷ ൌ  .௧ܴ௧ܬ
 

To compute the expected cost of homeownership (labeled ௧ܸ), we begin by taking the 
time-t expectation of equation 2 from the text: 
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We next split this up into two parts as follows: ܸሺݐሻ ൌ ሻݐሻܲሺݎ௧ሺܮ െ ܵሺݐሻ where 
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Note that ܮ௧ሺݎሻ is time-varying, but depends only on the current interest rate.  This is because the 
time-varying components, ߩ௧ and ܧ௧ൣݎ௧ା௝൧, are known for all future periods ݐ ൅ ݆ as soon as the 
current interest rate ݎ௧ is known.  (This is true whether ߩ௧ ൌ  ௧ depends on theߩ is fixed or ߩ
current value of ݎ௧.) 
 

But the expected discounted sale price, ܵ௧, is more complicated.  It depends on the 
expectation of future prices, and these are not yet known. 
 
Simulations with inelastic housing supply 
 

When housing supply is inelastic, the equilibrium condition equates expected rent 
payments with expected ownership costs.  So we set ௧ܷ ൌ ௧ܸ, or ܬ௧ܴ௧ ൌ ሻݎ௧ሺܮ ௧ܲ െ ܵ௧.  Thus 

 

௧ܲ ൌ
௧ܴ௧ܬ ൅ ܵ௧
ሻݎ௧ሺܮ

. 

 
In order to solve out the price-rent ratio, we make one further assumption that guarantees a 
consistent relationship between ௧ܲ/ܴ௧ and the interest rate ݎ௧.  We assume that future prices 
relate to the interest rate in the same way that current prices do; i.e., there is a constant price-rent 
relationship given by 

݂൫ݎ௧ା௝൯ ൌ
௧ܲା௝

ܴ௧ା௝
. 

That is, the price-rent ratio can only depend on the current interest rate.  This assumption seems 
reasonable, since a solution for the price-rent ratio would not make much sense if it varied with 
the interest rate in a different manner from the future price-rent ratio. 
 

This assumption implies that ܧ௧ൣ ௧ܲା௝൧ ൌ  ,௧ା௝൯ሿ, but since ܴ௧ା௝ grows at rate gݎ௧ሾܴ௧ା௝݂൫ܧ
௧ൣܧ ௧ܲା௝൧ ൌ ሺ1 ൅ ݃ሻ௝ܴ௧ܧ௧ൣ݂൫ݎ௧ା௝൯൧.  Thus we can rewrite ܵ௧ as a function only of r: 
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Given this definition of መܵ, the price-rent function can be written as: 
 

݂ሺݎሻ ൌ
௧ܬ ൅ መܵሺݎሻ
ሻݎ௧ሺܮ

 

 
The challenge is now very explicit: the unknown function ݂ሺݎሻ appears on both sides of this 
equation.  We solve for ݂ሺݎሻ using numerical simulations. 
 

For each simulation, we begin with two straightforward calculations.  First, we compute 
 and ݃, and using the appropriate assumption about discount ߜ ௧ for the appropriate parametersܬ
rates.  Second, we calculate ܮ௧ሺݎሻ using its explicit definition, given above.  We approximate the 
infinite sum by calculating the series going 1,000 years forward from t.  We simulate 1,500 paths 
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for the interest rate.  For each path, we compute the discounted sum.  Finally, we average over 
these simulations.27 
 

In order to solve for ݂ሺݎሻ, we guess a solution and iterate.  At each iteration, we calculate 
 ௧ା௝൯൧ using the previous guess of the price-rent function ݂ሺ·ሻ, and 1,500 simulated interestݎ௧ൣ݂൫ܧ
rate paths.  We also approximate this infinite sum by calculating the series going 1,000 years 
forward from t.  The discounted sum of these expectations yields a value መܵሺݎሻ for each ݎ on the 
interest rate grid.  Combining this with the appropriate ܬ௧ and ܮ௧ሺݎሻ yields our next guess for the 
function, denoted ฎ݂ ሺݎሻ.  We repeat this iterative process until the function converges; 
convergence is defined as max௥ ቄቚฎ݂ ሺݎሻ െ ݂ሺݎሻቚ /݂ሺݎሻቅ ൏ 0.001. 
 
Simulations with elastic housing supply 
 

When we consider elastic housing supply, the equilibrium condition relates house prices 
to their flow value rather than to rental prices.  We normalize the construction costs to ܿ ൌ 1, and 
scale prices by the growth factor; i.e., ௧ܲ෩ ൌ ௧ܲ/ሺ1 ൅ ݃ሻ௧ and ܵ௧෩ ൌ ܵ௧/ሺ1 ൅ ݃ሻ௧.  Thus instead of 
௧ܴ௧ܬ ൌ ሻݎ௧ሺܮ ௧ܲ െ ܵ௧, our equilibrium condition becomes: 
 

ሺܭߙሻఊ ௧ܰ
ିఊ

௧ߩ ൅ ߜ ൅ ݃ߜ െ ݃ ൌ ሻݎ௧ሺܮ ௧ܲ෩ െ ܵ௧෩ . 

