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The housing market in the United States underwent a tumultuous cycle between 2000

and 2011. The rise and fall in house prices caused several problems for the U.S. economy.

During the boom, a surge in housing investment drew resources into construction from other

sectors (Charles et al., 2018) and contributed to a capital overhang that slowed the economic

recovery (Rognlie et al., 2017). During the bust, millions of households lost their homes in

foreclosure, and falling house prices led many others to cut consumption (Mayer et al., 2009;

Mian et al., 2013, 2015; Guren and McQuade, 2020). Large real estate cycles are not unique

to the U.S. (Mayer, 2011) or to this time period (Case, 2008; Glaeser, 2013). Given the

economic costs of these recurring episodes, understanding their cause is critical.

This paper presents evidence that speculation was a key driver of this real estate cycle.1

Three stylized facts from the cycle guide our analysis. First, prices and volume jointly rise

and fall throughout the cycle. Second, volume falls before prices, resulting in a pronounced

lead–lag relation between prices and volume. Third, the period during which prices continue

to rise despite falling volume coincides with rapidly accumulating unsold listings. We refer

to this period as the quiet, which is preceded by the boom and followed by the bust. These

stylized facts hold on average across cities and are especially pronounced in cities with larger

cycles. They suggest that focusing on who was most active during each phase of the cycle

can provide insight on the underlying mechanisms.

We study the behavior of speculative homebuyers during each of these three phases of

the housing cycle using transaction-level data from CoreLogic on 50 million home sales

between 1995 and 2014. We measure speculative buying and selling across 115 metropolitan

statistical areas (MSAs), which represent 48% of the U.S. housing stock. We pursue two

complementary approaches to identify speculative activity. First, following Bayer et al.

(2020), we classify transactions based on their realized holding periods, denoting those buyers

who resell the property within three years as short-term buyers. Second, following Chinco

and Mayer (2015), we classify transactions based on the inferred occupancy status of the

property, denoting buyers who list a mailing address distinct from the property address as

non-occupant buyers. We supplement our transaction data with a separate CoreLogic data

set on homes listed for sale, sourced from a consortium of local multiple listing service (MLS)

boards. We link these data to transaction records to study the role of speculative buyers for

1Harrison and Kreps (1978, p. 323) define speculation as follows: “Investors exhibit speculative behavior
if the right to resell a stock makes them willing to pay more for it than they would pay if obliged to hold it
forever.”
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inventory dynamics across MSAs.

The data reveal a strong relation between the differential entry of speculative buyers and

the size of the cycle. While overall volume increases substantially during the boom of 2000–

2005, both short-term and non-occupant volume rise dramatically more. In an accounting

sense, growth in speculative volume explains 40% to 50% of total volume growth. This

relation is also strong in the cross-section, as speculative volume growth can account for

30% to 50% of total volume growth across MSAs. Cities with stronger speculative volume

booms also experience larger house price booms: MSAs with a one standard deviation larger

short-volume and non-occupant boom see 25 and 15 percentage point larger cumulative price

increases, respectively.

As the volume boom ends, price growth slows but remains positive, and unsold list-

ings accumulate. Across MSAs, these patterns are more pronounced in cities with larger

speculative volume booms. Our linked listing-transaction data further reveal that short-

term buyers disproportionately contribute to the surge in aggregate inventories. MSAs with

larger speculative volume booms also see substantially larger price busts, volume busts, and

total foreclosures in the final phase of the cycle. We find that speculative volume is larger

when house price growth over the past year is greater, which suggests that extrapolation—

the belief that prices continue to rise after recent gains—draws speculators into the housing

market. Consistent with our interpretation of the data, a National Association of Real-

tors survey reveals wide variation in expected holding times, shorter expected holding times

among investors, and increases in the short-term buyer share following recent price gains.

In the second part of the paper, we provide a quantitative model to match these novel

facts about the housing market. Our approach adapts core insights from Cutler et al. (1990),

De Long et al. (1990), and Hong and Stein (1999) to study the housing market. As in these

papers, extrapolation causes a predictable boom and bust in prices after a positive demand

shock. In contrast, we relax the assumption of Walrasian market clearing, so that homes

listed for sale may not sell immediately. To do so, we microfound extrapolation using the

approach in Glaeser and Nathanson (2017) and then extend their framework to a non-

Walrasian setting.

In our model, a mover attempts to sell her house by posting a list price. A potential buyer

arrives and decides whether to purchase the house at that price. Potential buyers differ in the

benefits they derive from owning a house; non-occupants benefit less than occupants. Buyers
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also differ in the expected amount of time until becoming a mover; short-term buyers have

shorter horizons ex ante. The average flow benefit of potential buyers fluctuates randomly

over time. Agents cannot observe this demand process, but they observe the history of price

growth and the share of listings that sell each period. Using these market data, agents infer

the current level and growth rate of the demand process and optimally make decisions in

light of these beliefs—the choice of list price for movers, and whether or not to purchase

for potential buyers. As in Glaeser and Nathanson (2017), agents mistakenly believe that

potential buyers neglect time variation in the growth rate when deciding whether to buy.

We study how our housing market responds to a large, unexpected increase to the growth

rate of the demand process. The model matches key facts from our empirical work, includ-

ing the lead–lag relation between prices and volume, the excess growth of short-term and

non-occupant volume during the boom, and a growth in listings during the quiet coming dis-

proportionately from short-holding-period sales. In the model, the quiet occurs when agents

overestimate demand and believe it continues to grow, which causes movers to increase their

list prices despite falling transaction volume.

We then use this setting to evaluate the effect of speculation on the housing cycle. When

we shut down speculation by imposing rational expectations, almost all of the salient as-

pects of the housing cycle disappear or become quantitatively insignificant. We find similar

patterns when we remove short-term and non-occupant buyers from the model. Therefore,

speculators amplify the effects of non-rational expectations on prices and quantities over the

housing cycle. Motivated by this result, we study transaction taxes on non-occupant buyers

as well as on all buyers, as governments have used such taxes in attempts to curb speculation

(Chi et al., 2021). Taxing all buyers attenuates the housing cycle, but even a large 5% tax

on non-occupants has only a small effect on the price boom, price bust, and volume boom.

Previous and contemporaneous empirical work examines short-term buyers (Adelino

et al., 2016; Bayer et al., 2021) and non-occupant buyers (Haughwout et al., 2011; Bhutta,

2015; Chinco and Mayer, 2015) in the housing market, as well as the importance of specu-

lation for volume or prices (Gao et al., 2020; Bayer et al., 2020; Mian and Sufi, 2022). Our

paper is the first to focus on the joint dynamics of volumes, prices, and inventories, along

with speculative activity. We present stylized facts that any model of this episode should be

able to match. Our focus on joint dynamics emphasizes the connection between speculation

and the lead-lag relationship between prices and volume, a pattern which receives less at-
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tention and has not been linked to speculation in past work. Beyond this, our data expands

on past work through including more MSAs, non-mortgage sales, new microdata on homes

listed for sale linked to prior transactions, and multiple measures of speculation.

Three strands of the literature theoretically explain the comovement of prices and volume

in housing and other markets. In the first, investors disagree about asset values due to

overconfidence (Daniel et al., 1998, 2001; Scheinkman and Xiong, 2003). The second exploits

features specific to the housing market, such as credit constraints (Stein, 1995; Ortalo-Magné

and Rady, 2006) or search and matching frictions (Wheaton, 1990; Dı́az and Jerez, 2013;

Head et al., 2014; Hedlund, 2016; Ngai and Sheedy, 2020; Anenberg and Bayer, 2020). The

final strand incorporates psychology into models with extrapolative expectations to generate

trade (Barberis et al., 2018; Liao and Peng, 2018). Some papers straddle multiple categories

(Guren, 2014; Piazzesi and Schneider, 2009; Burnside et al., 2016). Relative to these studies,

our model’s contribution is to simultaneously generate three key patterns from our empirical

work: the existence of the quiet, the disproportionate growth in short-term volume during

the boom and quiet, and the excess growth in non-occupant purchases during the boom. In

addition, our model illustrates a mechanism for how speculation amplifies the housing cycle,

allows us to disentangle the relative importance of short-term and non-occupant buyers, and

provides a framework to evaluate the effects of transaction taxes on the housing market.

1 Data

In this section, we describe the data we use to establish the core motivating facts for our

model and how we identify speculative buyers in that data. Further information regarding

the data is in Online Appendix A.

1.1 Data sources and sample selection

Our main data come from CoreLogic, a private vendor that collects and standardizes publicly

available tax assessments and deeds records from across the U.S., and include observations

from 115 MSAs. In analyses that require us to identify an owner’s occupancy status, we use

a subset of 102 MSAs for which we can be sure that there were no major changes in the

way that mailing addresses were coded during our sample period. In Online Appendix A,

we describe how we select these MSAs. Our analysis of the housing cycle covers the time
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period 2000 through 2011 because measuring realized holding periods requires observing

consecutive transactions.

We include all arms-length transactions of single-family homes, condos, or duplexes that

occur at a non-zero price. We then drop a small number of duplicate transactions where

the same property is observed selling multiple times at the same price on the same day or

where multiple transactions occur between the same buyer and seller at the same price on

the same day. In Online Appendix A, we give the steps we follow to arrive at a final sample

of 51,580,408 transactions. Given the geographic coverage of these data and their source in

administrative records, our sample serves as a proxy for the population of transactions in

the U.S. during the sample period.

Our listings data on individual homeowners is also provided by CoreLogic and is sourced

from a consortium of local MLS boards throughout the country. For each listing, we observe

the date the home was originally offered for sale, an indicator for whether the listing ever

sold, and the date of sale for those that did. We link these data to the deeds data using

the assessor’s parcel number (APN) for the property. When analyzing listings, we focus our

attention on a subset of the 115 MSAs for which we can be relatively certain that the listings

data are representative of the majority of owner-occupied home sales in the area. In Online

Appendix A, we describe the approach we use to select these MSAs, leaving us with a final

sample of 57 MSAs for our listings analysis.

We supplement these transaction- and listing-level data with national and MSA-level

housing stock counts from the U.S. Census, national counts of sales and listings of existing

homes from the National Association of Realtors (NAR), and national and MSA-level nom-

inal house-price indices from CoreLogic. We also use survey data to study heterogeneity in

expected holding horizons in the cross-section and over time. Each March, as part of the

Investment and Vacation Home Buyers Survey, the NAR surveys a nationally representative

sample of around 2,000 individuals who purchased a home in the previous year. The survey

asks respondents to report the type of home purchased (investment property, primary res-

idence, or vacation property) as well as the “length of time [the] buyer plans to own [the]

property.” Data on expected holding times and the share of purchases of each type are

available between 2008 and 2015.
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1.2 Identifying Speculators

We identify speculators in our transaction-level data using two complementary approaches,

each of which has been used in prior work. In the first approach, we categorize transactions

based on their realized holding periods. We denote transactions held for less than three

years as “short-term” sales and track the evolution of these sales over time. This approach

follows Bayer et al. (2020), who classify speculators as those likely holding homes for short

time periods for investment purposes. We similarly denote listings as short-term when the

homeowner lists the house less than three years after buying it.

In the second approach, we classify homebuyers based on their occupancy status. Those

who purchase a home without the intent to occupy it immediately are more speculative in

the sense that a larger portion of their overall expected return is derived from capital gains

rather than from the consumption value of living in the home. To identify these buyers, we

follow Chinco and Mayer (2015) and mark buyers as non-occupants when the transaction

lists the buyer’s mailing address as distinct from the property address. While this proxy may

misclassify some non-occupants as living in the home if they choose to list the property’s

address for property-tax-collection purposes, we believe it to be a useful gauge of the level

of non-occupant purchases.

One advantage of both methods is that they are based on the full sample of housing

transactions. Other work has identified speculators based on the presence of multiple first-

lien mortgage records in credit reporting data or self-reported occupancy status on loan

applications (Haughwout et al., 2011; Gao et al., 2020; Mian and Sufi, 2022). While based

on similar ideas, such approaches may omit a substantial fraction of speculative activity.

2 Dynamics of prices, volume, and inventory

In this section, we document the three phases of the housing cycle we mention above: boom,

quiet, and bust. In Panel A of Figure 1, we plot aggregate trends in prices and volume be-

tween 2000 and 2011. In Panels B–E, we plot analogous series for four cities that represent

regions with the largest boom–bust cycles during this time: Phoenix, AZ; Las Vegas, NV;

Orlando, FL; and Bakersfield, CA. During the housing cycle, volume peaks before prices,

and there is a sustained period during which volume is falling rapidly on high prices. This

dynamic holds consistently across regions that experienced large price cycles. At the aggre-
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gate level, volume rises to 150% of its level in 2000 and then falls back to this level before

prices fall. In the four cities in Panels B–E, volume more than doubles during the boom.

Prices subsequently peak between 200% and 300% of their 2000 levels.

Figure 2 shows that this lead–lag relation between prices and volume also holds on average

across all MSAs in our sample from 2000 to 2011. We estimate correlations between prices

and lagged volume by running regressions of the form:

pi,t = βkvi,t−k + ηi,t, (1)

where p is log price demeaned at the MSA level, v is volume normalized by the MSA’s 2000

housing stock and demeaned at the MSA–calendar month level, i indexes MSAs, and time

is measured in months. Figure 2 plots the correlations implied by each βk coefficient for up

to four years of lags (k = 48) and one year of leads (k = −12). The correlation is positive at

most leads and lags but reaches its maximum at a positive lag of 24 months. Thus, changes

in volume generally lead changes in prices by about two years.

In Panel A of Figure 3, we plot aggregate trends in prices and inventories of homes

listed for sale between 2000 and 2011. In Panels B–E, we plot analogous series for four

cities that represent the same regions as in Figure 1. Because Las Vegas and Orlando are

not in our listings data, we replace them with the nearby MSAs of Reno and Daytona

Beach. During the period when the relation between volume and prices reverses, aggregate

inventories rise dramatically to nearly double their level from earlier in the cycle. This

pattern also characterizes the joint dynamic of prices and inventories across cities in Panels

B–E. In Phoenix, Reno, and Bakersfield, inventories rise during the quiet to between double

and triple their earlier levels. In Daytona Beach, inventories rise to 450% of their pre-quiet

levels.2

These stylized facts suggest that focusing on the dynamic of quantities—both volume

and inventories—can provide insight on the drivers of the cycle. In particular, determining

who was most heavily participating in the housing market during each phase may help us

differentiate between various explanations for that cycle.

2We repeat the analyses for Figures 1–3 for MSAs outside the sand states. The results in Figures IA1,
IA2, and IA3 of the online appendix reveal that the patterns we document are not exclusive to these states.
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3 Speculators during the cycle

This section explores the role of speculators throughout the housing cycle and their correla-

tion with the aggregate dynamics of prices, volume, and inventory.

3.1 Quantities and prices in the boom

Figure 4 presents a simple illustration of the quantitative importance of speculation during

the cycle. The figure shows monthly aggregate time series for total transaction volume (with

and without new construction), short-holding-period volume, and non-occupant volume cal-

culated using our deeds data. Each series is normalized relative to its average value in 2000

and seasonally adjusted by removing calendar-month fixed effects. For reference, we also

report the raw counts of each type of transaction in 2000, 2005, and 2010. To abstract from

the effect of foreclosures on speculative volume during the bust, we drop lender acquisitions

and dispositions of foreclosed properties when constructing the series in this figure.

While overall volume increased by 40% during the boom years of 2000–2005, speculative

volume increased dramatically more. Both short-term sales and purchases by non-occupants

approximately doubled between 2000 and 2005. Not only did these speculative components

of volume increase more rapidly, but their increase also accounted for a non-trivial portion

of the overall increase in volume. For example, total volume increased from 2.73 million

transactions in 2000 to 3.82 million in 2005. During the same time period, short-holding-

period volume increased from 510 to 940 thousand transactions, which implies that volume

growth in this category alone can account for 39% of the total volume increase during the

boom.3 A similar calculation for non-occupant volume (in the 102 MSAs with reliable

non-occupant data) implies that this measure of speculative activity can account for 53%

of the volume increase during the boom. If we exclude new construction from the total

volume statistics—because short-term sales can only involve homes previously sold—short-

term volume accounts for 57% of the aggregate increase in existing home sales. These

calculations illustrate that speculators were, in an accounting sense, a key driver of the

3Part of the increase in short-term volume during the boom happens mechanically because total volume is
increasing. In Appendix B.1, we use conditional selling hazards by buyer cohort to quantify the contribution
of an overall increase in total volume to the share of late-boom volume coming from short-term sales.
Approximately 90% of the rise in short-term volume comes from the changing composition of buyers, rather
than mechanical forces.
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volume boom.

The shift in the composition of volume toward speculative buyers also correlates highly

with changes in total volume across local markets. This correlation can be seen in the

top two panels of Figure 5. Panel A presents scatter plots of the percentage change in total

volume at the MSA level from 2000 to 2005 versus the percentage change in volume for short

holding periods and long holding periods separately. Not only does the growth in volume of

short-holding-period transactions correlate strongly with the increase in total volume across

MSAs, but the magnitude of this relation is also much stronger for short holding periods

relative to long holding periods.4 A similar conclusion arises from Panel B, which presents

analogous scatter plots grouping transactions according to the occupancy status of the buyer

rather than the holding period of the seller. The relation between total volume growth and

non-occupant volume growth across MSAs is strong, positive, and larger in magnitude than

the corresponding relation with growth in sales to owner-occupants.

Panels C and D further show that cross-MSA differences in speculative volume growth

explain much of the differences in total volume growth. For each MSA, we plot the change

in either short-holding-period volume (Panel C) or non-occupant volume (Panel D) divided

by initial total volume on the y-axis against the percentage change in total volume on the

x-axis. The slope provides an estimate of how much of a given increase in total volume

during this period came in the form of short-holding-period or non-occupant volume. For

short-holding-period volume, the answer is 30% (or 36% excluding new construction). For

non-occupant volume, the slope is even larger and implies that, for the average MSA in our

sample, 54% of the increase in total volume between 2000 and 2005 came from non-occupant

purchases. Thus, shifts in the composition of volume toward speculative buyers are a major

determinant of changes in total volume during the boom.

Table 2 shows how speculative volume relates to the size of the price and quantity cycles

in the cross-section of MSAs (Table 1 shows summary statistics).5 We estimate the correla-

4One concern with our short-term speculation measure is that it is based on realized rather than expected
holding periods. This way of measuring short-term speculation may complicate the interpretation of our
results if buyers’ intended holding periods endogenously respond to changes in economic conditions during
the boom. Appendix B.2 presents instrumental variable regressions that predict short-term volume using
pre-cycle demographics. The change in realized short-term volume is quantitatively important for overall
volume growth and the size of the price cycle, even when using only the portion of short-term volume growth
predicted by ex-ante buyer characteristics.

5We focus our empirical analysis on MSA-level outcomes for two reasons. First, the variation across
cities is likely more informative for the aggregate housing cycle. Second, and related to the first, spatial
correlation across ZIP Codes within cities hinders interpretation of cross-sectional results for some housing
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tion between growth in each speculative measure and various housing market outcomes by

separately regressing these outcomes on each measure of speculation. To aid interpretation,

we scale the change in outcomes for all quantity measures relative to total volume in 2003.

In Panel A, the first two columns show that house price booms are strongly related to the

size of speculative volume booms across cities. Cities with a one standard deviation larger

short-volume boom (12.9%) see a 24.9 percentage point larger cumulative price increase

during the boom. Cities with a one standard deviation larger non-occupant boom (27.1%)

see a 15.4 percentage point larger cumulative price increase during the boom. On average

across cities, prices rise by 97% during the boom and quiet. Thus, the relation between

speculative volume and prices is economically large in the cross-section of MSAs.

Consistent with the aggregate evidence in Figure 3, which shows a modest increase in

listings during the boom, we find a small, statistically insignificant relation across MSAs

between speculative booms and the change in listings during the boom (Panel B, columns 1–

2). Given the strong relation between the short-term and total volume booms, this suggests

that the increase in demand during the boom was sufficient to absorb the rising flow of

listings from short-term buyers.

3.2 Quantities and prices in the quiet and bust

As discussed in Section 2, there is a quiet period in the housing cycle during which prices

rise, transaction volumes rapidly fall, and there is a large increase in unsold listings. In

Panel B of Table 2, columns 3 and 4 show that the rise in listings during the quiet correlates

strongly with the run-up of speculative volume during the boom across MSAs. Cities with a

one standard deviation larger short-volume boom (12.9%) see a larger cumulative increase in

listings during the quiet of 76.9 percentage points relative to the total volume in 2003. Cities

with a one standard deviation larger non-occupant boom (27.1%) see a cumulative increase

in listings during the quiet of 71.7 percentage points relative to the total volume in 2003.

Across cities, the mean increase in inventories during the quiet is 178% of 2003 total volume

with a standard deviation of 144%. Thus, the relation between speculative booms and the

market outcomes. For example, MSA fixed effects account for 86% of the variation in house price booms
across ZIP Codes. This fact is likely due to data limitations in house price index estimation, with local
price indices often derived from spatial interpolation, and helps explain differences in results in cross-MSA
analyses, as in our paper, and cross-ZIP Code, within-MSA analyses, as in Griffin et al. (2020).
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rise of listings is quantitatively important in accounting for the cross-section of inventories.6

In Figure 6, we supplement this cross-MSA evidence by showing that short-term listings

account for the majority of the increase in new listings from 2003 to 2007. We plot monthly

series for total and short-term new listings, normalizing each series relative to its 2003 average

and seasonally adjusting by removing calendar-month effects. These data only include a

home listed for sale the first time it appears during a listing spell to avoid double-counting

unsold listings. While total new listings rise to 150% of their 2003 average at the quiet’s

peak, short-term listings rise to 250% of their 2003 average and remain above 200% well

into the bust. Short-term listings rise from 280 to 590 thousand, accounting for 55% of the

rise in total new listings from 1.17 million to 1.73 million. In later stages of the bust, short-

holding-period listings fall well below the 2003 level, consistent with the idea that purchases

in the quiet and early bust are more likely to include fundamental buyers and longer-term

investors.7 This evidence suggests that attempted sales by speculators who bought during

the boom explain much of the increase in listings during the quiet, and that the reduced

entry of speculators during the quiet contributes to the eventual decline in total volume.

Larger speculative booms also predict stronger contractions in total volume and prices

during the end of the cycle. Panel C of Table 2 shows that cities with a one standard

deviation larger short-volume boom and non-occupant boom respectively see cumulative

declines in total volume (relative to 2003 volume) that are 13.5 and 13.9 percentage points

larger. The analogous results for prices, shown in columns 3 and 4 of Panel A, imply 7.4 and

4.5 percentage point larger declines during the bust. Thus, speculative booms explain much

of the 63% average decline in volume during the quiet and bust (relative to 2003 volume)

and 28% decline in prices during the bust. These cross-MSA results are consistent with the

aggregate pattern in Figure 4, in which speculative volume declines more sharply during the

6Table 2 reports the change in the inventory of unsold listings. In the online appendix, Table IA6 reports
analogous results using the change in the flow of new listings and shows qualitatively similar results. The
rise in unsold listings during the quiet is driven both by an increase in the rate at which homes were listed
for sale and a reduction in the probability of sale conditional on listing. In the online appendix, we repeat
the analysis for Tables 2 and IA6, while including an indicator for whether the MSA is in a sand state. The
results in Tables IA7 and IA8 are similar, though somewhat weaker for the non-occupant volume boom.

7This evidence complements Genesove and Mayer (1997, 2001), who document the role of home equity
and loss aversion, respectively, in preventing list prices from adjusting downward during a market downturn
in Boston. Short-holding-period buyers are more likely to maintain high list prices because—in the home
equity view—they will have paid down less of their mortgages when they turn to sell and because—in the
loss aversion view—they will have paid higher initial prices than long-holding-period buyers. In our model,
extrapolation creates another force causing recent buyers to set overly optimistic list prices, the same force
that helps explain their initial entry into the market.
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quiet and bust than does total volume. Turning points in both short-holding-period and

non-occupant volume exactly coincide with the turning point in aggregate volume, the sharp

rise in listings during the quiet, and the decline in price growth before its reversal.

Finally, we find that cities with larger short-term speculative booms experienced more

severe foreclosure crises. The estimate in column 3 of Panel C implies that a one standard

deviation increase in the short-volume boom is associated with 11.5 percentage points more

foreclosures (relative to 2003 volume) in the bust, equal to 370 thousand more foreclosures.

This effect is large relative to the 2.68 million foreclosures across the 115 MSAs in our data.

In contrast, the relation between foreclosures and the non-occupant boom is insignificant

(column 4 of Panel C).

3.3 Summary of main empirical results

Our results show strong relations between speculative purchases during the boom and the

amplitude of the housing cycle. Across cities, a larger speculative boom predicts sharper

increases in prices and volume during the boom, a greater boom and bust in prices, a larger

surge in listings during the quiet, and a more pronounced fall in volume during the quiet and

bust. Time series evidence also indicates that speculation accounts for much of the increase

in volume during the boom and listings during the quiet.

These results suggest the following narrative linking short-term speculators to the housing

cycle. As prices increase in the boom, short-term speculators buy houses in anticipation of

capital gains, and this buying activity pushes up prices further. As price growth eventually

slows, speculative volume slows, contributing disproportionately to the decrease in total

volume. At the same time, speculative buyers from the recent past—who are now looking

to sell—continue to generate a new flow of listings. Because smaller expected capital gains

attract fewer new speculative buyers to the market, many of these new listings fail to sell.

Prices rise as volume falls, which suggests sellers are still posting higher prices. The result is a

quiet period with falling volume, rising inventories, and slowing price growth. Accumulating

inventories and falling demand eventually result in negative price growth, which creates

a lead–lag pattern between the drops in volume and prices. The goal of our model is to

illustrate this causal narrative theoretically.
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4 Characterizing speculative buyers

In this section, we use our microdata and other data to provide additional insight on spec-

ulative purchases. These facts motivate how we model speculation.

4.1 Extrapolation among speculators

Using multiple measures of speculation, we examine whether house price growth can predict

subsequent speculative purchases and beliefs in the housing market. Our first measures use

our deeds dataset. For each MSA and year from 2000 to 2011, we count total non-occupant

purchases and divide by the equivalent count from 1999 as a normalization. We do the same

for short-term purchases, defined here as those for which we observe another sale on the

same property in the next three years. Panels A and B of Figure 7 present binned scatter

plots of normalized speculative purchases against house price growth in the past year. Both

non-occupant and short-term purchases are much higher in the years and MSAs that witness

higher house price appreciation in the last year.8

The second measure of speculation uses responses from the NAR’s Investment and Va-

cation Home Buyers Survey. For each year of the survey, we calculate the fraction of re-

spondents (except those reporting “don’t know”) who report an expected holding time of

less than three years or had already sold their home by the time of the survey. This mea-

sure captures the intention of buyers at the time of purchase. Thus, it complements our

transaction-based metric that relies on realizations of short horizons after the fact. In Panel

C of Figure 7, we plot this measure of speculation against annual house price growth at the

national level. A gain of 10% in house prices over the past year is associated with an 8.2

percentage point larger short-term buyer share.

Our final measures of speculation use responses from the 2014–2017 waves of the Federal

Reserve Bank of New York’s Survey of Consumer Expectations.9 This survey asks respon-

dents’ views on housing as an investment as well as their probability of buying a non-primary

home in the next three years. Thus, the survey directly queries non-occupant housing de-

8In Appendix B.3, we estimate higher-frequency panel VAR specifications of speculative volume and
lagged house price appreciation, in the style of Chinco and Mayer (2015). The positive relation between
prices and speculative purchases continues to hold.

9The data come from the replication files of Armona et al. (2019). We thank Andreas Fuster for sharing
this evidence with us.
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mand, complementing the measure of non-occupant purchases in our deeds data. Panels D

and E of Figure 7 present binned scatter plots of the survey measures against appreciation in

the Zillow house price index over the past five years in the respondent’s ZIP Code. The share

of respondents saying that housing is a very good investment rises with local house price

appreciation; the opposite is true for those calling housing a bad or very bad investment.

The reported probability of buying a non-primary home also rises with lagged house price

growth.

In summary, house price growth predicts increased speculative purchases in three different

datasets. These results complement survey evidence showing that expected future house

price growth rises with realized past house price growth (Case et al., 2012; Armona et al.,

2019). We incorporate extrapolative beliefs into our model in such a way that speculative

purchases and posted list prices respond strongly to recent price growth. This modeling

choice builds on prior studies that use extrapolative expectations to understand other aspects

of the housing market (Glaeser et al., 2008; Guren, 2014; Glaeser and Nathanson, 2017).

4.2 Overlap between short-term and non-occupant buyers

In this section, we examine overlap between short-term and non-occupant buyers. Data

from the NAR’s Investor and Vacation Home Buyers Survey report expected holding times

separately for investor and non-investor buyers. As Figure 8 shows, about 20% of investor

buyers report expected holding periods of under three years, larger than the corresponding

share among non-investor buyers. Therefore, these data provide direct evidence of overlap

between short-term and non-occupant buyers.

To focus on speculators who entered during the 2000–2005 boom, we also measure this

overlap in our CoreLogic data. We find that 27% of 2000–2005 short-term volume came

from non-occupant buyers, while 41% of the increase in short-term volume over this time

came from non-occupants (see Online Appendix C.1 for details). Therefore, non-occupants

account for an excess share of the growth in short-term buyers.

The evidence in this section indicates that there is substantial overlap between short-term

and non-occupant buyers. In light of this evidence, we allow for such overlap in our model.
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4.3 Credit utilization

To examine the role credit plays in enabling speculative volume, we present in Table 3

summary statistics on the proportion of all-cash purchases in our data. Column 1 shows

that 29% of short-term buyers and 38% of non-occupant buyers do not use a mortgage.

These shares exceed the all-cash share among all buyers, which is 20%. The remaining

columns of the table report averages at the MSA-by-month level and show that all-cash

transactions among speculators remain high at all points of the housing cycle. Thus, while

credit may have enabled speculation, there is a disproportionately large group of speculators

who do not use credit at all. The behavior of these buyers goes unobserved in any analysis

of speculative activity based on mortgage data alone.10

In Online Appendix C.2, we study the relation between leverage and short-term volume

growth. We find that short-term sales increase most strongly among sellers whose LTV

when purchasing the home was between 60% and 85%. This evidence is consistent with

prior work documenting credit growth among speculators during the boom (Haughwout

et al., 2011; Bhutta, 2015; Mian and Sufi, 2022). However, it also suggests that very high

credit utilization (LTV ≥ 85%) does not account for most of the rise in speculative buying.

Motivated by these findings, we omit credit constraints from our model of housing market

speculation. We stress that, although we omit credit from the model, our findings are

compatible with stories in which credit enables speculative entry during the cycle.

4.4 Buyer scale and experience

Next, we examine whether short-term buyers are individuals buying a few houses or firms

buying many houses. In Online Appendix C.3, we present a methodology for classifying

buyers as real estate developers, experienced investors holding three or more homes, or

inexperienced buyers owning one or two homes. Of the short-term sales in 2000–2005, 15%

of the initial purchases are from developers, 24% are from experienced investors, and 61%

are from inexperienced buyers. This evidence is consistent with Bayer et al. (2020, 2021)

who also find an important role for inexperienced short-term investors during this episode.

10The correlations between the speculative booms in Table 2 and their analogous counterparts that exclude
cash transactions are approximately 0.9. Thus, while excluding all-cash transactions would understate the
importance of speculators in the aggregate, the cross-sectional relationships in Table 2 are robust to excluding
these transactions.
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In light of the large share of inexperienced buyers among short-term sellers, we allow buyers

to own only one house in our model.

Finally, we explore whether short-term sellers remain within the MSA by buying another

house nearby. We link transactions within MSA in our data by comparing names of buyers

and sellers. As we describe in Online Appendix C.3, 69% of short-term sellers do not buy in

the MSA within a quarter of the sale. To match the high share of such sellers, we assume in

our model that homeowners exit the local housing market upon selling their house.

5 The model

The goal of our model is to match the joint dynamics of prices, volume, and listings. Addi-

tionally, the model should explain the disproportionate role of non-occupants and short-term

sales in generating these dynamics.11 In doing so, the model complements our empirical anal-

ysis by permitting stronger causal statements about the role of speculation and allowing us

to conduct counterfactual explorations of model assumptions and policy design.

5.1 Environment and preferences

We present a discrete-time model of a city with a fixed amount of perfectly durable housing,

normalized to have measure 1. There are three types of agents in the model: movers, stayers,

and potential buyers. Movers are city homeowners who are trying to sell their homes. Stayers

are city homeowners who do not list their homes for sale. Potential buyers are people from

outside the city who get a one-time chance to buy a house from a mover. In Figure 9, we

illustrate how agents transition between these three types.

All agents are risk-neutral and can borrow or lend across periods at an interest rate of r.

They maximize their expectation of the discounted present value of their per-period utility,

which is the sum of two components: housing utility and non-housing consumption, whose

price we normalize to 1.

Each period, a mover lists her house for sale by posting a list price, P . She then matches

randomly to a potential buyer from outside the city, who decides whether to purchase at the

listed price.12 In the event of a sale, the mover exits the market and consumes her terminal

11In Online Appendix D, we discuss the relation between our model and prior work in detail.
12In other models, some movers fail to match to a potential buyer due to search frictions (Head et al.,

2014; Guren, 2018). We abstract from this possibility.
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wealth. Movers who fail to sell remain movers next period. We denote the share of listings

that sell at time t by πt. Movers receive 0 housing utility while listing their homes. They

are impatient and discount time at rate rm ≥ r.

Potential buyers who decide to buy become stayers at the beginning of the next period.

Those who do not buy exit the market and consume their terminal wealth. Stayers receive

housing utility eδ at the beginning of each period, but cannot sell their house. With proba-

bility λ each period, a stayer transitions to being a mover, at which point she lists her home

for sale. Housing utility eδ and the mover hazard λ remain constant for a given stayer over

time but may vary across stayers. All stayers discount time at rate r.13

At time t, each potential buyer knows the housing utility she would receive while being

a stayer if she chooses to purchase and the probability λ that she would transition into

becoming a mover each period. For each potential buyer within a given cohort, the log of

her housing utility, δ, is the sum of a time-varying aggregate demand shifter, dt, and an

idiosyncratic term, a, that varies across potential buyers at a point in time:

δ = dt + a. (2)

Potential buyers observe their own value of δ but do not separately observe dt and a. That is,

they cannot determine what fraction of their personal valuation is common to all potential

buyers in their cohort.

The demand shifter dt affects the distribution of housing utility across different cohorts of

potential buyers over time. We model it as a difference-stationary process with a persistent

growth rate:

dt = dt−1 + gt + εdt

gt = (1− ρ)µg + ρgt−1 + εgt ,

where 0 ≤ ρ < 1, and εdt and εgt are mean-zero independent normals. We denote σ2
d =

Var(∆dt) and γ = Var(gt)/Var(∆dt), which implies that the variances of εdt and εgt are

(1− γ)σ2
d and γ(1− ρ2)σ2

d, respectively. As with dt, the growth rate gt is unobservable to all

agents in the model.

13We assume that r is large enough to rule out rational bubbles and provide the precise condition for this
in Appendix E.1.
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The idiosyncratic term a generates within-cohort heterogeneity in housing utility. We

assume that there are two types of potential buyers, indexed by n: non-occupants (n = 0)

and occupants (n = 1). To capture the idea that non-occupants generally receive smaller

flow benefits from their homes than occupants, we allow the distribution of a to vary across

these two groups. Specifically, the distribution of a across potential buyers of type n at

each time t is N (µn, σ
2
a). Each potential buyer knows whether she is a non-occupant or an

occupant.

Finally, to capture heterogeneity in expected holding periods, we allow λ to vary across

potential buyers within each cohort. We assume that λ follows a discrete distribution with

possible values λ ∈ {λ1, ..., λJ} and denote the joint probability that a potential buyer is of

occupancy-type n and has mover hazard λj to be βn,j. Thus, the distribution of expected

investment horizons can also differ across non-occupants and occupants.

5.2 Inference about demand

To forecast the price at which they will eventually sell their house, agents must estimate

the current level of the demand shifter, dt, and its growth rate, gt. Agents use historical

data on city house prices to estimate these latent variables. We focus on equilibria in which

all movers at a given time post the same list price, which we denote Pt (conditions for this

outcome are below). Agents at time t observe the full history of price changes, Pt′/Pt′−1

for t′ < t. They deduce any past price level, Pt′ , by inflating the list price they observed

as a potential buyer by cumulative price growth between the time of their purchase and t′.

Agents also observe the history of the shares of listings that sell, πt′ for t′ < t.

To infer dt and gt from historical market data correctly, an agent needs to know how

past potential buyers used market data to decide whether to buy a house. Following Glaeser

and Nathanson (2017), we depart from rationality and propose that agents instead adopt a

simplified model of how other agents decide to buy a house. Specifically, agents believe that

other agents decide to buy a house if and only if:

eδ ≥ κP, (3)

where P is the list price of the house and κ is a time-invariant constant that is common across

all potential buyers. As we discuss in Section 6.3, this is the key behavioral assumption that
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generates positive feedback and bubble-like dynamics within our theoretical framework. In

employing this mental model, agents neglect the fact that the beliefs, and therefore the

decision rule, of potential buyers could vary over time based on the changing history of

market data.14 However, conditional on the beliefs implied by this simplified model, agents

make decisions optimally.

Given Eq. (2) and the decision rule in (3), agents believe that other agents buy if and

only if:

a ≥ logP + log κ− dt.

Therefore, according to agents’ simplified model, the share of potential buyers at time t who

would purchase at list price P is:

1− F (logP + log κ− dt) ≡ π̃(P, dt), (4)

where F (a) =
∑1

n=0

∑J
j=1 βn,jΦ(a − µn) is the CDF of a across both non-occupants and

occupants, and Φ(·) is the CDF of a normal random variable with mean 0 and variance σ2
a.

Given market data on historical prices Pt′ and sales shares πt′ , agents at time t use Eq.

(4) to infer past values of the demand shifter. In particular, by equating πt′ to π̃(Pt′ , dt′),

they infer that:

d̃t′ = logPt′ − F−1(1− πt′) + log κ, (5)

where d̃t′ denotes an agent’s belief about the true value of the demand shifter dt′ . Given this

inferred history of the demand shifter, agents employ a standard Kalman filter to arrive at

posterior estimates of its current value, dt, and its growth rate, gt. Lemma 1 characterizes

these posteriors (all proofs are in Online Appendix E).