 
Using the housing supply equation, ௧ܰ

ఉ ൌ ௧ܲ෩ , we then have: 
 

௧ܲ ൌ ൥
ܵ௧෩ ௧ܲ෩

ఊ/ఉ

ሻݎ௧ሺܮ
൅

ሺܭߙሻఊ

௧ߩሻሺݎ௧ሺܮ ൅ ߜ ൅ ݃ߜ െ ݃ሻ൩

ఉ
ఉାఊ

 

 
Similar to the assumption of a constant function for the price-rent ratio in the case with inelastic 
supply, we now assume that prices have a constant relationship to interest rates in all periods, so 
௧ܲା௝ ൌ ݄ሺݎ௧ା௝ሻሺ1 ൅ ݃ሻ௧ା௝ for all j.  We can therefore write 

 

ሚܵሺݎሻ ൌ෍൬
1 െ ߜ
1 ൅ ௧ߩ

൰
௝ஶ

௝ୀଵ

ߜ
1 െ ߜ ሺ1 ൅ ݃ሻ௝ܧ௧ൣ݄൫ݎ௧ା௝൯൧ 

and hence 

݄ሺݎሻ ൌ ቎
ሚܵሺݎሻ ݄ሺݎሻฑఊ/ఉ

ሻݎ௧ሺܮ
൅

ሺܭߙሻఊ

௧ߩሻሺݎ௧ሺܮ ൅ ߜ ൅ ݃ߜ െ ݃ሻ቏

ఉ
ఉାఊ

 

 

27 Note that we discretize the Cox-Ingersoll-Ross process by using interest rates ranging from ߩ௧ ൅ ߜ ൅ ݃ߜ െ ݃ ൅
0.05% to 14%, with grid size of 0.05%.  We run 1,500 simulations for each starting value of ݎ௧ on the grid.  We 
calculate ܮ௧ሺݎሻ for each ݎ௧ on this grid, and also use this grid to capture the distribution of future interest rates at 
each future year t+j. 
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where ݄ሺ·ሻฐ  denotes the previous guess of the function ݄ሺ·ሻ.  We then solve for ݄ሺݎሻ in a similar 
manner to our solution for ݂ሺݎሻ previously. 
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Appendix B: Mortgage approval coefficients 
 
 

Applicant sex:  Ethnicity: 
   

Joint application   0.021  Asian   ‐0.024 
Female applicant  0.031  Black  ‐0.151 
Unknown  0.009  Hispanic  ‐0.084 

Native American ‐0.132
Note: Male applicant is omitted.     Pacific Islander  ‐0.099 

Unknown  ‐0.172 

Quantile of income:     
1  ‐0.224   Note: White is omitted. 
2  ‐0.136 
3  ‐0.098 
4  ‐0.085 
5  ‐0.054 
6  ‐0.027 
7  ‐0.039 
8  ‐0.040 
9  ‐0.008 
10  ‐0.032 
11  0.022 
12  0.007 
14  0.023 
15  0.020 
16  0.026 
17  0.036 
18  0.019 
19  0.031 
20  0.035 
21  0.010 
22  0.021 
23  0.019 
24  0.004 
25  ‐0.018 
Unknown  0.021 

 Note: Median quantile (13) is omitted. 
  

 
Notes: Coefficients are reported from a linear probability model in which mortgage approval is regressed on the covariates 
reported above, a full set of Metropolitan Statistical Area dummies, and a full set of interactions between the income quantiles 
and applicant sex.  The regression includes 13,920,695 mortgage applicants from the 2006 Home Mortgage Disclosure Act data.  
Applicants are dropped if they have an explicit federal guarantee from the FHA, VA, FSA, or RHS, if they withdrew the 
application (following Munnell et al., 1996), or if they have invalid geographic coding. 
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Appendix C: Empirical Methods 

Appendix C.1: One Instrument Estimation 

We let ෨ܲ௝௧ and ܣሚ௝௧ reflect the price and approval rates in area j at time t that have already 
been orthogonalized with respect to other variables such as the metropolitan area and year fixed 
effects.  We then assume that ෨ܲ௝௧ ൌ ሚ௝௧ܣߜ ൅ ሚ௝௧ܣ ௝ andߝ ൌ ߛ ෨ܲ௝௧ ൅ ௝߳ or ෨ܲ௝௧ ൌ

ఌೕାఋఢೕ
ଵିఋఊ

 and ܣሚ௝௧ ൌ
ఢೕାఊఌೕ
ଵିఋఊ

.  The OLS estimate, denoted ߚመ , found by regressing price on approval yields: 