Lemma 1. Conditional on house prices and sale probabilities before t, the posterior distri-

butions of dt and gt are N (d̂t, σ̂
2
d) and N (ĝt, σ̂

2
g), where:

d̂t = d̃t−1 + ĝt

ĝt = µg + (1− α)ρ
∞∑
k=1

(αρ)k−1
(

∆d̃t−k − µg
)
,

14This simplified model of other agents’ willingness to pay is the same as the “cap rate error” that Glaeser
and Nathanson (2017) introduce. That paper motivates this error by showing that common knowledge of
rationality is not robust to small mistakes and involves unintuitive decision rules as a function of past prices.
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and σ̂d, σ̂g, and α ∈ (0, 1) are constants depending on σd, γ, and ρ.

Together with Eq. (5), Lemma 1 shows that agents estimate the current level of the

demand shifter, dt, and its growth rate, gt, from historical market data in a straightforward

manner. In particular, differencing Eq. (5) yields:

∆d̃t−k = ∆ logPt−k −∆F−1(1− πt−k),

which implies that the expected growth rate, ĝt, is a weighted average of past price growth

adjusted downward each period to reflect any increase in the share of unsold listings. The

expected demand shifter, d̂t, equals this expected growth rate plus agents’ belief about last

period’s demand shifter.

5.3 Mover problem

The mover’s problem is to select a list price that maximizes the expected present value of

utility conditional on beliefs about the demand shifter and its growth rate. We write the

problem recursively as:

V m(d̂t, ĝt) = sup
P
E
(
π̃(P, dt)P + (1 + rm)−1(1− π̃(P, dt))V

m(d̂t+1, ĝt+1)
)
, (6)

where the expectation is over dt ∼ N (d̂t, σ̂
2
d). If the potential buyer who matches to the

mover buys, the mover receives P and exits the city. The first term, π̃(P, dt)P , gives the

mover’s perceived probability of this event times the payoff. The second term gives the

discounted value of continuing as a mover next period times the probability of that event.

All movers at time t post the same list price when a unique P maximizes the right side

of Eq. (6). We verify the existence of such a price at each point of the state space in our

quantitative exercise. Lemma 2 clarifies how this price depends on mover beliefs, d̂t and ĝt.

Lemma 2. The optimal list price takes the form Pt = ed̂tp(ĝt) for some function p(·).

The log list price scales one-for-one with the current belief about the level of the demand

shifter, d̂t. It also depends on the belief about the growth rate, ĝt, because the option of

selling next period becomes more valuable when movers expect faster demand growth.

Because d̂t and ĝt depend on historical market data, we can also characterize price posting
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as a function of past prices and sales shares. To provide intuition about price posting, Lemma

3 shows that when rm is large, movers set prices in a simple extrapolative fashion.

Lemma 3. In the limit as rm →∞, agents’ expectation of house price growth over the next

period conditional on house prices and sale probabilities before t is:

E∆ logPt+1 = µg + (1− α)ρ
∞∑
k=1

(
ρ

1 + (1− α)ρ

)k
(∆ logPt−k − µg) .

Given this expectation, movers at time t+ 1 set prices according to the rule:

∆ logPt+1 = E∆ logPt+1 + (1 + (1− α)ρ)
(
log(κ p)− F−1(1− πt)

)
,

for some constant p.

In this limit, price growth expectations are a simple weighted average of past price

changes, as in the reduced form extrapolation formulas that Barberis et al. (2015, 2018)

and Liao and Peng (2018) assume. Similarly, price setting closely resembles the “backward-

looking rule of thumb” that Guren (2018) assumes, except that movers here decrease list

prices when they observe a high share of unsold listings in the prior period. Therefore, the

bounded rationality of movers in our model endogenously leads to extrapolative expectations

and price posting when movers are impatient.

5.4 Potential buyer problem

The potential buyer’s problem is to decide whether to purchase or not, taking as given the

price that movers post. At the end of time t, the expected utility for a potential buyer from

purchasing a house is:

V b(d̂t, ĝt;λ, δ, n) = (1 + r)−1E
(
eδ + λV m(d̂t+1, ĝt+1) + (1− λ)V s(d̂t+1, ĝt+1;λ, δ)

)
, (7)

where the expectation is over dt ∼ N
(
σ2
ad̂t+σ̂

2
d(δ−µn)

σ2
a+σ̂

2
d

,
σ2
aσ̂

2
d

σ2
a+σ̂

2
d

)
.15 A potential buyer who pur-

chases becomes a stayer and receives housing utility eδ at the beginning of the next period.

15The posterior on dt is different for potential buyers than for movers and stayers. A potential buyer’s
log housing utility, δ, conveys information about the current demand shifter, dt, due to Eq. (2). Therefore,

her posterior on dt combines the posterior based on housing data, N (d̂t, σ̂
2
d), with her prior based on her

housing utility, N (δ − µn, σ2
a). Movers and stayers, however, do not use their own δ to estimate dt because

it is a noisy observation of a past value of the shifter, dt′ , which they believe they infer directly as d̃t′ .
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With probability λ, she then becomes a mover, the value of which is equal to V m(d̂t+1, ĝt+1)

and given by Eq. (6). With probability 1−λ, she continues on as a stayer, the value of which

we denote by V s(d̂t+1, ĝt+1;λ, δ). At any time t, the stayer value function can be written

recursively as:

V s(d̂t, ĝt;λ, δ) = (1 + r)−1E
(
eδ + λV m(d̂t+1, ĝt+1) + (1− λ)V s(d̂t+1, ĝt+1;λ, δ)

)
, (8)

where the expectation is over dt ∼ N (d̂t, σ̂
2
d).

A potential buyer decides to buy when the value of doing so is at least as large as the

price: V b(d̂t, ĝt;λ, δ, n) ≥ P . Lemma 4 recasts this decision rule in terms of the minimum

housing utility at which a potential buyer decides to buy.

Lemma 4. A potential buyer at time t with housing utility eδ and occupancy type n and for

whom λ = λj decides to purchase a home with list price P if and only if:

eδ ≥ κn,j(ĝt)P,

for some function κn,j(·).

The potential buyer’s decision rule is similar to the one in Eq. (3) that other agents believe

she is using. She purchases if the per-period housing utility she would receive exceeds some

fraction of the list price. The key distinction is that the fraction she actually uses depends

on both the history of market data she observes and her type. In particular, because the

potential buyer anticipates selling in the future, this fraction depends on ĝt, the expected

growth rate of the demand shifter, and on λ, which determines the amount of time she

expects until becoming a mover.

The cutoff rule in Lemma 4 determines both the share of listings that sell and the fraction

of all purchases made by buyers of each of the 2J types. Specifically, a purchase occurs when:

a ≥ logP + log κn,j(ĝt)− dt,

which implies that the share of potential buyers of type n and λj who buy at time t is

1−Φ(logP + log κn,j(ĝt)− dt− µn). Substituting the expression for list prices from Lemma

2 and averaging these shares over all potential buyer types gives the share of all listings that
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sell:

πt = 1−
1∑

n=0

J∑
j=1

βn,jΦ
(

log p(ĝt) + log κn,j(ĝt) + d̂t − dt − µn
)
. (9)

The share of sales at time t going to buyers of type n and λj, which we denote bn,j,t, equals:

bn,j,t = π−1t βn,j

(
1− Φ

(
log p(ĝt) + log κn,j(ĝt) + d̂t − dt − µn

))
. (10)

The share of listings that sell, πt, and the share of sales going to each of the 2J types, bn,j,t,

determine the dynamics of all the aggregate quantity variables in the model.

5.5 Quantities

The model has three aggregate quantities of interest: transaction volume, Qt, inventory

available for sale, It, and new listings, Lt. The following accounting identities characterize

the evolution of these aggregates as a function of sales probabilities, πt, and the composition

of buyers, bn,j,t:

Qt = πtIt,

It = (1− πt−1)It−1 + Lt,

Lt =
J∑
j=1

λjSj,t−1,

where Sj,t measures the share of housing owned by stayers of type λ = λj at the end of time

t. This share evolves according to the following law of motion:

Sj,t = (1− λj)Sj,t−1 + (b0,j,t + b1,j,t)Qt.

As these equations make clear, the current composition of buyers affects the composition

of stayers, thereby altering future listings and volume. Volume rises when there are more

listings or when the selling probability is higher.

In addition to these aggregates, the model generates dynamic patterns in quantities that

vary across both realized holding periods and buyer occupancy types. For instance, one

variable we track in the data is new listings of homes purchased within the last three years.
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In the model, new listings at time t of homes purchased within the last K periods equals:

LKt =
K∑
k=1

J∑
j=1

λj(1− λj)k−1(b0,j,t−k + b1,j,t−k)Qt−k.

Similarly, our empirical analysis decomposes volume according to the occupancy type of the

buyer and the realized holding period of the seller. In the model, the decomposition by

occupancy is straightforward: volume to buyers of occupancy type n equals
∑J

j=1 bn,j,tQt.

Decomposing volume by realized holding period is more complicated. The sales volume at

time t of houses purchased within the last K periods equals
∑K

k=1 πtI
k
t , where Ikt denotes

the inventory of listings at time t of homes purchased at time t− k. This quantity satisfies

the recursion:

Ikt = (1− πt−1)Ik−1t−1 +
J∑
j=1

λj(1− λj)k−1(b0,j,t−k + b1,j,t−k)Qt−k

for k > 0, with initial condition I0t = 0.

6 Model results

6.1 Simulation and calibration methodology

We perform a series of simulations to analyze the baseline properties of our model and to

study impulse responses to a shock. Each simulation corresponds to 148 sequential realiza-

tions of the two stochastic shocks, εdt and εgt . The first 100 periods burn in the simulation,

leaving 48 analysis periods. Each period represents a quarter, so our analysis spans 12 years.

We draw a control sample of 1,000 independent simulations to analyze the model’s baseline

properties. To analyze the impulse response to a shock, we draw a treatment sample of 1,000

additional simulations identical to the control except in periods 101–104 during which the

growth rate shocks εgt are two standard deviations higher, representing a large but plausi-

ble increase in demand. Impulse responses are average differences between treatment and

control outcomes.

Solving the model at any point in time requires evaluating both the function that movers

use to set prices, p(ĝt), and the function that potential buyers use to decide whether to
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purchase, κn,j(ĝt). To do so, we discretize ĝt using the Rouwenhorst (1995) method and then

calculate the function values at these discrete points. To evaluate the functions outside these

points, we use cubic splines between mesh points and linear splines beyond the boundaries.

We set r = 0.012 and ρ = 0.880, corresponding to annual values of 5% and 0.51 in Guren

(2018) and Glaeser and Nathanson (2017), respectively. We normalize µ0 = 0, so that µ1

gives the average log difference in housing utility between occupants and non-occupants. We

set µg = −σ2
d/2, which implies that the unconditional expected growth rate of edt is 0, so

that the average growth rate of housing utility across cohorts of potential buyers is the same

as that for stayers already living in the city. We choose κ so that the average value of dt− d̂t
in the control simulations equals 0. This choice ensures that agents’ simplified model in Eq.

(3) leads to inferences about the level of the demand shifter that are correct on average.

We select values of the remaining parameters so that moments from our simulation match

the empirical counterparts in Table 4. The composition of buyers and the volatility of demand

growth determine βn,j and σd, respectively, and the selling hazard disciplines rm, as more

patient movers take longer to sell by setting higher prices. We target three features of the

national U.S. housing cycle: the ratio of price boom to bust, the volume boom relative

to the price boom, and the degree to which the non-occupant volume boom exceeds the

occupant boom. Intuitively, these moments determine γ, σa, and µ1 through quantifying

extrapolation, the elasticity of demand, and the excess sensitivity of non-occupants.

6.2 Parameter estimates

Table 5 reports parameter values that match the moments in Panels B and C of Table 4. Non-

occupant housing utility is 0.9% less than occupant housing utility on average, corresponding

to less than a standard deviation in each group’s distribution. The mover discount rate is

14%. To map this number into a flow cost of moving, we calculate how much higher the

mover value function would be if the mover discount rate were equal to r for a single period.

The average difference is 3.7% of the list price, in line with the typical costs of selling a house

(Han and Strange, 2015) and smaller than the estimate in Guren (2018) of 2.1% per month.

Relative to occupant potential buyers, a much larger fraction of non-occupant potential

buyers have short horizons. According to the estimates for βn,j, over half of non-occupant

potential buyers expect to become movers six months after buying a house; the equivalent

share of occupant potential buyers is 25%. These estimates come from targeting the data in
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Figure 8, which show that a relatively large share of buyers of investment properties intend

to own for less than one year. They imply significant overlap between non-occupant and

short-term potential buyers within the model.

Lemma 3 shows that when rm →∞, price growth expectations are a weighted average of

past price changes. Here, rm is finite, but nonetheless large enough to generate extrapolation.

To measure extrapolation, we follow Armona et al. (2019) by focusing on the relation between

realized price growth over the last year and expectations of annualized price growth over the

next 1 and 2–5 years. We measure this relation by regressing movers’ 1- and 2–5-year

expectations in period 105 of the control simulations against price growth in the prior four

periods. The coefficients from these regressions of 0.127 and 0.042 are similar to though

somewhat smaller than the corresponding values of 0.226 and 0.047 that Armona et al.

(2019) find in survey data (see their Table 5).

6.3 Buyer cutoff rules

Agents in the model are fully rational except that they ignore the influence of historical

market data on the home purchasing decisions of other agents. The effect of this departure

from rationality on the model’s dynamics depends on the extent to which the cutoffs that

agents actually use when deciding to buy, κn,j(ĝt), differ from the constant cutoff other

agents assume they use, κ. In Figure 10, we plot these cutoffs. Four features of this figure

are relevant for understanding the dynamics of our model.

First, the true buyer cutoffs, κn,j(ĝt), decrease in the expected growth rate of the demand

shifter, ĝt. Intuitively, potential buyers expect larger capital gains when the expected growth

rate is high and are therefore willing to purchase at higher prices. Therefore, the expected

growth rate of the demand shifter, ĝt, along with the demand shifter itself, dt, both increase

housing demand.

Second, when ĝt is high, the cutoffs buyers actually use are less than the constant cutoff

that other agents believe they use. This error causes agents in the next period to misattribute

the speculative behavior of this period’s buyers—who are purchasing due to high anticipated

growth—to an increase in the level of the demand shifter, dt, instead. As a result, when

expected growth is high at time t, subsequent agents overestimate what the level of demand

must have been at that time, i.e., d̃t > dt. Because the demand process is persistent, this error

raises the expectations of next period’s agents about the demand shifter, d̂t+1, and its growth
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rate, ĝt+1, leading movers to list their homes at a higher price. Thus, speculative buying

raises subsequent house prices, causes overestimation of the demand shifter, and ignites

positive feedback by raising the expected growth rate of next period’s potential buyers.

Third, the slopes of the buyer cutoff functions, κn,j(ĝt), are steeper for higher values of

λj. Intuitively, potential buyers with shorter horizons expect to sell sooner, so their demand

is more sensitive to expected capital gains. As a result, short-term buyers disproportionately

drive the positive feedback through which speculative buying today stimulates such buying

next period.

Finally, the buyer cutoffs for a given mover hazard are nearly identical for occupants

and non-occupants.16 Quantitatively, the threshold of housing utility at which a purchase

occurs does not depend on occupancy status. The only difference in housing demand between

occupants and non-occupants with the same horizon is that the distribution of housing utility

for the non-occupants is shifted to the left of that of the occupants. As a result, because the

non-occupants use the same cutoff as the occupants, a smaller share of them end up buying

a house. For a given mover hazard, non-occupants’ demand is therefore more elastic than

occupants’ with respect to the demand shifter, dt, and its expected growth rate, ĝt.

6.4 Impulse responses

In Figure 11, we plot the impulse responses. As with the national U.S. cycle in Figures 1

and 3, the cycle in the model progresses through a boom, quiet, and bust (Panels A and

B).17 We use grey shading to mark the transition points between these phases, defined as the

peaks of volume and prices. The quiet lasts eight quarters, close to the duration in Figure 1

and the correlation-maximizing lag in Figure 2.

In the boom, demand rises because the demand shifter, dt, is higher and because the

expected growth rate, ĝt, rises in response to price growth. Together, these channels differ-

entially stimulate buying from potential buyers with higher λ (Panel C) and non-occupants

16The cutoffs depend on occupancy type only because a potential buyer’s housing utility, δ, conveys
information about the contemporaneous demand shifter, dt. Quantitatively, this channel is irrelevant because
σa = 0.066 is much larger than σ̂d = 0.011.

17The price boom in our model is smaller than the national boom shown in Figure 1. Potentially, the
shocks that generated the national boom are stronger than the one year of two standard deviation shocks
we feed into our model. Another possibility is that our assumed value of 0.023 for the annual volatility of
demand growth (see Table 4) is too low. Finally, new construction and credit, which our model omits, may
have amplified the national boom (Favilukis et al., 2017; Nathanson and Zwick, 2018). To ease comparison
with the national cycle, we analyze outcomes in our model relative to the price boom it generates.
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(Panel D). The overall increase in housing demand pushes up the share of listings that sell,

πt (Panel E). Short-term buyers re-list their houses quickly, increasing the flow of listings

during the boom (Panel F). Prices and volume increase as a result. Tempering the volume

boom is the decline in inventory (Panel B), which occurs as the stock of unsold listings

diminishes.

The qualitative behavior of volume, inventories, and sale probabilities during the boom

is similar in search and matching models, such as Guren (2014). The key difference is the

increasing flow of listings coming differentially from short-term buyers (Panel F). This flow

limits the decline in inventories to 1.5 log points, amplifying and sustaining the rise in volume.

Relative to the price boom, this decline in inventories is an order of magnitude smaller than

in Guren (2014). Furthermore, the differential flow of short-term listings leads to the short-

term volume boom shown in Panel C, which matches Figure 4. The disproportionate increase

in demand from non-occupants, together with the overall rise in volume, produces the strong

non-occupant volume boom shown in Panel D that also matches Figure 4.

In the quiet, demand begins to fall because the price level has risen so high. Because

they neglect time-variation in the cutoff rule that other potential buyers are using, agents

misattribute demand growth during the boom entirely to dt, though much of it comes from

ĝt, the expected capital gains channel. Eventually, agents over-estimate the demand level

so much and post prices that are so high that sale probabilities start to fall (Panel E).

Nonetheless, movers increase their list prices throughout the quiet because they continue to

revise upward their estimate of the demand shifter for two reasons. First, because of past

price growth, the expected growth rate, ĝt, remains high, which mechanically causes upward

revisions to the expected level of demand. Second, the sale probability, πt, remains high even

though it is falling, and these high realizations constitute positive surprises about demand

that cause movers to increase their beliefs. Eventually, πt falls below its pre-shock average,

ending these upward revisions and the concomitant increase in list prices.

One of the distinguishing features of the quiet in both the model and the data is the sharp

rise in unsold inventories. At their peak, unsold listings are 1.4% above their pre-shock level.

The two causes of the excess inventories are the fall in selling probabilities (Panel E) and

the elevated flow of short-term listings continuing throughout the quiet (Panel F), which

matches the data in Figure 6. This second cause is novel to our model and may explain why

inventories rise above their pre-shock level here whereas they fail to do so in models lacking
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this channel, such as Guren (2014).18

The bust begins as movers cut list prices. Agents revise down their expectations of the

growth rate, which further depresses demand and sale probabilities. However, because they

continue to believe that potential buyer demand is independent of the expected growth rate,

movers do not cut prices enough to restore demand, and the bust continues over several

periods. Volume falls below its pre-shock level, as in Figure 1. The decline in ĝt leads to

a smaller share of short-term buyers, depressing the flow of new listings (Panel F), which

allows inventories to recover (Panel B).

The model generates a second boom in prices, volume, and listings in the last five years

of the simulation. This second boom occurs because prices overshoot on the way down,

as is common in models with extrapolative expectations (Hong and Stein, 1999; Glaeser

and Nathanson, 2017). Underpricing occurs when agents think that demand is lower than

its true value. In this case, sale probabilities rise, and volume increases. This increase in

demand disproportionately affects short-term buyers, so short-term volume and listings also

rise during the second boom.

6.5 Counterfactuals

Many features of the impulse responses discussed above closely match the patterns observed

in the data. However, the fact that our model matches these patterns does not directly speak

to the role that speculation plays in generating those patterns. To quantify the contribution

of speculation to the housing cycle, we rerun the simulation under three counterfactuals,

each of which shuts down a different aspect of our baseline model. Impulse responses corre-

sponding to Panels A–D of Figure 11 are in Figure 12; those corresponding to Panels E and

F of Figure 11 are in Figure IA4 of the online appendix.

6.5.1 Rational expectations

In the fully rational counterfactual, agents no longer use the simplified model for potential

buyer behavior in Eq. (3). Instead, they correctly understand the problem that potential

buyers are solving. As a result, they believe that the share of potential buyers at time t who

18Our model understates the rise in listings during the quiet because of our simplifying assumption that
each mover matches to a potential buyer regardless of the number of contemporaneous movers. With a more
realistic matching function, such as the one in Guren (2014), our model might also hit the peak of listings
(relative to price growth) that appears in Figure 3.
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would purchase at list price P is:

1−
1∑

n=0

J∑
j=1

βn,jΦ (logP + log κn,j(ĝt)− dt − µn) ≡ π(P, dt, ĝt).

Using this function, agents at time t correctly infer the past values of the demand shifter by

equating πt′ to π(Pt′ , dt′ , ĝt′) and solving for dt′ . They calculate d̂t and ĝt using the Kalman

filter in Lemma 1. The mover value function becomes:

V m(d̂t, ĝt) = sup
P
E
(
π(P, dt, ĝt)P + (1 + rm)−1(1− π(P, dt, ĝt))V

m(d̂t+1, ĝt+1)
)
,

where the expectation is over dt ∼ N (d̂t, σ̂
2
d). By an argument analogous to the proofs of

Lemmas 2 and 4, the optimal price takes the form ed̂tp(ĝt), and a potential buyer buys when

eδ ≥ κn,j(ĝt)P , although p(·) and κn,j(·) may differ from the corresponding functions in those

lemmas.

We compute impulse responses using the same parameters and sequence of shocks in

the baseline model. Results appear in Panels A–D of Figure 12. When expectations are

rational, prices no longer overshoot, inventories never rise above their pre-shock value, and

the volume boom lasts only four quarters and is only about one quarter of its size in the

baseline model. The short- and long-horizon volume booms are nearly identical in size. In

contrast, non-occupant volume continues to rise much more than occupant volume, because

non-occupant demand is more elastic with respect to the demand shifter, dt. Therefore,

even when potential buyers have rational expectations, non-occupants react more strongly

to the demand shock underlying the impulse response, but this reaction does not generate

any positive feedback.

In summary, the price bust and the rise in listings above their initial value—two salient

features of the data in Figure 3—depend on departing from rational expectations. These

features appear in the baseline model but not the rational version. Quantitatively, a large

volume boom, and one that is disproportionately short-term, likewise depend on departing

from rationality. An excess non-occupant volume boom does not.
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6.5.2 Walrasian market clearing

In Online Appendix F.1, we solve a Walrasian version of our model in which a mechanism

selects a price Pt each period so that the number of potential buyers willing to buy at that

price equals the number of movers willing to sell. We also describe technical changes to the

model setup and parameters that aid comparison to the baseline model.

We find that the equilibrium price is Pt = edtp(ĝt), where p(·) is a function. In contrast to

the baseline model, the demand shifter, not its expected value, directly affects prices. Here,

demand from buyers directly pins down the price; in the baseline model, movers choose the

price and demand pins down the share of listings that sell. As a result, prices incorporate

changes to demand more quickly with Walrasian market clearing. In the Walrasian model,

agents believe that the equilibrium house price is Pt = edt p̃, where p̃ is a constant. Therefore,

when ĝt is high, equilibrium prices exceed what agents expect, which leads them to think

mistakenly that dt is high. This force in turn pushes up ĝt+1, which increases Pt+1. This

positive feedback mechanism is similar to the one in the baseline model.

The results are in Panels E–H of Figure 12. Prices and volume both go through a large

boom and bust cycle in the Walrasian model, as in the baseline model. However, volume

now peaks after prices, so there is no longer a quiet. The price boom is faster, with prices

reaching their peak nine quarters after the shock instead of 15. Under Walrasian market

clearing, prices react more quickly to new information, explaining the absence of the quiet

and the shorter duration of the price boom. Listings rise in the Walrasian model, but listings

and volume coincide due to Walrasian market clearing, so these two variables never diverge

as in the baseline model. Finally, short-term and non-occupant volume continue to rise in a

large and disproportionate fashion in the Walrasian model.

In summary, many of the features of the baseline impulse response do not require depart-

ing from Walrasian market clearing, as they continue to appear in the Walrasian extension.

These features include large price and volume cycles, high levels of listings while prices

fall, and disproportionate volume booms from short-term sales and non-occupant purchases.

However, the existence of the quiet—a period right after the boom in which volume falls

while prices and listings rise—does require departing from Walrasian market clearing.
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6.5.3 Absence of speculative buyers

The last counterfactual shuts down speculation by adjusting the distribution of potential

buyer types while leaving the framework of the model unchanged. In particular, we set

βn,j = 0 for all n and j except for n = 1 and the j for which λj = 0.03. All potential buyers

are occupants with a horizon of about eight years, which is close to the average horizon

among potential buyers in the baseline model. By assigning all potential buyers the same

(low) value of λ, this counterfactual removes both short-term buyers and the heterogeneity

in holding periods that generates variation in the composition of buyers. We update κ so

that the demand error is still zero and keep other parameters unchanged.

Panels I–L of Figure 12 display the results. Prices and volume still go through a cycle,

but the volume boom is three times smaller, and the price overshoot almost disappears.

Listings fall 7%, much more than the decline of 1.5% in the baseline model. There is a

quiet during which listings rise, but they reach a smaller value of 0.4% (versus the 1.4% in

the baseline model) at the end of this period. Short-term volume rises slightly more than

long-term volume because of the mechanical channel discussed in Appendix B.1, but by far

less than the 7.8-fold relative increase in the baseline model. Finally, non-occupant volume

equals zero by assumption.

In Appendix F.2, we explore the distinct roles of short-term and non-occupant potential

buyers in amplifying the housing cycle. Removing either group attenuates the housing cycle,

but there is substantial overlap between the two groups. If we eliminate short-term buyers

while holding constant the share of non-occupants, the housing cycle becomes small, but if we

eliminate non-occupants while keeping constant the share of short-term buyers, the housing

cycle remains strong. These results suggest that short horizons are the key amplifying force

in the model, as opposed to non-occupancy.

While these counterfactuals suggest that removing short-term potential buyers dramati-

cally reduces the magnitude of the cycle, they may overstate this effect because we conduct

the counterfactuals using parameter values calibrated in the baseline model under the as-

sumption of exogenous trading horizons. During the 2000–2005 housing boom, it is possible

that homeowners who originally expected to stay in their homes for many years decided

instead to sell early to exploit rising house prices. We rule out this possibility in our model

by assuming that homeowners only list their homes after receiving an exogenous moving

shock. To match the 2000–2005 volume boom, our calibration compensates for this omission

32



by assigning excess weight to the shares of potential buyers with high values of λ. Therefore,

removing this large group of short-term buyers from the model may have an outsized effect

relative to removing the likely smaller group of such buyers who exist in reality. Nonetheless,

our counterfactual demonstrates that removing speculators qualitatively attenuates the price

bust and volume cycle and amplifies the decline in inventories during the boom.

6.6 Transaction taxes

In this section, we use our model to study an ad valorem tax that buyers must pay at the

time of purchase. The tax rate can depend on the buyer’s occupancy type n, so that a buyer

pays a tax τnP when purchasing a home at price P . We denote the vector of tax rates by

τ = (τ0, τ1). Analyzing capital gains taxes would complicate our model significantly, because

contemporaneous movers who bought at different past prices would face different optimality

problems and hence choose different list prices, so we leave that analysis to future work.

Holding prices constant, the share of potential buyers who complete a purchase is lower

in the presence of this tax. As a result, κ must go up, as we select this constant so that the

average value of dt − d̂t equals zero. Intuitively, the threshold κ rises to reflect the decrease

in housing demand from the new tax. We denote this new value κτ . By analyzing the mover

value function, it is straightforward to show that the new optimal price is Pt = ed̂tp(ĝt)κ/κ
τ ,

where p(·) is the same function that is in Lemma 2. That is, prices scale down by a constant

amount that reflects the reduced demand due to the tax.

The reduction in housing demand operates through the cutoff functions, κn,j(·). Due

to the proportional nature of the tax, Lemma 4 continues to hold, but now these cutoff

functions depend on the tax. We denote them as κτn,j(ĝt). A potential buyer of occupancy

type n and for whom λ = λj buys at time t if:

a ≥ log p(ĝt) + log

(
κκτn,j(ĝt)

κτ

)
+ d̂t − dt.

We explore a tax that binds equally on all buyers, so that τ0 = τ1, and a tax that affects

only non-occupant buyers, so that τ1 = 0. We consider taxes of 0.5%, 1%, and 5%, which

span the tax rates in many large cities (Chi et al., 2021).

Table 6 reports a 5% tax on all buyers significantly attenuates the price cycle, reducing

the bust from 8.2% to 1.1%. It also reduces the volume boom, but this reduction is smaller
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than the corresponding one for prices. Smaller taxes of 0.5% and 1% also reduce the cycle

amplitude, but these effects are much smaller.

The last three columns of Table 6 report results for the tax on non-occupant buyers. This

tax is a weaker instrument for attenuating the house price cycle: the 5% tax reduces the price

bust only to 5.8%, and the lower taxes have a smaller effect. The 5% tax nearly eliminates

the non-occupant volume boom, reducing it to 0.1% from 12.3%. Therefore, targeting the

tax to non-occupants limits its efficacy in reducing the house price cycle, as even a tax that

nearly eliminates the non-occupant volume boom still leaves much of the house price cycle.

To understand the mechanism behind these results, in Figure IA5 in the online appendix,

we plot the adjusted buying cutoffs, κκτn,j(ĝt)/κ
τ , for both 5% tax scenarios. Comparing this

figure to Figure 10 shows how each tax changes housing demand. The 5% tax on all buyers

raises the cutoffs for the λ = 0.5 group by about half a standard deviation (σa), which

makes the λ = 0.17 group more marginal than before. Therefore, the tax effectively skews

the composition of buyers towards those with longer horizons. The tax on non-occupants

similarly raises the cutoffs, but only for non-occupants. As a result, both the λ = 0.5

occupants and the λ = 0.17 non-occupants are marginal. Therefore, many of the buyers

with the shortest horizons are still active in the market, which provides an explanation for

why this tax has a weaker effect.

7 Conclusion

In this paper, we present evidence that speculators in general and short-term speculators in

particular play a crucial role in the housing cycle. This evidence raises additional lines of

inquiry.

First, do the expansions in credit that typically accompany housing booms appeal dis-

proportionately to short-term investors? Barlevy and Fisher (2011) document a strong cor-

relation across U.S. metropolitan areas between the size of the 2000s house price boom and

the take-up of interest-only mortgages. These mortgages back-load payments by deferring

principal repayment for some amount of time and thus might appeal to buyers who expect

to resell quickly. The targeting of credit expansions to short-term buyers might explain the

amplification effects of credit availability on real estate booms documented by Favara and

Imbs (2015), Di Maggio and Kermani (2017), and Rajan and Ramcharan (2015). Mian and
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Sufi (2022) explore this channel in contemporaneous work.

A second line of inquiry concerns tax policy. While we analyze a fixed transactions

tax in this paper, in the spirit of Tobin (1978), Stiglitz (1989), Summers and Summers

(1989), and Dávila (2015), natural alternatives such as a short-term capital gains tax might

discourage housing speculation by lowering expected after-tax capital gains. However, such

taxes discourage productive residential investment as well. Is this tax optimal, and if not,

what type of tax policy would be better? It is also unclear empirically whether transaction

and capital gains taxes would particularly discourage short-term investors, given that the

incidence of this tax might fall more on buyers than sellers.

A third research question involves new construction, which is absent from our model. In

a static model, Nathanson and Zwick (2018) predict that undeveloped land amplifies house

price booms by facilitating speculation by developers. Developers have short investment

horizons because the time from land purchase to home sale ranges from a few months to a

few years. Moreover, because developers do not receive housing utility, their payoffs resemble

those of the non-occupants in our model. Adding construction to the model in this paper

might further clarify the role of land markets and new construction in housing cycles.
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Improvements’, Journal of Financial Economics 111(3), 609–624.

Cutler, David M., Poterba, James M. and Summers, Lawrence H. (1990). ‘Speculative
Dynamics and the Role of Feedback Traders’, American Economic Review, Papers and Proceed-
ings 80(2), 63–68.

Daniel, Kent, Hirshleifer, David and Subrahmanyam, Avanidhar. (1998). ‘Investor Psy-
chology and Security Market Under- and Overreactions’, Journal of Finance 53(6), 1839–1885.

Daniel, Kent, Hirshleifer, David and Subrahmanyam, Avanidhar. (2001). ‘Overconfidence,
Arbitrage, and Equilibrium Asset Pricing’, Journal of Finance 56(3), 921–965.

Dávila, Eduardo. (2015). ‘Optimal Financial Transactions Taxes’. Working Paper, NYU Stern.

De Long, J. Bradford, Shleifer, Andrei, Summers, Lawrence H. and Waldmann,
Robert J. (1990). ‘Positive Feedback Investment Strategies and Destabilizing Rational Specu-
lation’, Journal of Finance 45(2), 379–395.

Dı́az, Antonia and Jerez, Belén. (2013). ‘House Prices, Sales, and Time on the Market: A
Search-Theoretic Framework’, International Economic Review 54(3), 837–872.

Di Maggio, Marco and Kermani, Amir. (2017). ‘Credit-Induced Boom and Bust’, The Review
of Financial Studies 30(11), 3711–3758.

Favara, Giovanni and Imbs, Jean. (2015). ‘Credit Supply and the Price of Housing’, American
Economic Review 105(3), 958–992.

Favilukis, Jack, Ludvigson, Sydney C. and Van Nieuwerburgh, Stijn. (2017). ‘The
Macroeconomic Effects of Housing Wealth, Housing Finance, and Limited Risk-Sharing in Gen-
eral Equilibrium’, Journal of Political Economy 125(1), 140–223.

Foote, Christopher L., Gerardi, Kristopher S. and Willen, Paul S. (2012). ‘Why Did So
Many People Make So Many Ex Post Bad Decisions? The Causes of the Foreclosure Crisis’,
Federal Reserve Bank of Boston Public Policy Discussion Papers 12(2).

Gao, Zhenyu, Sockin, Michael and Xiong, Wei. (2020). ‘Economic Consequences of Housing
Speculation’, Review of Financial Studies 33(11), 5248–5287.

Genesove, David and Mayer, Christopher. (2001). ‘Loss Aversion and Seller Behavior: Evi-
dence from the Housing Market’, Quarterly Journal of Economics 116(4), 1233–1260.

Genesove, David and Mayer, Christopher J. (1997). ‘Equity and Time to Sale in the Real
Estate Market’, American Economic Review pp. 255–269.

Glaeser, Edward L. (2013). ‘A Nation of Gamblers: Real Estate Speculation and American
History’, American Economic Review 103(3), 1–42.

37



Glaeser, Edward L., Gyourko, Joseph and Saiz, Albert. (2008). ‘Housing Supply and
Housing Bubbles’, Journal of Urban Economics 64(2), 198–217.

Glaeser, Edward L. and Nathanson, Charles G. (2017). ‘An extrapolative model of house
price dynamics’, Journal of Financial Economics 126(1), 147 – 170.

Griffin, John M, Kruger, Samuel and Maturana, Gonzalo. (2020). ‘What drove the 2003–
2006 house price boom and subsequent collapse? Disentangling competing explanations’, Journal
of Financial Economics .

Guren, Adam. (2014), The Causes and Consequences of House Price Momentum. Working paper,
Harvard University.

Guren, Adam. (2018). ‘House Price Momentum and Strategic Complementarity’, Journal of
Political Economy 126(3), 1172–1218.

Guren, Adam M and McQuade, Timothy J. (2020). ‘How Do Foreclosures Exacerbate
Housing Downturns?’, Review of Economic Studies 87(3), 1331–1364.

Han, Lu and Strange, William C. (2015), The Microstructure of Housing Markets: Search,
Bargaining, and Brokerage, in Gilles Duranton, J. Vernon Henderson and William C.
Strange., eds, ‘Handbook of Regional and Urban Economics’, Vol. 5B, Elsevier, chapter 13,
pp. 813–886.

Harrison, J. Michael and Kreps, David M. (1978). ‘Speculative Investor Behavior in a Stock
Market with Heterogeneous Expectations’, Quarterly Journal of Economics 92(2), 323–336.

Haughwout, Andrew, Lee, Donghoon, Tracy, Joseph and van der Klaauw, Wilbert.
(2011). ‘Real Estate Investors, the Leverage Cycle, and the Housing Market Crisis’. Federal
Reserve Bank of New York Staff Report no. 514.

Head, Allen, Lloyd-Ellis, Huw and Sun, Hongfei. (2014). ‘Search, Liquidity, and the Dy-
namics of House Prices and Construction’, American Economic Review 104(4), 1172–1210.

Hedlund, Aaron. (2016). ‘The Cyclical Dynamics of Illiquid Housing, Debt, and Foreclosures’,
Quantitative Economics 7, 289–328.

Hong, Harrison and Stein, Jeremy C. (1999). ‘A Unified Theory of Underreaction, Momentum
Trading, and Overreaction in Asset Markets’, Journal of Finance 54(6), 2143–2184.

Liao, Jingchi and Peng, Cameron. (2018), Price and Volume Dynamics in Bubbles. Working
Paper.

Mayer, Christopher. (2011). ‘Housing Bubbles: A Survey’, Annual Review of Economics 3, 559–
577.

Mayer, Christopher, Pence, Karen and Sherlund, Shane M. (2009). ‘The Rise in Mortgage
Defaults’, Journal of Economic Perspectives 23(1), 27–50.

Mian, Atif, Rao, Kamalesh and Sufi, Amir. (2013). ‘Household Balance Sheets, Consumption,
and the Economic Slump’, Quarterly Journal of Economics 128(4), 1687–1726.

38



Mian, Atif and Sufi, Amir. (2022). ‘Credit supply and housing speculation’, Review of Financial
Studies 35(2), 680–719.

Mian, Atif, Sufi, Amir and Trebbi, Francesco. (2015). ‘Foreclosures, House Prices, and the
Real Economy’, Journal of Finance 70(6), 2587–2634.

Nathanson, Charles G. and Zwick, Eric. (2018). ‘Arrested Development: Theory and Evidence
of Supply-Side Speculation in the Housing Market’, Journal of Finance 73(6), 2587–2633.