ߜ ൅ ߛ
௝ሻߝሺݎܸܽ
൫ݎܸܽ ௝߳൯

1 ൅ ଶߛ
௝ሻߝሺݎܸܽ
൫ݎܸܽ ௝߳൯

, 

which is greater than ߜ (for positive ߛ) whenever 1 ൐   If we let  .ߛߜ

ܴ ൌ
ሺݎܸܽ ෨ܲ௝௧ሻ
ሚ௝௧ሻܣሺݎܸܽ

ൌ
ଶߜ ൅

௝ሻߝሺݎܸܽ
൫ݎܸܽ ௝߳൯

1 ൅ ଶߛ
௝ሻߝሺݎܸܽ
൫ݎܸܽ ௝߳൯

, 

or  ோିఋ
మ

ଵିோఊమ
ൌ ௏௔௥ሺఌೕሻ

௏௔௥൫ఢೕ൯
, it follows that ߜ solves  ߜଶ൫ߚመߛଶ െ ൯ߛ ൅ ሺ1ߜ െ ଶሻߛܴ ൅ ܴߛ െ መߚ ൌ 0.  Thus 

ߜ ൌ
ோఊమିଵേටሺோఊమିଵሻమିସ൫ఉ෡ఊమିఊ൯൫ఊோିఉ෡൯

ଶ൫ఉ෡ఊమିఊ൯
.  We have estimated ߚመ  to be 0.26, and the estimated value 

of γ is 0.058.  The ratio of the variance of prices (orthogonalized with respect to year and 
metropolitan area fixed effects) to the variance of approval rates (orthogonalized with respect to 
the same variables) is 6.7.  These suggest that ߜ must either equal -0.13 or 17.2, and 17.2 is 
inadmissible since it would imply a negative value of ௏௔௥ሺఌೕሻ

௏௔௥൫ఢೕ൯
. 

 

Appendix C.2: The Use of Regulations-Year Interactions as Instruments 

The net present value of an infinite horizon loan of one dollar at interest rate R, which has 

a probability of defaulting equal to ߨ஽௘௙ in each period, equals  ∑ ቀ ଵିగವ೐೑
ଵାఘಳೌ೙ೖ

ቁ
௝ ோାగವ೐೑ఠ

ଵିగವ೐೑
ஶ
௝ୀଵ , where 

 ஻௔௡௞ is the bank’s discount rate, and ߱ is the recovery rate for defaulted loans (beyond payingߩ
the last period’s interest).  The zero profit condition then implies that ோିఘಳೌ೙ೖ

ଵିఠ
ൌ  ஽௘௙, whereߨ

 ஽௘௙ reflects the maximum default risk that the bank will take on, assuming that there is aߨ
maximum value of R (otherwise there would never be a maximum default risk). 

Differentiating this expression with respect to the “global” interest rate tells us that 
డగವ೐೑
డఘಸ೗೚್ೌ೗

ൌ
ങೃ

ങഐಸ೗೚್ೌ೗
ି ങഐಳೌ೙ೖ
ങഐಸ೗೚್ೌ೗

ଵିఠ
, which is negative as long as డோ

డఘಸ೗೚್ೌ೗
൏ డఘಳೌ೙ೖ

డఘಸ೗೚್ೌ೗
, which we assume to 
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be the case.  Moreover, if the derivatives of R and ߩ஻௔௡௞ are independent of ߱, the recovery rate,  

then డమగವ೐೑
డఘಸ೗೚್ೌ೗డఠ

ൌ
ങೃ

ങഐಸ೗೚್ೌ೗
ି ങഐಳೌ೙ೖ
ങഐಸ೗೚್ೌ೗

ሺଵିఠሻమ
൏ 0, so this effect will be stronger in places where the 

recovery rate is higher.  If we think that larger banks are more globally connected, then డఘಳೌ೙ೖ
డఘಸ೗೚್ೌ೗

 

will be higher for those larger banks and so డగವ೐೑
డఘಸ೗೚್ೌ೗

 will be larger in magnitude as well. 
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Appendix D:  Interest Rates and Housing Construction 

Table D.1 repeats the regressions of Table 6 using construction, rather than housing, as 
the dependent variable.  We use building permits as reported by the U.S. Census Bureau in its 
Manufacturing, Mining and Construction Statistics data, with the log of the national number 
being the dependent variable in Table D.1’s specifications.28  Not only is construction 
intrinsically interesting due to its impact on the larger economy, it also helps provide a check on 
our price results.  Because construction statistics typically are better measured than house prices 
due a permit being required for each home, finding an economically and statistically strong link 
between interest rates and building activity would at least raise the possibility that the relatively 
weak relationship between prices and rates is due to measurement in the former.29 
 

Regressions (1) and (2) show the time series relationship between the ten year rate and 
the logarithm of the number of single family permits in the country as a whole.30  The univariate 
coefficient is -8.27, with a standard error or 4.26.  As with prices, the interest rate elasticity falls 
dramatically when a time trend is included, as shown in column (2).  Construction levels, as well 
as housing prices, have been trending upwards over the past three decades.  The results in 
columns (3) and (4) show no significant interest elasticities when we limit the sample to the 
period after 1985. 