Ngai, L. Rachel and Sheedy, Kevin D. (2020). ‘The Decision to Move House and Aggregate
Housing-Market Dynamics’, Journal of the European Economic Association 18(5), 2487–2531.
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FIGURE 1
The Dynamics of Prices and Volume

Panel A. National
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Notes: This figure displays the dynamic relation between prices and volume in the U.S. housing market
between 2000 and 2011. Panel A shows monthly prices and sales volume at the aggregate level. Panels B–E
show analogous series for a set of cities that represent regions with the largest boom–bust cycles during this
time: Phoenix, AZ; Las Vegas, NV; Orlando, FL; and Bakersfield, CA. Monthly price index information
comes from CoreLogic and monthly sales volume is based on aggregated transaction data from CoreLogic
for 115 MSAs representing 48% of the U.S. housing stock. We apply a calendar-month seasonal adjustment
for volume. Shaded regions denote the quiet, defined as the period between the peak of volume and the last
peak of prices before their pronounced decline.
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FIGURE 2
The Lead–Lag Relation between Prices and Volume
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Notes: This figure shows that the correlation between prices and lagged volume is robust across MSAs and
maximized at a positive lag of 24 months. We regress the demeaned log of prices on seasonally adjusted
lagged volume divided by the 2000 housing stock following Eq. (1) for each lag from -12 months to 48 months
and plot the implied correlation and its 95% confidence interval calculated using standard errors that are
clustered by month. The implied correlation equals βk std(vi,t−k)/ std(pi,t), where vi,t−k and pi,t are the
demeaned regressors.
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FIGURE 3
The Dynamics of Prices and Inventories

Panel A. National
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Notes: This figure displays the dynamic relation between prices and inventory in the U.S. housing market
between 2000 and 2011. Panel A shows monthly prices and the inventory of listings at the aggregate level.
Panels B–E show analogous series for a set of cities that represent regions with the largest boom–bust cycles
during this time: Phoenix, AZ; Reno, NV; Daytona Beach, FL; and Bakersfield, CA. Aggregate inventory
information comes from the National Association of Realtors, which are available starting in 2000. Our
MSA-level inventory data are available for these cities starting in 2001. Monthly price index information
comes from CoreLogic and monthly inventory by MSA is based on aggregated data from CoreLogic for 57 of
the 115 MSAs in our main sample for which listings data are available. We apply a calendar-month seasonal
adjustment for inventories. Shaded regions denote the quiet, defined as the period between the peak of
volume and the last peak of prices before their pronounced decline.
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FIGURE 4
Normalized Aggregate Volume by Transaction Type
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Volume (000s) 2000 2005 2010

ShortS1 510 940 150
ExistingS1 2,130 2,880 930
TotalS1 2,730 3,820 1,150
Non-OccupantS2 510 1,030 290
TotalS2 2,310 3,290 990

Notes: This figure shows monthly aggregate time series for total transaction volume (navy triangles), to-
tal volume excluding new construction (blue circles), short-holding-period volume (red squares), and non-
occupant volume (orange diamonds) between 2000 and 2011. All series exclude lender acquisitions and
dispositions of foreclosed properties to remove the mechanical increase in short-term spells driven by forced
sales during the bust. The non-occupant volume series only includes observations from the 102 MSAs for
which we can consistently identify these transactions; the other series include observations for all 115 MSAs.
Each series is separately normalized relative to its average value in the year 2000 and seasonally adjusted by
removing calendar-month fixed effects. The raw counts of each type of transaction in the years 2000, 2005,
and 2010 are reported in the upper right corner of the figure. In the table, S1 refers to the short-holding-
period sample of 115 MSAs and S2 refers to the non-occupant sample of 102 MSAs.
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FIGURE 5
Short Holding Period, Non-Occupant, and Total Volume Growth Across MSAs
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Notes: This figure illustrates the quantitative importance of short holding period and non-occupant volume
in accounting for the increase in total volume across MSAs between 2000 and 2005. The top two panels
present MSA-level scatter plots of the percentage change in total volume from 2000 to 2005 versus the
percentage change in volume for short and long holding periods (Panel A) and the percent change in volume
for occupant and non-occupant buyers (Panel B). The bottom two panels show that the growth in short-
holding-period and non-occupant volume were quantitatively important components of the growth in total
volume across MSAs. For each MSA, we plot the change in short-holding-period volume (Panel C) and
non-occupant volume (Panel D) divided by initial total volume on the y-axis against the percentage change
in total volume on the x-axis. Because short-holding-period volume is based on the holding period of the
seller and therefore cannot, by definition, include sales of newly constructed homes, Panel C also includes a
version of the scatter plot that excludes new construction from total volume.
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FIGURE 6
The Flow of Listings for Short-Holding-Period Buyers
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Short 280 590 170
Total 1,170 1,730 1,380

Notes: In this figure, we illustrate the time variation in propensities to list among recent buyers versus all
buyers between 2000 and 2011 in the U.S. We link listings micro data to transaction data at the property
level to identify short-holding-period listings. We plot monthly aggregate time series for total listings (blue
circles) and short-holding-period listings (red squares), defined as a listing where the previous sale occurred
within the past three years. The series include observations for the 57 MSAs in our listings sample. Each
series is separately normalized relative to its average value in the year 2003 and seasonally adjusted by
removing calendar-month fixed effects. The raw counts of each type of listing in the years 2003, 2007, and
2010 are also reported in the upper right corner of the figure.
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FIGURE 7
Speculative Homebuying and Recent House Price Appreciation

Panel A. Short Holding Period Buyers Panel B. Non-Occupant Volume
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Notes: Panels A and B use CoreLogic data to show the relation between short holding period volume and
non-occupant volume at the MSA level, respectively, and the past year’s house price appreciation. Volume
measures are scaled relative to their level in 1999. Short-holding-period volume in Panel A is forward-
looking, i.e., it is based on whether the buyer sells within three years. Panel C uses data from the NAR
Investment and Vacation Home Buyers Survey; “annual house price growth” equals the average across that
year’s four quarters of the log change in the all-transactions FHFA U.S. house price index from four quarters
ago, and “short-term buyer share” equals the share of respondents other than those reporting “don’t know”
who report an expected horizon of less than three years. We use the FHFA index here because it covers the
2015–2016 period. Panels D and E use data from the Federal Reserve Survey of Consumer Expectations and
Armona et al. (2019) to study the relation between recent house price growth and the probability of buying
a non-primary home. In these data, local house price appreciation is computed at the ZIP Code-level from
Zillow.
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FIGURE 8
Expected Holding Times of Homebuyers, 2008–2015
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Notes: This figure presents evidence on heterogeneity in expected holding times among recent homebuyers
from the NAR Investment and Vacation Home Buyers Survey. We plot the response frequency averaged
equally over each survey year from 2008 to 2015. We reclassify buyers who have already sold their properties
by the time of the survey as having an expected holding time in [0,1).
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FIGURE 9
Model Flowchart

Mover Exit
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Potential Buyer
(δ, λ, n)
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Notes: This figure illustrates how agents in the model transition between different types. At each time
period, t, all movers list their homes for sale and are matched to potential buyers. Potential buyers decide
whether to purchase at the mover’s listed price P . If a potential buyer purchases, she becomes a stayer and
receives a constant per-period housing utility eδ during each period that she remains a stayer. If she does
not purchase, she exits the market and consumes her terminal wealth. A stayer transitions into being mover
with probability λ each period. The log of the housing utility, δ, that potential buyers who purchase will
receive as stayers is the sum of a time-varying aggregate demand shifter, dt, which is common to all potential
buyers matched at time t, and an idiosyncratic term, a, which varies across potential buyers within a given
cohort. The idiosyncratic term a is distributed N (µn, σa) and depends on the potential buyer’s type, n,
which can be either occupant (n = 1) or non-occupant (n = 0). The mover hazard λ also differs across
potential buyers and follows a discrete distribution given by Pr(λ = λj) = βn,j , for j ∈ {1, ..., J}. Potential
buyers are aware of both δ and λ at the time they decide to purchase. Movers receive zero housing flow
utility during the time which they are attempting to sell. Those who do not sell remain movers in the next
period and those who do sell exit the market and consume their terminal wealth. We denote the probability
of a sale by πt.
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FIGURE 10
Buying Cutoffs for Different Expected Growth Rates
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Notes: The buying cutoff, κn,j(ĝt), determines how large a potential buyer’s housing utility must be relative
to the price of a house for her to decide to buy. It depends on the potential buyer’s occupancy type, n, her
quarterly moving hazard, λj , and the current expected quarterly growth rate of the demand shifter, ĝt. We
plot values of these functions for the λ values in our calibration, which appear in the legend. Solid lines
correspond to occupants (n = 1); dashed lines correspond to non-occupants (n = 0). The horizontal grey
dashed line gives κ, which agents mistakenly believe is the time-invariant buying cutoff for other potential
buyers.
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FIGURE 11
Impulse Responses

Panel A. Prices and Volume Panel B. Inventory of Listings
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. The shaded grey area denotes the beginning and end of the quiet. A short holding period is
defined as less than or equal to 12 quarters and a long holding period is defined as greater than 12 quarters.
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FIGURE 12
Impulse Responses in Counterfactuals

Panel A. Prices and Volume,
Rational
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment simulations, in which a 2-standard-
deviation shock to εgt (the demand growth innovation) occurs in quarters 0 through 3. A short holding period is defined as less than or equal to 12
quarters and a long holding period is defined as greater than 12 quarters.



TABLE 1
Speculators and Housing Market Outcomes (Summary Statistics)

Panel A. Short-Volume Sample

Variable Mean Standard Deviation Observations

Short-Volume Boom 15.97 12.93 115
Price Boom 97.06 47.88 115
Price Bust -27.9 13.64 115
∆ Volume Quiet + Bust -62.96 18.87 115
Foreclosures Bust 82.84 55.96 115

Panel B. Non-Occupant Volume Sample

Variable Mean Standard Deviation Observations

Non-Occupant Volume Boom 29.29 27.05 102
Short-Volume Boom 16.88 13.36 102
Price Boom 100.57 49.27 102
Price Bust -28.99 13.97 102
∆ Volume Quiet + Bust -63.32 19.47 102
Foreclosures Bust 86.57 58.08 102

Panel C. Short-Volume Sample with Listings

Variable Mean Standard Deviation Observations

Short-Volume Boom 14.64 12.33 57
∆ Listings Boom 91.67 94.93 57
∆ Listings Quiet 178.39 143.86 57

Panel D. Non-Occupant Volume Sample with Listings

Variable Mean Standard Deviation Observations

Non-Occupant Volume Boom 27.81 27.32 48
Short-Volume Boom 15.84 12.88 48
∆ Listings Boom 82.11 93.67 48
∆ Listings Quiet 171.74 151.29 48

Notes: This table reports summary statistics for MSA-level variables in different samples of MSAs. ∆ Volume
Quiet + Bust is defined as the change in total volume from 2005 through 2011. ∆ Listings Boom is defined
as the change in total listings from 2003 through 2005. ∆ Listings Quiet is defined as the change in total
listings from 2005 through 2007. Foreclosures Bust is defined as total foreclosures from 2007 through 2011.
Price Boom is defined as the change in prices from 2000 through 2006. Price Bust is defined as the change in
prices from 2006 through 2011. To aid interpretation of these relations, we scale the change in outcomes for
all quantity measures relative to total volume in 2003 and multiply by 100. Total volume in 2003 has mean
28,061 and standard deviation 43,708 in the Short Volume Sample and mean 25,167 and standard deviation
35,967 in the Short Volume Sample with Listings.
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TABLE 2
Speculative Booms and Housing Market Outcomes

Panel A. MSA-Level Prices

Price Boom Price Bust

Short-Volume Boom 1.930*** -0.571***
(0.297) (0.083)

Non-Occupant Volume Boom 0.570*** -0.166***
(0.173) (0.049)

Number of Observations 115 102 115 102
R-squared 0.272 0.098 0.293 0.103

Panel B. MSA-Level Inventories

∆ Listings Boom ∆ Listings Quiet

Short-Volume Boom -1.133 5.961***
(1.027) (1.353)

Non-Occupant Volume Boom -0.070 2.645***
(0.505) (0.718)

Number of Observations 57 48 57 48
R-squared 0.022 0.000 0.261 0.228

Panel C. MSA-Level Volume Quiet and Bust

∆ Volume Quiet + Bust Foreclosures Bust

Short-Volume Boom -1.047*** 0.895**
(0.096) (0.398)

Non-Occupant Volume Boom -0.512*** -0.060
(0.051) (0.215)

Number of Observations 115 102 115 102
R-squared 0.515 0.505 0.043 0.001

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures at
the MSA level. ∆ Volume Quiet + Bust is defined as the change in total volume from 2005 through 2011. ∆
Listings Boom is defined as the change in total listings from 2003 through 2005. ∆ Listings Quiet is defined
as the change in total listings from 2005 through 2007. Foreclosures Bust is defined as total foreclosures from
2007 through 2011. Price Boom is defined as the change in prices from 2000 through 2006. Price Bust is
defined as the change in prices from 2006 through 2011. To aid interpretation of these relations, we scale the
change in outcomes for all quantity measures relative to total volume in 2003 and multiply by 100. Table 1
presents summary statistics for each sample. Significance levels 10%, 5%, and 1% are denoted by *, **, and
***, respectively. Standard errors appear in parentheses.
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TABLE 3
All-Cash Buyer Shares

Transaction-Level MSA-Level

All Months All Months Boom Quiet Bust

Short Buyers 0.29 0.38 0.29 0.28 0.52
(0.21) (0.16) (0.17) (0.20)

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50
(0.18) (0.15) (0.14) (0.18)

All Buyers 0.20 0.25 0.22 0.20 0.30
(0.16) (0.15) (0.14) (0.16)

Notes: This table presents statistics on the share of buyers of various types who purchased their homes
without the use of a mortgage (“all-cash buyers”). In column 1, the all-cash buyer share is measured at the
transaction level and includes all transactions recorded between January 2000 and December of 2011 from the
CoreLogic deeds records described in Section 1.1. The first row includes only transactions by homebuyers
who are observed to have sold the home within three years of purchase. The second row includes only
non-occupant buyers. The third row includes all buyers. In columns 2–5, all-cash buyer shares are first
calculated at the MSA-by-month level and then averaged across MSA-months within a given time period.
The standard deviation of these MSA-month means is reported in parentheses for reference. Column 2
includes all MSA-months between January 2000 and December 2011. Column 3 includes only MSA-months
between January 2000 and August 2005. Column 4 includes only MSA-months between August 2005 and
December 2006. Column 5 includes only MSA-months between December 2006 and December 2011. All
statistics are calculated in the full sample of 115 MSAs with the exception of those for non-occupants, which
are calculated in the sample of 102 MSAs with valid non-occupancy data.
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TABLE 4
Inputs into model calibration

Parameter or target Value Source

Panel A: Assumed parameters

r (non-mover discount rate) 0.012 Guren (2018)
Potential λ values {0.50, 0.17, 0.05, 0.03, 0.01} Figure 8
ρ (demand growth persistence) 0.880 GN (2017)

Panel B: Steady-state targets

Occupant buyer shares (0.06, 0.07, 0.16, 0.16, 0.34) Figure 8
Non-occupant buyer shares (0.04, 0.03, 0.04, 0.04, 0.06) Figure 8
Annual volatility of demand growth 0.023 GN (2017)
Quarterly selling hazard 0.75 Guren (2018)
Mean demand error 0 Model
Mean demand growth 0 Model

Panel C: Cycle targets

Price overshoot 2.3 Figure 1
Volume boom/price boom 0.4 Figure 1
Non-occupant boom/occupant boom 3.1 Figure 4

Notes: This table reports parameters that we assume in the calibration, as well as targets we use to determine
the remaining parameters. In the model, we target the mean buyer shares, quarterly selling hazard, and
demand error across all analysis periods in control simulations. We theoretically derive the annual volatility
of demand growth as well as the mean demand growth as functions of parameters. Price overshoot is the
ratio of log price growth from the beginning to peak to log price growth from the beginning to the trough
after the peak. Volume boom/price boom is the ratio of log existing volume growth from the beginning
to the peak of volume (2000 to 2005, using numbers from Figure 4) to aforementioned log price growth.
Non-occupant boom/occupant boom is the ratio of each category of log volume growth from 2000 to 2005
in the sample of MSAs we use for non-occupant analysis. In the model, we use quarterly minimums and
maximums instead of aggregating at the year level. We match all targets to within rounding. GN (2017)
denotes Glaeser and Nathanson (2017).
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TABLE 5
Outputs from model calibration

Parameter or outcome Interpretation Value

Panel A: Derived parameters

σa Flow utility dispersion 0.066
µ1 Occupant premium 0.009
γ g variance share 0.070
κ Assumed buying cutoff 0.029
σd Demand volatility 0.011
µg Mean demand growth −0.000
rm Mover discount rate 0.141
β0,j Non-occupant shares (0.143, 0.022, 0.030, 0.030, 0.045)
β1,j Occupant shares (0.185, 0.052, 0.119, 0.119, 0.254)

Panel B: Steady-state outcomes

1-year extrapolation – 0.127
2–5-year extrapolation – 0.042

Notes: See text for definitions of parameters in Panel A. We find these values by searching for parameters
such that moments from the model match targets in Table 4. Panel B reports regression coefficients of
annualized price growth in the next year and between 2 and 5 years from now on last year’s price growth.
We run these regressions across control simulations at the beginning of the analysis period.

56



TABLE 6
Outcomes for different tax regimes

Tax on
all buyers

Tax on
non-occupant buyers

Outcome
Base-
line

0.5% 1% 5% 0.5% 1% 5%

Price boom 14.5 13.1 12.2 9.7 13.5 12.8 12.6
Price bust −8.2 −6.4 −5.1 −1.1 −7.0 −6.0 −5.8
Volume boom 5.8 5.5 5.2 4.1 5.3 4.8 4.5
Listings, end of boom −1.3 −1.2 −1.1 −1.0 −0.8 −0.8 −0.6
Listings, end of quiet 1.4 1.3 1.2 0.6 1.2 0.9 0.9
Short volume boom 14.1 13.7 13.2 10.3 13.5 11.8 11.4
Non-occupant volume boom 12.3 11.7 11.1 8.9 7.5 2.3 0.1
Sale probability boom 7.1 6.7 6.3 5.1 6.2 5.5 5.0

Notes: We report 100 times changes in log outcomes between treatment and control simulations. We define
the end of the quiet as the first local maximum in the impulse response of log prices, and we measure the
following outcomes at that time: price boom and listings end of quiet. We define the end of the boom as
the first local maximum in the impulse response of log volume before the end of the quiet, and we measure
the following outcomes at that time: volume boom, listings end of boom, short volume boom, non-occupant
volume boom, and sale probability boom. The price bust is the change from the end of the quiet to the first
local minimum of the impulse response of log prices after the end of the quiet. The tax is relative to the
purchase price, payable at time of sale. We alter κ in each column to maintain a zero demand error while
keeping other parameters the same. The baseline values correspond to Figure 11.
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A Data

To conduct our empirical analysis we make use of a transaction-level data set containing
detailed information on individual home sales taking place throughout the US between 1995
and 2014. The raw data was purchased from CoreLogic and is sourced from publicly available
tax assessment and deeds records maintained by local county governments. In some analyses
we supplement this transaction-level data with additional data on the listing behavior of
individual homeowners. Our listings data is also provided by CoreLogic and is sourced from
a consortium of local Multiple Listing Service (MLS) boards located throughout the country.

Selecting Geographies

To select our sample of transactions, we first focus on a set of counties that have consistent
data coverage going back to 1995 and which, together, constitute a majority of the housing
stock in their respective MSAs. In particular, to be included in our sample a county must
have at least one “arms length” transaction with a non-negative price and non-missing date
in each quarter from 1995q1 to 2014q4.1 Starting with this subset of counties, we then
further drop any MSA for which the counties in this list make up less than 75 percent of
the total owner-occupied housing stock for the MSA as measured by the 2010 Census. This
leaves us with a final set of 250 counties belonging to a total of 115 MSAs. These MSAs are
listed below in Table IA1 along with the percentage of the housing stock that is represented
by the 250 counties for which we have good coverage. Throughout the paper, when we refer
to counts of transactions in an MSA we are referring to the portion of the MSA that is
accounted for by these counties.

Selecting Transactions

Within this set of MSAs, we start with the full sample of all arms length transactions of single
family, condo, or duplex properties and impose the following set of filters to ensure that our
final set of transactions provides an accurate measure of aggregate transaction volume over
the course of the sample period:

1. Drop transactions that are not uniquely identified using CoreLogic’s transaction ID.

2. Drop transactions with non-positive prices.

1We rely on CoreLogic’s internal transaction-type categorization to determine whether a transaction
occurred at arms length.
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3. Drop transactions that appear to be clear duplicates, identified as follows:

(a) If a set of transactions has an identical buyer, seller, and transaction price but are
recorded on different dates, keep only the earliest recorded transaction in the set.

(b) If the same property transacts multiple times on the same day at the same price
keep only one transaction in the set.

4. If more than 10 transactions between the same buyer and seller at the same price
are recorded on the same day, drop all such transactions. These transactions appear
to be sales of large subdivided plots of vacant land where a separate transaction is
recorded for each individual parcel but the recorded price represents the price of the
entire subdivision.

5. Drop sales of vacant land parcels in MSAs where the CoreLogic data includes such
sales.2 We define a vacant land sale to be any transaction where the sale occurs a year
or more before the property was built.

Table IA2 shows the number of transactions that are dropped from our sample at each stage
of this process as well as the final number of transactions included in our full analysis sample.

Identifying Occupant and Non-Occupant Buyers

We identify non-occupant buyers using differences between the mailing addresses listed by
the buyer on the purchase deed and the actual physical address of the property itself. In
most cases, these differences are identified using the house numbers from each address. In
particular, if both the mailing address and the property address have a non-missing house
number then we tag any instance in which these numbers are not equal as a non-occupant
purchase and any instance in which they are equal as occupant purchases. In cases where
the mailing address property number is missing we also tag buyers as non-occupants if both
the mailing address and property address street names are non-missing and differ from one
another. Typically, this will pick up cases where the mailing address provided by the buyer
is a PO Box. In all other cases, we tag the transaction as having an unknown occupancy
status.

Restricting the Sample for the Non-Occupant Analysis

Our analysis of non-occupant buyers focuses on the growth of the number of purchases by
these individuals between 2000 and 2005. To be sure that this growth is not due to changes
in the way mailing addresses are coded by the counties comprising the MSAs in our sample,
for the non-occupant buyer analysis we keep only MSAs for which we are confident such
changes do not occur between 2000 and 2005. In particular, we first drop any MSA in which
the share of transactions in any one year between 2000 and 2005 with unknown occupancy
status exceeds 0.5. Of the remaining MSAs, we then drop those for which the increase in the
number of non-occupant purchases between any year and the next exceeds 150%, with the

2MSAs are flagged as including vacant land sales if more then 5 percent of the sales in the MSA occur
more then two years before the year in which the property was built.
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possible base years being those between 2000 and 2005.3 The 102 MSAs that remain after
these two filters are marked with an “x” in columns 3 and 7 of Table IA1.

Restricting the Sample for Listings Analysis

The geographic and time series coverage of the CoreLogic MLS data is not as comprehensive
as the transaction-level data. As a result, our analysis of listings behavior is restricted to a
subset of markets for which we can be relatively certain that the MLS data is representative
of the majority of owner-occupied home sales in the area. We impose several filters to
identify this subset of MSAs. First, starting with the full set of 115 MSAs contained in
the transaction-level data, we drop any MSA for which there is not at least one new listing
in every month and in every county subcomponent of the MSA between January 2000 and
December 2014. Within the remaining set of MSAs we then drop any MSA for which the
number of new listings between 2006 and 2008 is more than 2.5 times the number of new
listings between 2003 and 2005. This filter eliminates MSAs that experience large jumps
in coverage during the quiet. Finally, we also drop any MSA for which the number of sold
listings (from the MLS data) is less than 25 percent of total sales volume (from the transaction
data) over the period 2003-2012. This filter eliminates MSAs for which the listings data is
likely to be unrepresentative of sales activity during our main sample period. This leaves a
final sample of 57 MSAs for our listings analysis. These MSAs are marked with an “x” in
columns 4 and 8 of Table IA1.

Identifying New Construction Sales

In several parts of our analysis we omit new construction sales from the calculation of total
transaction volume. To identify sales of newly constructed homes, we start with the internal
CoreLogic new construction flag and make several modifications to pick up transactions that
may not be captured by this flag. CoreLogic identifies new construction sales primarily using
the name of the seller on the transaction (e.g. “PULTE HOMES” or “ROCKPORT DEV
CORP”), but it is unclear whether their list of home builders is updated dynamically or
maintained consistently across local markets. To ensure consistency, we begin by pulling
the complete list of all seller names that are ever identified with a new construction sale
as defined by CoreLogic. Starting with this list of sellers, we tag any transaction for which
the seller is in this list, the buyer is a human being, and the transaction is not coded as a
foreclosure sale by CoreLogic as a new construction sale. We use the parsing of the buyer
name field to distinguish between human and non-human buyers (e.g. LLCs or financial
institutions). Human buyers have a fully parsed name that is separated into individual first
and name fields whereas non-human buyer’s names are contained entirely within the first
name field.

This approach will identify all new construction sales provided that the seller name is
recognized by CoreLogic as the name of a homebuilder. However, many new construction
sales may be hard to identify simply using the name of the seller. We therefore augment this
definition using information on the date of the transaction and the year that the property
was built. In particular, if a property was not already assigned a new construction sale using

3This step drops only Chicago-Naperville-Elgin, IL-IN-WI.
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the builder name, then we search for sales of that property that occur within one year of
the year that the property was built and record the earliest of such transactions as a new
construction sale.

Finally, for properties that are not assigned a new construction sale using either of the
two above methods, we also look to see if there were any construction loans recorded against
the property in the deeds records. If so, we assign the earliest transaction to have occurred
within three years of the earliest construction loan as a new construction sale. We use a
three-year window to allow for a time lag between the origination of the construction loan
and the actual date that the property was sold. Construction loans are identified using
CoreLogic’s internal deed and mortgage type codes.

B Robustness

B.1 Mechanical Short-Term Volume

In Figure 4 we document a rise in the share of volume coming from short-term sales during
the boom. Our interpretation of this pattern is that short-term volume rises due to a shift
in the composition of buyers toward those with shorter intended holding periods. However,
even in the absence of such a shift, any increase in total volume during the early part of
the boom will generate a mechanical increase in the share of late-boom volume coming from
short-term sales. The richness of our data allows us to quantify the contribution of this
mechanical force relative to changes in the composition of buyers.

For each pair of distinct months between 1995 and 2005, we compute a conditional selling
hazard πt′,t. This hazard is the share of homes purchased in month t′—and that have not
yet sold by month t—that sell in month t. By focusing on selling hazards instead of total
volume, we remove the mechanical force that comes from volume increasing over the cycle.

We estimate the following regression at the month-pair level:

πt′,t = αbuyy(t′) + αselly(t) + αdurationt−t′ + εt′,t,

where y(·) gives the year of the month. The first set of fixed effects, αbuyy(t′), captures the

average propensity of buyer cohorts from year y(t′) to sell in any future year. The second
set of fixed effects, αselly(t), captures the average propensity of all owners to sell in year y(t).

The third set of fixed effects, αdurationt−t′ , measures time-invariant selling hazard profiles as a

function of time elapsed since purchase t− t′. We interpret year-to-year movements in αbuyy(t′)

as changes in the composition of buyers across those years, holding fixed both year-specific
shocks to selling hazards that affect all cohorts equally and duration-specific drivers of selling
hazards that do not vary over the cycle.

Table IA3 reports the buy-year fixed effects estimates for years 2000 to 2005 relative to
2000. The fixed effects are linear differences of a monthly selling hazard, so multiplying by
12 roughly gives the effect on the annualized selling probability. Therefore, buyers in 2005
have a 3.2 percentage point larger annual selling hazard than buyers in 2000 (12 times 0.0027
equals 0.0324).

We use these estimates to construct counterfactual growth of short-term volume from
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2000 to 2005. For each 2000m1 ≤ t′ < t ≤ 2005m12, we construct the counterfactual selling
hazard as

πct′,t = πt′,t −
(
α̂buyy(t′) − α̂

buy
2000

)
,

which subtracts away any increase due to the change in the composition of buyers from 2000
to the year of t′. We then compute the counterfactual of vt′,t, the volume of homes bought
in t′ and sold in t, using the following iterative procedure. Let et′,t count homes bought in t′

that have not yet sold by t, and let c superscripts mark counterfactual values. We initialize
counterfactuals with actuals: for each 1995m1 ≤ t′ < 2005m12,

ect′,t′ = et′,t′

vct′,t′ = vt′,t′ .

We then iteratively update the counterfactuals over t running from t′ + 1 to 2005m12:

ect′,t = ect′,t−1 − vct′,t−1
vct′,t = πct′,te

c
t′,t.

To compute short-term volume in year y, we sum vt′,t across all subscripts for which y(t) = y
and 0 < t−t′ < 36; we sum vct′,t across the same indices for counterfactual short-term volume.

The remaining columns of Table IA3 report the results. Between 2000 and 2005, total
volume grows 36.7% and short-term volume grows 77.5% in the actual data. The dispro-
portionate rise in short-term volume is the difference, 40.8%. Counterfactual short-term
volume rises 41.5% between 2000 and 2005, giving a disproportionate rise of 4.8%. There-
fore, 4.8%/40.8% = 11.8% of the disproportionate rise in short-term volume remains in the
counterfactual. We attribute the 88.2% that disappeared to the changing composition of
buyers between 2000 and 2005.

B.2 Endogenous Holding Periods

The empirical evidence presented in Section 3 indicates that the differential entry of spec-
ulative buyers played a major role in driving the volume boom. However, the results for
short-term volume growth are based on realized rather than expected holding periods. This
way of measuring short-term speculation may complicate the interpretation of our results if
buyers’ intended holding periods endogenously respond to changes in economic conditions
during the boom. The results on non-occupant buyers partially address this concern as they
are based on a measure of speculative entry that does not suffer from the same issue. This
section addresses this issue further using an instrumental variables strategy.

Our approach instruments for realized short-term volume growth using ex-ante demo-
graphic characteristics of an area that are likely to be correlated with intended short holding
periods among potential homebuyers. We use the 2000 Census 5% microdata to calculate the
share of recent homebuyers (within the last 5 years) in each MSA that were either younger
than 35 or aged 65 and older at the time of questioning and include both shares as instru-
ments for 2000–2005 short-term volume growth. This approach follows Edelstein and Qian
(2014), who use data from the American Housing Survey to study demographic and mort-
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gage characteristics as predictors of ex-ante investment horizon. Both older and younger
buyers tend to have shorter horizons than middle-aged buyers, likely due to life cycle forces
that affect the propensity to move, which gives the instrument its relevance.

The strength of this instrument is that it is predetermined relative to the realized holding
periods for sellers in the boom and may therefore help purge our estimates of mechanical
bias arising from endogenous changes in holding periods over the course of ownership spells.
We stress this instrument does not remove the influence of age-specific shocks, so we do not
interpret the IV regressions as demonstrating a causal relation. Rather our goal with this
exercise is to mitigate potential mechanical feedback between total and short-term volume.

Table IA4 presents the results. Column 1 presents first stage regressions of the short-
term volume boom on the old and young shares. The F-statistic of 39.95 indicates the IV
regressions are well powered. Column 2 shows that an OLS regression of the 2000–2005
percent change in total volume on the 2000–2005 change in short-term volume divided by
year-2000 total volume replicates the conclusion from Figure 5, Panel C. Because we are
interested in instrumenting for short-volume growth, the left- and right-hand-side variables
in this regression are swapped relative to their analogs in Figure 5. Thus, the coefficient
estimate of 2.3 reported in Panel A is not directly comparable to the 0.3 number from
Figure 5, Panel C. We rescale the coefficient using a variance decomposition, which indicates
that 33 percent of the variation in total volume growth across MSAs can be explained by
changes in short-term volume, thus matching the short-term volume result from Figure 5.

In Table IA4, column 3, the short-term volume coefficient does not change when we
instrument using year-2000 homebuyer age. If a mechanical relation were driving this cor-
relation, we would expect the IV coefficient to fall relative to the OLS. Columns 4 through
7 show that the relations between the price boom and bust and the short-term volume
boom strengthen in the IV specifications. This result suggests a modest negative feedback
between price growth and holding period, perhaps reflecting a disposition effect force in
which price growth induces buyers to sell earlier than they otherwise would. Overall, the
IV results present strong evidence that the change in realized short-term volume is quan-
titatively important for determining overall volume growth and the size of the price cycle,
even when using only the portion of short-term volume growth predicted by ex-ante buyer
characteristics.

B.3 High Frequency Analysis of Price Growth and Speculative
Volume (pVAR)

To further investigate the link between house price changes and speculative entry, we examine
higher frequency data. Speculative buyers may both cause and respond to house price
changes. Because of the potential for this type of feedback mechanism, we do not attempt
to directly identify the “causal” effect of speculators on house prices.4 Instead, we follow
the approach in Chinco and Mayer (2015), who estimate predictive regressions that are
flexible enough to allow for some types of feedback between speculative entry and prices. In
particular, we estimate a series of panel vector auto-regressions (pVARs) that relate house

4Gao et al. (2020) exploit state capital gains tax changes as an instrument for speculation and use this
variation to measure the consequences of housing speculation for the real economy.
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price growth to the share of purchases made by non-occupant buyers and “short buyers”
(i.e., those who will sell within three years of purchase) at a monthly frequency in each MSA
between January 2000 and December 2006 (the year when prices peaked).

Table IA5 reports results from three different pVAR specifications. In column 1, we es-
timate a simple two-equation model that jointly links both month-over-month house price
growth to the lagged share of transactions by short-buyers (top panel) and the contempora-
neous short-buyer share to lagged house price appreciation (middle panel). Both equations
also include lags of the relevant dependent variable (house price appreciation in the top panel
and the short-buyer share in the middle panel).

The results indicate that a 1 percentage point increase in the fraction of purchases made
by short-term buyers in a given month is associated with a 0.02 percentage point increase
in the house-price appreciation rate in the following month. That is, short-buyer entry is
predictive of subsequent house price growth, though we stress that these predictive regres-
sions do not necessarily imply a causal relation. Interestingly, the results in the middle panel
indicate that short-buyer entry can also be predicted by recent house price growth. A 1
percentage point increase in house price growth in the prior month is associated with a 0.16
percentage point increase in the short-buyer share of entrants.

In column 2, we estimate a similar model swapping out the short-buyer share for the
non-occupant share of purchases. Unlike short-buyer entry, non-occupant entry does not
appear to be predictive for house price growth. The coefficient on the lagged non-occupant
share in the top panel is roughly half the magnitude of its short-buyer analog from column 1
and is not statistically significant. Non-occupants do, however, appear to respond similarly
to past price growth. The estimate in the bottom panel indicates that a 1 percentage point
increase in house price growth in the prior month is associated with a 0.12 percentage point
increase in the non-occupant share of entrants. This estimate is qualitatively similar to and
statistically indistinguishable from the analogous coefficient for short-term buyers.

Finally, in column 3 of the table we estimate a three-equation pVAR that allows for
joint relations between all three variables of interest. The results from this specification are
both qualitatively and quantitatively similar to those from columns 1 and 2. Short-buyer
entry is strongly predictive of subsequent house price growth and predicted by recent past
price growth, whereas non-occupant entry can be predicted by past price growth but is less
informative for predicting subsequent prices.

These results are similar both qualitatively and quantitatively to those in Chinco and
Mayer (2015) (see their Table 7). They find coefficients for lagged out-of-town second-house
buyers versus house price growth of 0.02 percentage points, which matches our short-buyer
share coefficient. They find that local second-house buyers do not predict future house
price growth. Combining their two groups of second-house buyers would deliver an estimate
identical to our non-occupant coefficient. Relative to their specification, we consider a sample
of MSAs that is five times as large and focus on the distinction between short-term buyers
and non-occupants rather than differences within the group of non-occupants.

C Additional analysis of speculation

In this appendix, we provide details about the calculations using microdata in Section 4.
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C.1 Overlap between short-term and non-occupant buyers

The statistics in the text focus on the non-occupant sample of 102 MSAs. Of 2000–2005
short-term volume, 790 thousand out of 2.93 million (27%) were non-occupant buyers (ex-
cluding developers). Short-term-non-occupant-buyer transactions increase over 2000–2005
from 90 thousand to 230 thousand, 41% of the overall growth in short-term transactions
(370 thousand to 710 thousand, excluding developers). Therefore, non-occupants account
for an excess share of the growth in short-term buyers.

In a related approach, we measure the share of 2000–2005 non-occupant purchases that
later become short-term sales. These calculations afford a direct comparison to the 2000–
2005 increase in non-occupant volume that we analyze in Section 3. However, they are not
completely comparable to the ones above, because they look until 2008 to see if a purchase
becomes a short-term sale. Of 2000–2005 non-occupant volume, 930 thousand out of 3.60
million (26%) become short-term sellers (excluding developers). Non-occupant purchases
that become short-term sales increase over 2000–2005 from 110 thousand to 210 thousand,
23% of the overall growth in non-occupant transactions (440 thousand to 880 thousand,
excluding developer buyers). These numbers imply there was not a shift in the composition
of non-occupant buyers during the boom toward short-term behavior. However, it is difficult
to measure short investment horizons of buyers at the end of the boom because many listings
from 2006–2008 did not sell quickly. Another interpretation of these results is that there was
secular growth in long-term non-occupants alongside the entry of short-term speculators
during the boom.

C.2 Credit utilization

To further investigate the role of credit, we decompose the increase in short-term selling
into groups of transactions based on how much leverage the buyer originally used. We focus
on a low-leverage group (purchase loan-to-value (LTV) < 60%), a medium-leverage group
(purchase LTV ∈ [60%, 85%)), and a high-leverage group (purchase LTV > 85%). Of the
short-term sellers in 2000–2005, 31% were low-LTV buyers, 33% were medium-LTV buyers,
and 36% were high-LTV buyers. In contrast, for the long-term sellers for whom we observe
purchase LTVs (i.e., with initial purchase during or after 1995), the distribution skews more
toward high-leverage buyers: 22% were low-LTV buyers, 30% were medium-LTV buyers, and
48% were high-LTV buyers. Between 2000 and 2005, low-LTV, medium-LTV, and high-LTV
short-term-buyer transactions account for 15%, 58%, and 27% of the growth in short-term
transactions, respectively.5 As in our analysis of cash transactions among speculators, these
statistics reveal that short-term volume is associated with lower use of leverage in the cross-
section relative to the general population.6 At the same time, the proportional growth in

5Of the short-term sellers in 2000–2005 with non-missing LTV, 1.24 million were low-LTV buyers, 1.33
million were medium-LTV buyers, and 1.46 million were high-LTV buyers. Between 2000 and 2005, the
number of low-LTV, medium-LTV, and high-LTV short-term-buyer transactions increases from 210 to 270
thousand, from 140 to 380 thousand, and from 190 to 300 thousand, respectively.