 
Regression (5) presents a changes-on-changes specification, yielding a coefficient of -

4.82 that is not precisely estimated.  Regression (6) reports results when we estimate interest rate 
effects for low and high rate periods.  Note that the results are the reverse of those for prices—
there is a large effect of lowering interest rates from high levels, but not from low levels.  
Perhaps this has something to do with builders’ capacity to fund themselves changing discretely 
when rates fall from high levels, but not from low ones.  In any event, building activity goes up 
much more when rates fall a given amount from a high level rather than a low one.31  Finally, in 
regression (8), we find that the Romer and Romer variable has a modest, but imprecisely 
estimated, correlation with new supply. 

 
We have also estimated the analogues to Appendix Table D.1 for high versus low supply 

elasticity markets, using our quantity measure as the dependent variable.  We never find a 
statistically or economically significant relationship in any specification.  Thus, there is no 
evidence that interest rate sensitivity of quantities in the housing markets differs appreciably 
across markets by their supply side fundamentals. 
    
 

28 The data are available electronically at http://censtats.census.gov/bldg/bldgprmt.shtml. 
29 An independent impact is certainly possible, since builders may rely on financing for duration of their projects. 
30 Not only is the interest rate impact on building activity interesting in its own right, but if one were willing to make 
a very specific assumption about the magnitude of the elasticity of housing supply (including that the elasticity is 
constant across areas), then the estimated elasticities reported in Appendix Table D.1 provide an alternative means 
of evaluating the house price-interest rate relationship.  For example, if we were to accept Topel and Rosen’s (1986) 
national supply elasticity of two, we would expect the interest rate elasticity of construction to be approximately two 
times the price elasticities (under that admittedly strong assumption). 
 



 
 

 
 

 
 

Appendix Table D.1: Semi Elasticity of National Construction 
Dependent variable: Log national single family permits 

 
  (1) 

Log 
Permits 

(2) 
Log 

Permits 

(3) 
Log 

Permits 

(4) 
Log 

Permits 

(5) 
Log 

Permits 

(6) 
Log 

Permits 

(7) 
Log 

Permits 

(8) 
Log 

Permits 
Real 10‐year rate  ‐8.27+ 

(4.26) 
‐0.91 
(2.74) 

‐6.94 
(7.73) 

0.11 
(6.51) 

       

Change in real 10‐year rate          ‐4.82 
(2.85) 

     

Real 10‐year rate, <3.45%            ‐1.04 
(12.7) 

7.35 
(10.2) 

 

Real 10‐year rate, >3.45%            ‐12.5* 
(4.51) 

‐5.33 
(5.05) 

 

Linear time trend    0.018* 
(0.0080) 

  0.012+ 
(0.0062) 

    0.019** 
(0.0063) 

 

Romer and Romer shock                6.30 
(6.03) 

Constant  14.1** 
(0.19) 

13.5**  14.1** 
(0.29) 

13.6** 
(0.26) 

‐0.0088 
(0.042) 

13.9** 
(0.40) 

13.3** 
(0.22) 

‐0.018 
(0.047) 

Observations  29  29  24  24  28  29  29  28 
R²  0.21  0.35  0.100  0.13  0.085  0.25  0.39  0.066 
Years  1980‐

2008 
1980‐
2008 

1985‐
2008 

1985‐
2008 

1981‐
2008 

1980‐
2008 

1980‐
2008 

1981‐
2008 

Standard errors, in parenthesis, are adjusted for heteroskedasticity and autocorrelation using the Newey-West method with 2 lags.  
**p<0.01, p<0.05, +p<0.1 
 



 
 

 
 

 Appendix Table D.2 reports the analogue to Table 8, using the log of single family 
permits, rather than the FHFA price index, as the dependent variable.  The first regression shows 
that a 10 percent increase in the approval rate is associated with a 0.10 log point increase in the 
construction rate.32  As before, if we thought the price elasticity of housing supply was two, then 
we would divide these particular permit coefficients in half to obtain the implied price effects.  
The ratio of the elasticity of construction with respect to the approval rate divided by the price 
elasticity of housing with respect to the approval rate should equal the elasticity of housing 
supply.  Comparing the relevant numbers from Table 8 and Appendix Table D.2 finds a ratio of 
5.6, which is substantially higher than the elasticity of 2 reported in Topel and Rosen (1988). 
 

When state-year fixed effects are controlled for (column 4), the coefficient on approval 
rates becomes only marginally significant.  The IV regression using the interest rate interactions 
(column 2) yields a much higher coefficient of 2.37, which is relatively close to two times the 
1.32 coefficient found in Table 8.  Regression (6) includes both the approval rate and the loan-to-
value measure.  The approval rate coefficient is substantially higher for this set of metropolitan 
areas, while the loan-to-value coefficient is positive but insignificant.  

 

 



 
 

 
 

 

Appendix Table D.2: Effect of Credit Availability on Construction 
Dependent variable: Log single-family permits by MSA 

 
  (1) 

OLS 
(2) 
OLS 

(3) 
OLS 

(4) 
OLS 

(5) 
IV 

(6) 
OLS 

Raw approval rate  1.00** 
(0.16) 

    0.84+ 
(0.47) 

2.37** 
(0.75) 

4.75** 
(0.52) 

Regression‐adjusted 
approval rate 

  0.97* 
(0.17) 

       

Approval rate corrected 
using 1996 weights 

    0.78** 
(0.16) 

     

Mean LTV            0.25 
(0.17) 

Linear trend X January 
temperature/10 

0.0053** 
(0.0015) 

0.0050** 
(0.0016) 

0.0053** 
(0.0016) 

  0.0047** 
(0.0016) 

 

Linear trend X Wharton 
regulation index 

‐0.012** 
(0.0016) 

‐0.012** 
(0.0016) 

‐0.012** 
(0.0017) 

  ‐0.013** 
(0.0018) 

 

Observations  5,645  5,645  5,644  5,607  5,644  924 
Adjusted R²  0.950  0.949  0.950  0.397    0.958 
Fixed Effects  MSA  MSA  MSA  State‐Year  MSA  MSA 
MSAs  298  298  298  296  298  84 
Years  1990‐2008  1990‐2008  1990‐2008  1990‐2008  1990‐2008  1998‐2008 
First‐stage F statistic          8.71   
Standard errors, in parenthesis, are clustered by MSA.  All regressions include year fixed effects.  Year dummies interacted with 
branch banking regulations and foreclosure speed instrument for approval rates.  **p<0.01, *p<0.05, +p<0.1 
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Table 1: Semi-elasticities with Linked Discount Rates and Interest Rates 
                    

(1) (2) (3) (4) (5) (6) 
Mobility: 0% 0% 6% 6% 6% 6% 
Prepayment: None Perfect None Perfect Perfect Perfect 
Down: 20% 20% 20% 20% 2% 20% 
Growth: 1% 1% 1% 1% 1% 2% 
Real interest rate: 
ݎ̂ ൌ 0.03: -26.30 -24.00 -8.03 -5.90 -5.36 -6.72 
ݎ̂ ൌ 0.04: -15.90 -12.03 -7.61 -5.57 -5.04 -6.30 
ݎ̂ ൌ 0.05: -13.71 -9.55 -7.28 -5.39 -4.88 -6.05 
ݎ̂ ൌ 0.06: -12.06 -8.00 -6.90 -5.10 -4.60 -5.70 
ݎ̂ ൌ 0.07: -10.76 -7.01 -6.61 -4.90 -4.42 -5.46 

Semi-elasticities reported are the results of simulations described in the text. 

Table 2: Semi-elasticities with Discount Rates Delinked from Interest Rates 
                    

(1) (2) (3) (4) (5) (6) 
Mobility: 0% 0% 6% 6% 6% 6% 
Prepayment: None Perfect None Perfect Perfect Perfect 
Down: 20% 20% 20% 20% 2% 20% 
Growth: 1% 1% 1% 1% 1% 2% 
Real interest rate: 
ݎ̂ ൌ 0.03: -4.51 -0.91 -4.13 -1.88 -2.45 -1.81 
ݎ̂ ൌ 0.04: -4.31 -0.90 -3.98 -1.74 -2.26 -1.68 
ݎ̂ ൌ 0.05: -4.14 -0.91 -3.86 -1.70 -2.19 -1.64 
ݎ̂ ൌ 0.06: -3.97 -0.88 -3.71 -1.56 -2.01 -1.51 
ݎ̂ ൌ 0.07: -3.82 -0.85 -3.59 -1.47 -1.89 -1.42 

Semi-elasticities reported are the results of simulations described in the text. 
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Table 3:  Semi-Elasticities for Varying Private Discount Rates and Down Payment Requirements

     

ොߩ  ൌ ොߩ 06. ൌ ොߩ 09. ൌ ොߩ 15. ൌ .20 

ߠ ൌ .2 0.37 0.67 1.15 1.47 

ߠ ൌ .1 0.38 0.72 1.3 1.73 

ߠ ൌ .05 0.39 0.75 1.40 1.90 

ߠ ൌ .01 0.40 0.77 1.48 2.05 

Semi-elasticities reported are the results of simulations described in the text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