6In Table IA9 of the Online Appendix, we extend Table 3 to look at average purchase LTVs for short-term
and non-occupant buyers. Both speculative buyer types have lower average LTVs, which is exclusively driven
by their higher all-cash shares.
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short-term buying is stronger among medium- and high-LTV sellers, making a larger relative
contribution to the overall growth in short-term volume.

C.3 Buyer scale and experience

Scale. We mark transactions as developer purchases when the buyer’s name is not parsed
as a person by CoreLogic and contains strings reflecting developer names. We identify
developer names using CoreLogic’s internal new construction flag, as described in Online
Appendix A. Both this analysis and the analysis of inexperienced investors below exclude
transactions with missing buyer names.

In our sample, these transactions account for 6% of total volume and 9% of the growth
in volume between 2000 and 2005. Of the 3.95 million short-term sales in 2000–2005, the
initial purchases for 580 thousand (15%) were from developer buyers. From 2000 to 2005,
the number of short-term-buyer sales increases from 530 thousand to 930 thousand while the
number of short-term-developer-buyer sales increases from 100 thousand to 130 thousand,
or 8% of the growth in short-term volume. Though developers were active in the housing
market, they did not contribute disproportionately to short-term volume growth in the boom.
A possible reason is that developers were more likely to engage in speculation in the raw
land market (Nathanson and Zwick, 2018).

Experience. To flag non-developers as experienced or inexperienced, we count the total
number of transactions for each unique buyer name in an MSA. We classify buyers with
one or two purchases as inexperienced and those with three or more as experienced. Of the
2000–2005 short-term sales, 2.42 million of 3.36 million (72%) were inexperienced buyers
at the time of purchase (excluding developers). Thus, inexperienced buyers constitute 2.42
million of 3.95 million total short-term sales, or 61%. Between 2000 and 2005, the number
of inexperienced short-term-buyer sales increases from 310 thousand to 560 thousand, or
66% of the growth in short-term sales (excluding developers). The quantitative relevance of
inexperienced buyers for volume is consistent with the evidence in Bayer et al. (2020).

The patterns we document are consistent with speculative motives leading short-term
buyers to enter and exit the market in response to expected capital gains. But some short-
term sellers likely do not exit the market and instead choose to buy another house within the
same MSA. Such a pattern may reflect move-up purchases enabled by higher home equity
in the boom (Stein, 1995; Ortalo-Magné and Rady, 2006), or repeated buying and selling
of homes within the same market by experienced “flippers” (Bayer et al., 2020; Choi et al.,
2014).

To explore this alternative explanation, we follow the methodology of Anenberg and
Bayer (2013) and construct a direct measure of repeated within-MSA purchases. We use the
names of buyers and sellers to match transactions as being possibly linked in a joint buyer-
seller event. For each sale transaction, we attempt to identify a purchase transaction in
which the seller from the sale matches the buyer from the purchase. To allow the possibility
that a purchase occurs before a sale or with a lag, we look for matches in a window of plus or
minus one quarter around the quarter of the sale transaction. We only look for within-MSA
matches, as purchases associated with cross-city moves are similar in spirit to our model.
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Our match accounts for several anomalies that would lead a naive match strategy to
understate the match rate.7 Our approach is likely to overstate the number of true matches,
because it does not use address information to restrict matches, and it allows common names
to match even if they represent different people. Because we find a low match rate even with
this aggressive strategy, we do not make use of address information in our algorithm or
otherwise attempt to refine matches.

We focus on transactions between 2002 and 2011 because the seller name fields are
incomplete in prior years for several cities. We also restrict sales transactions to those
with human sellers, as indicated by the name being parsed and separated into first and last
name fields by CoreLogic. The sample includes 16.3 million sales transactions. Of these, we
are able to match 3.9 million to a linked buyer transaction, or 24%. Thus, three-quarters of
transactions do not appear to be associated with joint buyer-seller decisions. Among sellers
who had bought within the last three years, the match rate is slightly higher, equal to 31%,
consistent with move-up purchase or flipper behavior. In addition, the match rates peak in
2005 at 29% and 38% for all transactions and short-term transactions, respectively.8 These
patterns confirm and extend the findings in Anenberg and Bayer (2013), who conduct a
similar match for the Los Angeles metro area and show that internal moves account for a
substantial share of the volatility of transaction volume in that city. However, the evidence
supports the notion that sellers engaging in repeat purchases do not account for most of the
short-term volume and its growth, even during the cycle’s peak.

D Relation of model to literature

As mentioned in the Introduction, existing theoretical papers explain the comovement of
prices and volume. However, there are three additional results from our empirical work that
no prior model seems able to explain simultaneously.

First, the increase in volume during the boom, and listings during the boom and quiet,
come disproportionately from short-term sales (Figures 4 and 6). Search-and-matching mod-
els struggle to generate this pattern if the decision to list is independent of homeowner char-
acteristics, as in Wheaton (1990), Piazzesi and Schneider (2009), Dı́az and Jerez (2013),
Guren (2014), Head et al. (2014), and Anenberg and Bayer (2020).9 These models cannot
explain the result that homeowners who bought later in the boom were more likely to resell
than homeowners who bought earlier. Overconfidence models, such as Daniel et al. (1998,

7These include: inconsistent use of nicknames (e.g., Charles versus Charlie), initials in place of first
names, the presence or absence of middle initials, transitions from a couples buyer to a single buyer via
divorce, transitions from a single buyer to a couples buyer via cohabitation, and reversal of order in couples
purchases.

8The importance of internal volume varies across cities and years during the boom, with the internal move
share of MSA-level short-volume growth ranging from 35% to 46% on average. On average across MSAs,
growth in internal short-volume accounts for 35% of the growth in total short volume in 2005, the peak year
in total volume.

9Two exceptions are Hedlund (2016) and Ngai and Sheedy (2020), who respectively focus on credit
constraints and within-market moves. As we explain in Section 4.4 and Online Appendix C.3, short-term
volume increases significantly among low-LTV sellers, and most short-term sellers do not relocate within the
same MSA. Therefore, these two papers do not explain a substantial share of the disproportionate rise in
short-term volume during the boom.
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2001), generate speculative trading that accompanies booms and busts in asset prices. In
these models, an initial increase in asset prices boosts the confidence of optimistic investors,
leading them to push prices up further. However, these models are not designed to fit the rise
in short-term volume that occurs during booms, because the same overconfident investors
buy the asset in the early as well as the late stages of a boom. Other disagreement and
extrapolation–psychology papers can generate a disproportionate short-term volume boom,
as long as rising prices generate more disagreement or stronger psychological urges to both
buy and sell.

Second, non-occupants constitute a disproportionate share of the increase in buying ac-
tivity during the boom (Figure 4). Non-occupant purchasing is absent from many search-
and-matching models, either because the owner-occupied and rental markets are separate
(Guren, 2014), or because all non-occupant owners are previous occupants of the same house
(Head et al., 2014; Burnside et al., 2016). The extrapolation–psychology papers also provide
no role for non-occupants, as they model more general asset markets where all owners receive
the same flow benefits from the asset. Nathanson and Zwick (2018) present a disagreement
model in which non-occupants disproportionately buy housing during a boom, but their
model is static and is therefore not suited to explain the dynamics at the heart of this paper.

The third result is the existence of the quiet, during which prices and volume diverge
while listings accumulate (Figures 1 and 3). Disagreement papers and credit-constraint
housing models predict a monotonic relation between prices and volume, and therefore do
not explain a period when these outcomes move in opposite directions.10 Barberis et al.
(2018) and Liao and Peng (2018) generate a divergence of prices and volume, but listings
fall with volume because of Walrasian market clearing. A similar pattern of prices, volume,
and listings appears in Burnside et al. (2016). In contrast, Guren (2014) matches all three
variables. However, in that model, listings sharply decline during the boom (more than
one-for-one with respect to prices), and they never rise above their pre-shock level in the
impulse response. Empirically, listings modestly rise during the boom in the aggregate. The
sharp rise in listings during the quiet, far above their 2000 level, is perhaps the most salient
aspect of Figure 3.

E Proofs

E.1 Lemma 1

Agents at t believe that they observe dt−k = d̃t−k for all k > 0. Let g∗t denote the mean of
the posterior on gt−1 from this information, and σ2

l its variance. We solve for these outcomes
using standard Kalman filtering. Denote σ2

εd
= (1− γ)σ2

d and σ2
εg = γ(1− ρ2)σ2

d.
We have gt−1 = g∗t + ζgt , where ζgt ∼ N (0, σ2

l ). Therefore, gt = (1 − ρ)µg + ρgt−1 + εgt =

10An exogenous increase in overconfidence raises volume in Daniel et al. (2001) and Scheinkman and Xiong
(2003); it raises conditional return volatility in Daniel et al. (2001) while raising the price level in Scheinkman
and Xiong (2003). Disagreement accounts for some of the average prices and volume in the housing market
(Bailey et al., 2016) and can generate dispersion in beliefs about house price growth over the period we are
studying (Piazzesi and Schneider, 2009; Burnside et al., 2016). By definition, disagreement is less suited to
explain the high average level of these beliefs (Case et al., 2012; Foote et al., 2012; Cheng et al., 2014).
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(1−ρ)µg +ρg∗t +ρζgt + εgt . The prior on gt at t+1 is thus N ((1−ρ)µg +ρg∗t , ρ
2σ2

l +σ2
εg). The

information is ∆d̃t, which according to agents equals gt + εdt . Therefore, the new posterior
variance satisfies σ2

l = σ2
εd

(ρ2σ2
l + σ2

εg)(σ
2
εd

+ ρ2σ2
l + σ2

εg)
−1. Solving yields

σ2
l = (2ρ2)−1

(
−(1− ρ2)σ2

εd − σ
2
εg +

√
((1− ρ2)σ2

εd
+ σ2

εg)
2 + 4ρ2σ2

εd
σ2
εg

)
.

The new posterior mean satisfies g∗t+1 = (1−α)∆d̃t+α((1−ρ)µg+ρg∗t ), where α = σ2
εd
/(σ2

εd
+

ρ2σ2
l + σ2

εg). Iterating (and then subtracting one from the time subscripts everywhere) gives

g∗t = µg + (1− α)
∞∑
k=1

(αρ)k−1
(

∆d̃t−k − µg
)
.

Because ĝt = (1− ρ)µg + ρg∗t , we have proved the formula in the lemma for ĝt. We showed
above that σ̂2

g = ρ2σ2
l + σ2

εg . We have dt = dt−1 + gt + εdt = (dt−1 − d̃t−1) + d̃t−1 + (1 −
ρ)µg + ρgt−1 + εgt + εdt = (dt−1 − d̃t−1) + d̃t−1 + ĝt + ρζgt + εgt + εdt , which immediately gives

d̂t = d̃t−1 + ĝt, with σ̂2
d = ρ2σ2

l + σ2
εg + σ2

εd
.

The bound we assume for r (see Section 5.1) is

r > e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 − 1. (E1)

E.2 Lemma 2

By Lemma 1, ∆d̃t = ĝt+(d̃t−d̂t). Furthermore, ĝt+1 = µg+(αρ)(ĝt−µg)+(1−α)ρ(∆d̃t−µg) =

(1 − ρ)µg + ρĝt + (1 − α)ρ(d̃t − d̂t). Finally, d̂t+1 = d̃t + ĝt+1 = d̂t + (1 − ρ)µg + ρĝt + (1 +

(1− α)ρ)(d̃t − d̂t). From the point of view of agents, d̃t = dt. Therefore,

d̂t+1 = d̂t + (1− ρ)µg + ρĝt + (1 + (1− α)ρ)ζt (E2)

ĝt+1 = (1− ρ)µg + ρĝt + (1− α)ρζt, (E3)

where ζt ≡ dt − d̂t.
Write V m(d̂t, ĝt) = ed̂tvm(d̂t, ĝt) and P = ed̂tp. Then π̃(P, dt) = 1− F (log p+ log κ− ζt),

which we denote π̃(p, ζt) by abuse of notation. Substituting these expressions into (6) and
using (E2) yield

vm(d̂t, ĝt) = sup
p
E

(
π̃(p, ζt)p+

(1− π̃(p, ζt))e
(1−ρ)µg+ρĝt+(1+ρ−αρ)ζtvm(d̂t+1, ĝt+1)

1 + rm

)
, (E4)

with the expectation over ζt ∼ N (0, σ̂2
d) and ĝt+1 given by (E3). Because d̂t and d̂t+1 appear

only in the first argument of vm, this function does not depend on d̂t, so

V m(d̂t, ĝt) = ed̂tvm(ĝt). (E5)

It follows that the argmax of (E4) does not depend on d̂t. We denote it p(ĝt).
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E.3 Lemma 3

When rm → ∞, p(·) becomes constant, as is clear from (E4). In this case, the formula for
d̂t+1 at the beginning of the proof of Lemma 2 implies that ∆ logPt+1 = (1 − ρ)µg + ρĝt +

(1 + (1−α)ρ)(d̃t− d̂t). Solving for d̃t− d̂t and substituting it into the formula for ĝt+1 there
yields ĝt+1 = (1 + (1− α)ρ)−1((1− ρ)µg + ρĝt + (1− α)ρ∆ logPt+1). Iterating this formula
backwards (and then subtracting 1 from the time subscripts) gives

ĝt = µg + (1− α)
∞∑
k=1

(
ρ

1 + (1− α)ρ

)k
(∆ logPt−k − µg) .

Conditional on market data before t, agents at t believe that E(d̃t − d̂t) = 0. Therefore,
E∆ logPt+1 = (1 − ρ)µg + ρĝt. Substituting in the expression just derived for ĝt gives the
first equation in the lemma.

To derive the second equation, we let p denote the constant value of p(·) that holds in the
limit as rm →∞. From (5), d̃t = d̂t + log(κ p)−F−1(1− πt). Therefore, the equation above
for ∆ logPt+1 implies that ∆ logPt+1 = E∆ logPt+1+(1+(1−α)ρ) (log(κ p)− F−1(1− πt)),
as claimed.

E.4 Lemma 4

A potential buyer at t observes the history of price changes, Pt′/Pt′−1, but not past price
levels. Therefore, her information set is different than the one in the statement of Lemma 1.
Nonetheless, she still computes ĝt using the formula in Lemma 1, as that formula depends
only on past price changes and not past price levels. However, the formula for d̂t does not
work because it requires knowledge of Pt−1. Therefore, she imputes d̂t using her knowledge

of equilibrium and the list price she observes. In particular, given Lemma 2, P = ed̂tp(ĝt),
which implies that d̂t = log(P/p(ĝt)). The potential buyer’s decision rule is therefore

V b

(
log

(
P

p(ĝt)

)
, ĝt;λ, δ, n

)
≥ P. (E6)

The proof proceeds by showing that this inequality is equivalent to the one in Lemma 4
through suitable choice of κn,j(ĝt).

Write V s(d̂t, ĝt;λ, δ) = (r + λ)−1eδ + ed̂tvs(d̂t, ĝt;λ, δ). Substituting this equation, (E2),
and (E5) into (8) yields

vs(d̂t, ĝt;λ, δ) = (1 + r)−1E
(
e(1−ρ)µg+ρĝt+(1+ρ−αρ)ζt(λvm(ĝt+1) + (1− λ)vs(d̂t+1, ĝt+1;λ, δ))

)
,

(E7)
with the expectation over ζt ∼ N (0, σ̂2

d) and ĝt+1 given by (E3). Because d̂t, d̂t+1, and δ

appear only in the arguments of vs, that function does not depend on d̂t and δ, allowing us
to write V s(d̂t, ĝt;λ, δ) = (r + λ)−1eδ + ed̂tvs(ĝt;λ). Substituting this equation, (E2), and
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(E5) into (7) yields

V b(d̂t, ĝt;λ, δ, n) =
eδ

r + λ
+

ed̂t

1 + r
E
(
e(1−ρ)µg+ρĝt+(1+ρ−αρ)ζt (λvm(ĝt+1) + (1− λ)vs(ĝt+1;λ))

)
,

with the expectation over ζt ∼ N
(
σ̂2
d(δ−d̂t−µn)
σ2
a+σ̂

2
d

,
σ2
aσ̂

2
d

σ2
a+σ̂

2
d

)
and ĝt+1 given by (E3). Let Ψ(ζt, ĝt;λ)

denote the argument inside the expectation. We can simplify the buying decision, (E6), to

eδ

P
≥ (r + λ)

(
1− EΨ(ζt, ĝt;λ)

(1 + r)p(ĝt)

)
, (E8)

with the expectation over ζt ∼ N
(
σ̂2
d(log(e

δ/P )+log p(ĝt)−µn)
σ2
a+σ̂

2
d

,
σ2
aσ̂

2
d

σ2
a+σ̂

2
d

)
.

To proceed, we use the following lemma about vm(ĝt) and vs(ĝt;λ):

Lemma IA1. For all λ > 0, vm(ĝt) and vs(ĝt, λ) are continuous and weakly increasing
functions of ĝt.

Proof. Appendix E.5.

From IA1, it follows immediately that Ψ(ζt, ĝt;λ) is a continuous and weakly increasing
function of ζt for any gt and λ > 0, which implies that the right side of (E8) continuously and
weakly decreases in eδ/P . The left side continuous and strictly increases in eδ/P . Therefore,
for n, j, and ĝt such that the right side does not limit to a positive number as δ → ∞ for
λ = λj, then (E8) holds for all δ, meaning that Lemma 4 holds with κn,j(ĝt) = 0. If the
right side limits to a positive number as δ → −∞ when λ = λj, then by the Intermediate
Value Theorem, there exists a unique κn,j(ĝt) such that the inequality holds if and only if
eδ/P ≥ κn,j(ĝt), which proves Lemma 4.

E.5 Value Function Monotonicity

This section establishes that the functions vm(·) and vs(·;λ), which we define in the proofs
of Lemmas 2 and 4, weakly and continuously increase. We follow Stokey et al. (1989). To
apply their results, we need to work with a one-point (Alexandroff) compactification of a
subset of the real numbers. For a topological set X, the Alexandroff compactification is the
set X∗ = X ∪ {∞}, whose open sets are those of X together with sets whose complements
are closed, compact subsets of X; X∗ is compact (Kelley, 1955).

Lemma IA2. Let f : (0,∞) × R → R be continuous. Suppose there exists functions g0 :
R → R and g∞ : R → R such that limx→0 f(x, y) = g0(y) and limx→∞ g∞(y) uniformly.
Define f̃ : [0,∞)∗ × R → R by f̃(x, y) = f(x, y) for x ∈ (0,∞) and f̃(x, y) = gx(y) for
x ∈ {0,∞}. Then f̃ is continuous.

Proof. Let Z ⊂ R be open. We show that f̃−1(Z) is open by demonstrating that for each
(x, y) ⊂ f̃−1(Z), there exists an open set U such that (x, y) ∈ U ⊂ f̃−1(Z). If x ∈ (0,∞),
then set U = f−1(Z), which is open by the continuity of f . Consider the case x = 0.
Because Z is open, there exists ε > 0 such that all z with |z − g0(y)| < ε are in Z. By
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uniform convergence, there exists δ > 0 such that |f(x′, y′)− g0(y)| < ε for all x ∈ [0, δ) and
y ∈ R. Therefore, U = [0, δ) × R suffices. Consider the case x = ∞. There likewise exists
ε > 0 such that all z with |z − g∞(y)| < ε are in Z. By uniform convergence, there exists
N > 0 such that |f(x′, y′)− g∞(y)| < ε for all x > N and y ∈ R. Therefore, U = (N,∞)×R
suffices.