56 
 

 
 

 
 

Table 4: Time-Series Summary Statistics 
 

Variable  Years  Minimum 25th 
percentile 

Median  75th 
percentile 

Maximum  Mean  Standard 
deviation 

Log single family permits  29  13.2  13.7  13.8  14.01  14.3  13.8  0.28 
Log real FHFA house prices  29  5.29  5.37  5.39  5.53  5.79  5.46  0.15 
Real 10‐year rate  29  0.011  0.024  0.035  0.0398  0.075  0.035  0.016 
First difference of real 10‐year rate  29  ‐0.017  ‐0.0052  ‐0.00074  0.0038  0.036  ‐0.000038  0.011 
Romer and Romer shock  29  ‐0.015  ‐0.0026  0.0031  0.00603  0.019  0.00196  0.0075 

 
Table 5: MSA Summary Statistics 

 
Variable  Observations Minimum 25th 

percentile 
Median  75th 

percentile
Maximum  Mean  Standard 

deviation 
Log MSA house prices  5,646  4.36  4.75  4.81  4.92  5.73  4.86  0.19 
Raw MSA approval rates  5,646  0.0015  0.042  0.058  0.092  0.49  0.069  0.037 
Log MSA personal income  5,646  9.4  10.1  10.2  10.3  11.1  10.2  0.2 
Mean LTV  924  0.17  0.69  0.74  0.79  0.95  0.73  0.096 
Mean January temperature  298  5.9  24.7  32.1  44.6  71.4  34.7  12.9 
Branching restrictiveness  298  0  1  3  3  4  2.2  1.4 
Foreclosure procedure length  298  53  101  142  207  342  158.8  78.3 
Land‐use regulation  298  ‐1.89  ‐0.75  ‐0.13  0.68  5.01  0.051  0.99 
Saiz housing supply elasticity  103  0.57  0.92  1.31  2.01  5.16  1.55  0.85 
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Table 6: Semi-Elasticity of National House Prices 

Dependent variable: log national house prices 
 

  (1) 
Log Price 

(2) 
Log Price 

(3) 
Log Price 

(4) 
Log Price 

(5) 
Log Price 

(6) 
Log Price 

(7) 
Log Price 

(8) 
Log Price 

Real 10‐year rate  ‐6.82** 
(1.85) 

‐1.82 
(1.16) 

‐10.5** 
(2.58) 

‐1.16 
(3.17) 

       

Change in real 10‐year rate          ‐1.44* 
(0.53) 

     

Real 10‐year rate, <3.45%            ‐13.3** 
(3.73) 

‐8.00** 
(1.98) 

 

Real 10‐year rate, >3.45%   
 

        ‐3.05** 
(0.85) 

1.48 
(1.56) 

 

Linear time trend    0.012** 
(0.0036) 

  0.016 
(0.0068) 

    0.012** 
(0.0027) 

 

Romer and Romer shock                0.36 
(1.37) 

Constant  5.70** 
(0.088) 

5.47** 
(0.055) 

5.82** 
(0.096) 

5.42** 
(0.14) 

0.0081 
(0.0090) 

5.86** 
(0.13) 

5.63** 
(0.052) 

0.0075 
(0.011) 

Observations  29  29  24  24  29  29  29  29 
R²  0.50  0.72  0.57  0.71  0.16  0.61  0.81  0.0048 
Years   1980‐

2008 
1980‐
2008 

1985‐
2008 

1985‐
2008 

1980‐
2008 

1980‐
2008 

1980‐
2008 

1980‐
2008 

Standard errors, in parenthesis, are adjusted for heteroskedasticity and autocorrelation using the Newey-West method with 2 lags.  
**p<0.01  *p<0.05  +p<0.1 
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Table 7: Differential Elasticities by Saiz’s Supply Elasticity 
Dependant variables: log average price index for elastic or inelastic cities. 

 
  (1) 

Elastic 
(2) 

Elastic 
(3) 

Elastic 
(4) 

Inelastic 
(5) 

Inelastic 
(6) 

Inelastic 
Real 10‐year rate  ‐1.29 

(1.19) 
‐0.39 
(1.66) 

  ‐10.7** 
(2.59) 

‐2.40* 
(0.91) 

 

Real 10‐year rate, <3.45%      ‐7.71** 
(1.39) 

    ‐7.65* 
(3.52) 

Real 10‐year rate, >3.45%      3.52** 
(1.11) 

    0.41 
(2.39) 

Linear time trend    0.0022 
(0.0038) 

0.0017 
(0.0021) 

  0.021** 
(0.0045) 

0.020** 
(0.0042) 

Constant  4.89** 
(0.050) 

4.85** 
(0.077) 

5.04** 
(0.047) 

5.25** 
(0.13) 

4.87** 
(0.046) 

5.01** 
(0.083) 

Observations  29  29  29  29  29  29 
R²  0.075  0.10  0.60  0.52  0.78  0.80 
Standard errors, in parenthesis, are adjusted for heteroskedasticity and autocorrelation using the Newey-West method with 2 lags.  
Data are from 1980-2008.  **p<0.01, *p<0.05, + p<0.1 
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Table 8: Effect of Credit Availability on Prices 
Dependent variable: Log MSA house prices 

 
  (1) 

OLS 
(2) 
OLS 

(3) 
OLS 

(4) 
OLS 

(5) 
IV 

(6) 
OLS 

Raw approval rate  0.18** 
(0.037) 

    0.20** 
(0.040) 

1.32** 
(0.25) 

0.73** 
(0.25) 

Regression‐adjusted 
approval rate 

  0.21** 
(0.044) 

       

Approval rate corrected 
using 1996 weights 

    0.14* 
(0.040) 

     

Mean LTV            0.36** 
(0.14) 

Linear trend X January 
temperature/10 

0.0022** 
(0.00052) 

0.0022** 
(0.00052) 

0.0022** 
(0.00052) 

  0.0017** 
(0.00053) 

 

Linear trend X Wharton 
regulation index 

0.0058** 
(0.00059) 

0.0058** 
(0.00059) 

0.0058** 
(0.00060) 

  0.0047** 
(0.00063) 

 

Observations  5,646  5,646  5,645  5,608  5,646  924 
Adjusted R²  0.729  0.729  0.728  0.693    0.781 
Fixed Effects  MSA  MSA  MSA  State‐Year  MSA  MSA 
MSAs  298  298  298  296  298  84 
Years  1990‐2008 1990‐2008  1990‐2008  1990‐2008  1990‐2008  1998‐2008 
First‐stage F statistic          8.71   
Standard errors, in parenthesis, are clustered by MSA.  All regressions include year fixed effects.  Year dummies interacted with 
branch banking regulations and foreclosure speed instrument for approval rate.  **p<0.01, *p<0.05, +p<0.1 
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Table 9:  Distribution of Loan-to-Value Ratios Over Time 
89 Metropolitan Area Sample, 1998-2008 

Year 
# of Obs. 

Distribution of LTVs Using First Mortgage Only Distribution of LTVs Using Up to Three Mortgages
  10th  25th  50th 75th 90th Mean 10th 25th 50th 75th 90th Mean

1998  1,558,354  0%  67%  80% 97% 100% 73% 0% 68% 86% 97% 100% 74%
1999  1,749,790  0%  68%  80% 97% 100% 74% 0% 69% 87% 98% 100% 75%
2000  1,685,717  0%  65%  80% 95% 100% 72% 0% 66% 85% 97% 100% 73%
2001  1,794,506  0%  68%  80% 95% 99% 73% 0% 69% 88% 97% 100% 75%
2002  1,967,336  0%  63%  80% 95% 99% 70% 0% 65% 85% 96% 100% 73%
2003  2,127,516  0%  60%  80% 94% 99% 69% 0% 63% 82% 96% 100% 72%
2004  2,751,095  0%  52%  80% 85% 98% 65% 0% 56% 80% 95% 100% 69%
2005  3,039,726  0%  60%  80% 80% 95% 65% 0% 64% 86% 99% 100% 71%
2006  2,421,704  0%  68%  80% 80% 98% 68% 0% 70% 90% 100% 100% 74%
2007  1,777,035  0%  63%  80% 95% 100% 69% 0% 66% 90% 100% 100% 73%
2008  1,410,082  0%  38%  80% 98% 99% 65% 0% 40% 80% 98% 99% 67%

 
Source:  Authors’ calculations using DataQuick microdata.  See the text for more detail on the sample and variable construction. 
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Table 10: Predicted interest rate impacts on price growth from data and model 
 

    dInP/dr  x  Δr  =  Implied ΔP 
Panel A: Overall, 1996‐2006 

From simulation with r = ρ + π:  ‐3.7  x  ‐1.2%  =  4.4% 
From simulation with r ≠ ρ + π:  ‐1.1  x  ‐1.2%  =  1.3% 

From data:  ‐6.8  x  ‐1.2%  =  8.2% 
Actual price growth:    42% 

Panel B: Biggest Change, 2000‐2005 
From simulation with r = ρ + π:  ‐3.7  x  ‐1.9%  =  7.0% 
From simulation with r ≠ ρ + π:  ‐1.1  x  ‐1.9%  =  2.1% 

From data:  ‐6.8  x  ‐1.9%  =  12.9% 
Actual price growth:    29% 

Panel C: Crash, 2006‐2008 
From simulation with r = ρ + π:  ‐3.7  x  ‐1.1% =  4.1% 
From simulation with r ≠ ρ + π:  ‐1.1  x  ‐1.1%  =  1.2% 

From data:  ‐6.8  x  ‐1.1%  =  7.5% 
Actual price growth:    ‐10% 

 
This table reports back-of-the-envelope calculations in which we attempt to explain observed house price growth using various 
estimates of the semi-elasticity of prices with respect to interest rates.  Following Himmelberg, Mayer, and Sinai (2005) we examine a 
model where the interest rate is linked mechanically to the discount rate, by r = ρ + π.  This generates the price semi-elasticity shown 
in row 1.  Our more general model that allows r to vary without changing ρ is shown in row 2.  Finally, row 3 takes the semi-elasticity 
estimated empirically on data from 1980-2008.  Reported actual price growth is in log points. 
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Table 11: Predicted Interest Rate Impact on Price Growth in Supply-Constrained MSAs 
 

  dInP/dr  x  Δr  =  Implied ΔP 
Panel A: Overall, 1996‐2006 

From simulation with r = ρ + π:  ‐5.6 x ‐1.2%  =  6.7% 
From simulation with r ≠ ρ + π:  ‐1.7 x ‐1.2%  =  2.0% 

From data:  ‐10.7  x ‐1.2%  =  12.8% 
Actual price growth:    63% 

Panel B: Biggest Change, 2000‐2005 
From simulation with r = ρ + π:  ‐5.6 x ‐1.9%  =  10.6% 
From simulation with r ≠ ρ + π:  ‐1.7 x  ‐1.9%  =  3.2% 

From data:  ‐10.7 x ‐1.9%  =  20.3% 
Actual price growth:    42% 

Panel C: Crash, 2006‐2008 
From simulation with r = ρ + π:  ‐5.6 x ‐1.1% =  6.2% 
From simulation with r ≠ ρ + π:  ‐1.7 x ‐1.1%  =  1.9% 

From data:  ‐10.7  x ‐1.1%  =  11.8% 
Actual price growth:    ‐16% 

 
This table reports back-of-the-envelope calculations in which we attempt to explain observed house price growth using various 
estimates of the semi-elasticity of prices with respect to interest rates.  Following Himmelberg, Mayer, and Sinai (2005) we examine a 
model where the interest rate is linked mechanically to the discount rate, by r = ρ + π.  This generates the price semi-elasticity shown 
in row 1.  Our more general model that allows r to vary without changing ρ is shown in row 2.  Finally, row 3 takes the semi-elasticity 
estimated empirically on data from 1980-2008.  Reported actual price growth is in log points. 
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Table 12: Predicted approval rate impact on price growth from data and model 
 

  d ln(p)/dw  x Δw  =  Implied ΔP 
Panel A: Overall, 1996‐2006 

From OLS estimate:  0.3 x ‐9.2%  ‐2.8% 
From IV estimate:  1.3 x ‐9.2%  ‐12% 
Actual price growth:    42% 

Biggest Change: 2000‐2003 
From OLS estimate:  0.3 x 5.4% =  1.6% 
From IV estimate:  1.3 x 5.4% =  7% 
Actual price growth:    14% 

Crash: 2006‐2008 
From OLS estimate:  0.3 x ‐6% =  ‐1.8% 
From IV estimate:  1.3 x ‐6% =  ‐8% 
Actual price growth:    ‐10% 

 
This table reports back-of-the-envelope calculations in which we attempt to explain observed 
house price growth using various estimates of the semi-elasticity of prices with respect to 
approval rates.  Reported actual price growth is in log points.  The estimated impacts of approval 
rates on prices comes from the regressions reported in column 1 and column 6 of Table 8, relying 
on data from 1990 through 2008. 

 
 

Table 13: Predicted down payment impact on price growth from data and model 
 

  d ln(P)/d(1‐θ) x Δ(1‐θ) =  Implied ΔP 
Biggest change: 1998‐2006 (median LTV) 

From calculation in text:  0.36 x 4% =  1.4% 
From estimation:  0.36 x 4% =  1.4% 

Actual price growth:    37% 
 

This table reports back-of-the-envelope calculations in which we attempt to explain observed 
house price growth using simulated estimates of the semi-elasticity of prices with respect to 
down payment requirements.  Reported actual price growth is in log points. Row 2 uses the 
estimated impact of approval rates on prices from the regression reported in column 5 of Table 8, 
relying on data from 1998 through 2008. 
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Figure 1: Prices and Interest Rates 

 

Figure 2: Applications and Approval Rate 
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Figure 3: Distribution of Applications 

 

Figure 4: Approval Rates by Demographic Group 
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Figure 5: Measures of Mortgage Approval Rates 

 