We next establish the existence of a continuous solution vm(·) to (E4). Let C be the
space of bounded continuous functions from R to itself. Let a > 0 be a constant. For v ∈ C,
we define the operator T by (Tv)(ĝ) = supp f(p, ĝ), where

f(p, ĝ) =

∫ ∞
−∞

(
π̃(p, ζ)p

a+ e
ρĝ
1−ρ

+
(1− π̃(p, ζ))e(1−ρ)µg+ρĝ+(1+ρ−αρ)ζ

1 + rm
×(

a+ eρµg+
ρ2ĝ
1−ρ+

ρ2(1−α)ζ
1−ρ

)
v((1− ρ)µg + ρĝ + ρ(1− α)ζ)

a+ e
ρĝ
1−ρ

φ(ζ)dζ,

where φ(·) is the probability density function of N (0, σ̂2
d). If v is a fixed point of T , then

vm(ĝ) = (a+ e
ρĝ
1−ρ )v(ĝ) solves (E4). We find a fixed point by demonstrating that T : C → C

and then showing that for a sufficiently small value of a, T satisfies the Blackwell conditions
and is hence a contraction mapping.

We first show that Tv ∈ C. We have the bound

||Tv|| ≤ sup
p

∫ ∞
−∞

a−1π̃(p, ζ)pφ(ζ)dζ+

(1 + rm)−1e(1−ρ)µg ||v|| sup
x

aeρx+
(1+ρ−αρ)2σ̂2d

2 + e
ρµg+

ρx
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρx
1−ρ

,

so Tv is bounded.
Demonstrating continuity is much more complicated. We first apply Lemma 12.14 of

Stokey et al. (1989) to establish the continuity of f(·, ·).
In their terminology, X = (0,∞), Z = R2, their y corresponds to our p, their z corre-

sponds to our (ĝ, ζ), and the transition function Q puts mass φ(ζ ′) on (ĝ, ζ ′) and mass 0
on other elements of Z. To apply their lemma, we must show that Q has the Feller prop-
erty, which means (see their page 375) that

∫
h(z′)Q(z, z′)dz′ is continuous in z as long

as h is continuous and bounded.11 Given our specification of Q, this integral reduces to∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′, which is trivially continuous in ζ. To demonstrate continuity in ĝ, we

closely follow the proof of their Lemma 9.5. Choose a sequence ĝn converging to ĝ. Then
|
∫∞
−∞ h(ĝn, ζ

′)φ(ζ ′)dζ ′ −
∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′| ≤

∫∞
−∞ |h(ĝn, ζ

′)− h(ĝ, ζ ′)|φ(ζ ′)dζ ′. Each func-
tion ζ ′ 7→ |h(ĝn, ζ

′)− h(ĝ, ζ ′)| converges pointwise to the zero function (by the continuity of
h), so by the Lebesgue Dominated Convergence Theorem (their Theorem 7.10), this integral

11Their lemma also requires that the term inside the integral defining f(·, ·), other than φ(ζ)dζ, is bounded
in p, ĝ, and ζ. This boundedness holds because v is bounded, because limp→∞ p̃(ζ, p)p = 0, and because
limζ→∞(1− π̃(p, ζ))ecζ = 0 for any c > 0.
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limits to zero. Therefore, ĝ 7→
∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′ is continuous in ĝ, and Q has the Feller

property. As a result, f(·, ·) is continuous on (0,∞)× R.
The next step is to invoke our Lemma IA2. To do so, we must show uniform converge

of f(p, ĝ) for p → 0 and p → ∞. In the first limit, f(p, ĝ) → 0, and this convergence is
uniform because terms with ĝ multiplying the terms with p are uniformly bounded in ĝ. In
the second limit, the convergence is to the integral in which π̃ = 0, and the convergence is
uniform for the same reason. Hence, Lemma IA2 applies, and the induced f̃ is continuous.

The final step is to show that (Tv)(ĝ) is continuous. This statement follows immediately
from Berge’s Maximum Theorem on general topological spaces (see, for instance, page 570
of Aliprantis and Border (2006)) because supp∈(0,∞) f(p, ĝ) = supp∈[0,∞)∗ f̃(p, ĝ) and because
[0,∞)∗ is compact. Therefore, Tv ∈ C.

We next verify the Blackwell conditions for T (Theorem 3.3 in Stokey et al. (1989)).
Monotonicity is trivial. Given the bound above, discounting holds as long as

(1 + rm)−1e(1−ρ)µg sup
x

aeρx+
(1+ρ−αρ)2σ̂2d

2 + e
ρµg+

ρx
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρx
1−ρ

< 1.

We are free to choose any positive value of a. By considering the limit as a → 0, we find
that we can choose such an a to satisfy this inequality as long as

(1 + rm)−1e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 < 1.

This inequality holds because rm ≥ r and we assume that (E1) holds. Therefore, by Theorem
3.3 of Stokey et al. (1989), T is a contraction mapping. By the Contraction Mapping
Theorem (their Theorems 3.1 and 3.2), T has a unique fixed point in C, as desired. Call this

function v∗. As mentioned above, vm(ĝ) = v∗(ĝ)(a + e
ρĝ
1−ρ ) then solves (E4); this function

clearly inherits the continuity of v∗.
Finally, we show that vm is weakly increasing. Let C ′ ⊂ C be the set of v such that

v(ĝ)(a+e
ρĝ
1−ρ ) weakly increases. We claim that C ′ is closed. Let {vn} be in C ′ converging in C

to v. For any ĝ0 < ĝ1, vn(ĝ1)(a+e
ρĝ1
1−ρ )−vn(ĝ0)(a+e

ρĝ0
1−ρ ) ≥ 0. Because vn converges pointwise

to v, we must have v(ĝ1)(a + e
ρĝ1
1−ρ )− v(ĝ0)(a + e

ρĝ0
1−ρ ) ≥ 0 as well. Therefore, Corollary 1 to

Theorem 3.2 of Stokey et al. (1989) shows that vm ∈ C ′ as long as T : C ′ → C ′, which is
immediate from (E4).

The task remaining for this appendix is to show that each vs(·;λ) weakly and continuously
increases. The argument proceeds as with vm(·), but we use (E7), and we can skip the steps
involving a supremum. Define the map T on C by

(Tv)(ĝ) =(1 + r)−1
∫ ∞
−∞

(
ae(1−ρ)µg+ρĝ+(1+ρ−αρ)ζ

a+ e
ρĝ
1−ρ

+

eµg+
ρĝ
1−ρ+

(1−αρ)ζ
1−ρ

a+ e
ρĝ
1−ρ

)
((1− λ)v(g′) + λv∗(g′))φ(ζ)dζ,
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where g′ = (1 − ρ)µg + ρĝ + ρ(1 − α)ζ, and a > 0 is a constant to be specified later. If v

is a fixed point of T , then vs(ĝ;λ) = (a + e
ρĝ
1−ρ )v(ĝ) solves (E7). Clearly, Tv is bounded.

To prove continuity, we again apply Lemma 12.14 of Stokey et al. (1989), this time with
X = Z = R, our ĝ corresponding to their y, and our ζ corresponding to their z. In order
to apply their lemma, we have to absorb the ζ terms into the Q transition function so that
their f is bounded. Using the identity e−z

2/(2σ2)+bz = eσ
2b2/2e−(z−σ

2b)2/(2σ2), we have

e(1+ρ−αρ)ζφ(ζ) = eσ̂
2
d(1+ρ−αρ)

2/2φ(ζ − σ̂2
d(1 + ρ− αρ))

and

e
(1−αρ)ζ

1−ρ φ(ζ) = e
σ̂2d(1−αρ)

2

2(1−ρ)2 φ

(
ζ − σ̂2

d(1− αρ)

1− ρ

)
.

These functions serve as constants times a valid transition function (we showed above that
the normal distribution with 0 mean and variance σ̂2

d has the Feller property), and the
remainder of the integrand is bounded in both ĝ and ζ. Thus, Lemma 12.14 applies and Tv
is continuous. As a result, T : C → C.

Next we verify the aforementioned Blackwell conditions for T . Monotonicity again is
trivial. Discounting holds if

1− λ
1 + r

sup
ĝ

ae(1−ρ)µg+ρĝ+
(1+ρ−αρ)2σ̂2d

2 + e
µg+

ρĝ
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρĝ
1−ρ

< 1.

Because we are free to pick any a > 0, the inequality holds for some such a if

(1− λ)e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 < 1 + r,

which always holds because λ ∈ [0, 1] and we assume that (E1) holds. Therefore, T satisfies
the Blackwell conditions and is a contraction mapping. As a result, it has a unique fixed

point in C. Call it v∗∗. Then vs(ĝ;λ) = (a+ e
ρĝ
1−ρ )v∗∗(ĝ) solves (E7).

Finally, we show that vs(·;λ) weakly and continuously increases. Continuity follows from
the continuity of v∗∗. As argued above, weak monotonicity holds as long as T : C ′ → C ′,
where this set is defined as above. That T maps C ′ into itself is immediate from (E7) and
the fact that vm weakly increases. QED

F Details on Counterfactuals

F.1 Walrasian extension

In the Walrasian version of our model, a mechanism selects a price each period so that the
number of potential buyers willing to buy at that price equals the number of movers willing to
sell. The main model assumes that each mover matches to a potential buyer with probability
one, which implicitly assumes that the potential buyer population moves in proportion to the
mover population. To maintain comparability with the main model, we make an analogous
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assumption in the Walrasian variant that the number of potential buyers at time t is NIt,
where N > 1 is a constant.

Here, we describe equilibrium in which all movers sell. In this case, (3) implies:

It = NIt (1− F (log κ+ logPt − dt)) .

Solving for Pt yields what agents believe is the equilibrium pricing function:

P̃ (dt) = κ−1eF
−1(1−N−1)edt = p̃edt .

In equilibrium, movers must weakly prefer selling at this price versus waiting to sell next
period. Therefore, we must have edt ≥ (1 + rm)−1Ete

dt+1 , where Et denotes the mover
expectation that we now specify. By observing the current and past prices, movers believe
that they observe the history of demand as d̃t−j = log(p̃−1Pt−j) for j ≥ 0. By a Kalman
filtering argument similar to the proof of Lemma 1, the mover posterior on gt at t has mean

ĝmt = µg + (1− α)
∞∑
j=0

(αρ)j
(

∆d̃t−j − µg
)

= µg + (1− α)
∞∑
j=0

(αρ)j (∆ logPt−j − µg)

and variance σ2
l . We have dt+1 = dt + gt+1 + εdt+1 = dt + (1 − ρ)µg + ρgt + εgt+1 + εdt+1 =

dt + (1− ρ)µg + ρĝmt + ρζgt + εgt+1 + εdt+1. Therefore,

Ete
dt+1 = edte(1−ρ)µg+ρĝ

m
t e(ρ

2σ2
l +σ

2)/2.

Mover optimality therefore requires that

ĝmt ≤ ρ−1
(
log(1 + rm)− (1− ρ)µg − (ρ2σ2

l + σ2)/2
)
.

This inequality cannot hold at all times because ĝmt is unbounded. Therefore, when the
expected growth rate is sufficiently high, some movers will refrain from selling their homes
at the Walrasian equilibrium price. However, we check that the inequality holds for all ĝmt
in the discrete mesh and also for all realized values in the simulations. For our parameters,
the right side equals 0.15, which is much larger than the maximal realized value of 0.03.
Therefore, in our simulations, we assume the approximation that the equilibrium always
features full sale by all movers at all times.

We now solve for the optimal potential buyer decision, which determines the true pricing
function. For j ≥ 1, potential buyers set ∆d̃t−j = ∆ logPt−j. They face the same filtering
problem on gt as potential buyers in the main model, so their posterior mean ĝt follows
the formula in Lemma 1. Because they sell immediately in the approximate equilibrium we
consider, the mover value is just the price, V m = p̃ed̃t . (In fact, even in the exact equilibrium,
the mover value coincides with the price because movers are indifferent between selling and
not.) The remainder of the derivation follows the proof of Lemma 4 closely, so we omit it.
That is, there exist functions κj(ĝt) such that a potential buyer purchases a house if and
only if eδ ≥ κj(ĝt)Pt. The functions no longer depend on n because the private flow utility
δ is uninformative about dt, as potential buyers believe that they observe dt perfectly via
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d̃t = log(p̃−1Pt). The actual equilibrium price must satisfy

It = NIt

(
1−

J∑
j=1

(β0,j + β1,j)F (log κj(ĝt) + logPt − dt)

)
,

for which it is clear that a unique solution always exists of the form Pt = p(ĝt)e
dt . We

discretize the ĝt space and solve for the pricing function p(·) and the κj(·) functions at these
values, interpolating/extrapolating in between and beyond the mesh.

To maintain comparability with the main model, we decrease γ to 0.042 so that the price
overshoot is the same in the Walrasian model as in the main model, and we update κ so
that the demand error is still zero on average. Under the baseline parameters, the price
paths in the Walrasian model seem to be explosive. We believe that prices explode because
they adjust more quickly with Walrasian market clearing. Choosing a lower γ leads to more
stable price paths as in the baseline model. Other parameters remain the same.

F.2 Comparing Short-term and Non-Occupant Buyers

To study the role of short-term buyers, we re-run the simulations setting βn,j = 0 for all
values of j except that for which λj = 0.03. Unlike the counterfactual in Section 6.5.3, we
keep a positive mass of non-occupant potential buyers, and we do so in two ways. In the
first, the share of non-occupants among potential buyers with λ = 0.03 equals its baseline. In
the second, we change this ratio to the non-occupant share in the whole baseline population.
The second version controls for the non-occupant share as we alter the λ distribution.

We perform a similar pair of counterfactual exercises to measure the effect of removing
non-occupant buyers. The first counterfactual sets the non-occupant shares, β0,j, to zero,
and then scales up the occupant shares, β1,j, so that they sum to one. This method skews
the λ distribution toward long-term potential buyers because occupants have longer horizons
than non-occupants. Therefore, we explore a second counterfactual in which we maintain
the original λ distribution while eliminating non-occupants. We continue to set each β0,j to
zero, but now we update β1,j to the baseline share of all potential buyers for whom λ = λj.

Table IA10 reports key outcomes from the impulse responses under the baseline and each
of these four counterfactuals. In the counterfactuals with only long-term buyers, the price
boom falls to 8.7% from its baseline of 14.5%, meaning that short-term buyers amplify the
price boom by 67%. Furthermore, in the counterfactuals, the price bust nearly disappears,
the volume boom is half its baseline size, and sale probabilities rise less. Inventories fall more
during the boom and attain a smaller level at the end of the quiet.12 Therefore, eliminating
short-term buyers prevents the model from matching key aggregate facts (Figures 1 and 3).13

We obtain similar results in the first counterfactual with only occupants: the price bust,

12These counterfactuals do a better job matching inventory levels during the bust, which reach 1.6% above
the initial level, a higher peak than the baseline. In the baseline, new listings fall sharply during the bust
because short-term buyers exit the market (Panel F of Figure 11). Thus, the baseline does a better job
matching listing behavior in the boom and quiet than in the bust.

13The occupant adjustment does not affect the cycle because agents in the model correctly understand the
distribution of housing utility, meaning that changing the housing utility distribution does not destabilize
prices.
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volume boom, rise in sale probabilities, and end-of-quiet listings become significantly smaller.
However, when we adjust the λ distribution in the last counterfactual, eliminating non-
occupants fails to attenuate the cycle. In fact, the cycle outcomes grow in this scenario.
Evidently, non-occupants amplify the housing cycle, but only because many of them have
short horizons. Long-term non-occupants fail to amplify the cycle and may even dampen it.

One concern is that the occupant premium, µ1, is about 7 times smaller than the standard
deviation of flow utility, σa. Therefore, non-occupants may play a small role in amplifying the
cycle solely because of parameter values in which non-occupants closely resemble occupants.
To investigate this possibility, Table IA11 regenerates the first, third, and fifth columns of
Table IA10 under the larger values of µ1 = 0.033 and µ1 = 0.066, corresponding to 50%
and 100% of the baseline value of σa. We continue to find significant attenuation of the
cycle with all long-term buyers if we adjust for the occupant distribution, but not with all
occupant buyers if we adjust for the λ distribution.

These results speak to the finding in Table 2 that a short-volume boom more robustly
predicts price booms and busts than does a non-occupant boom. Our findings are consistent
with Gao et al. (2020), who find that non-occupants amplify the housing bust, as that paper
does not look separately at long-term versus short-term non-occupants. Chinco and Mayer
(2015) find a stronger effect of out-of-town than local non-occupant buyers on subsequent
price growth. This finding is consistent with our results if out-of-town buyers have shorter
horizons than local ones. Finally, our results echo Nathanson and Zwick (2018), who the-
oretically predict larger house price booms in cities with a greater share of non-occupant
buyers when those buyers disagree about future prices and the housing stock is fixed. Static
disagreement in that model functions similarly to how, in this model, variation in horizons
interacts with extrapolative expectations to generate heterogeneous expected returns.
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FIGURE IA1
The Dynamics of Prices and Volume (Non-Sand-State Cities)

Panel A. Boston, MA Panel B. Cleveland, OH
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Panel C. Portland, OR Panel D. Seattle, WA
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Notes: This figure displays the dynamic relation between prices and volume in the U.S. housing market
between 2000 and 2011. In Figure 1, we focus on cities that represent the largest boom–bust cycles. Here,
we focus on the largest cities outside of the sand states for which we have both volume and listings data.
Variables are defined as in Figure 1. Shaded regions denote the quiet, defined as the period between the
peak of volume and the last peak of prices before their pronounced decline.
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FIGURE IA2
The Lead–Lag Relationship between Prices and Volume (No Sand States)
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Notes: This figure shows that the correlation between prices and lagged volume is robust across MSAs. The
figure is constructed as in Figure 2 but excludes MSAs in Arizona, California, Florida, and Nevada.
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FIGURE IA3
The Dynamics of Prices and Inventories (Non-Sand-State Cities)

Panel A. Boston, MA Panel B. Cleveland, OH

50
80

11
0

14
0

17
0

20
0

M
on

th
ly

 In
ve

nt
or

y 
(R

el
at

iv
e 

to
 M

ea
n 

in
 2

00
1,

 %
)

10
0

12
0

14
0

16
0

18
0

20
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1

50
80

11
0

14
0

17
0

20
0

M
on

th
ly

 In
ve

nt
or

y 
(R

el
at

iv
e 

to
 M

ea
n 

in
 2

00
1,

 %
)

10
0

12
0

14
0

16
0

18
0

20
0

C
or

eL
og

ic
 P

ric
e 

In
de

x

2001m1 2003m1 2005m1 2007m1 2009m1 2011m1
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Notes: This figure displays the dynamic relation between prices and inventory in the U.S. housing market
between 2000 and 2011. In Figure 3, we focus on cities that represent the largest boom–bust cycles. Here,
we focus on the largest cities outside of the sand states for which we have both volume and listings data.
Variables are defined as in Figure 3. Shaded regions denote the quiet, defined as the period between the
peak of volume and the last peak of prices before their pronounced decline.
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FIGURE IA4
Additional Impulse Responses in Counterfactuals

Panel A. Pr(Sale | Listing),
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Panel E. Pr(Sale | Listing),
No Speculation

Panel F. New Listings by Holding Period,
No Speculation
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. A short holding period is defined as less than or equal to 12 quarters.
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FIGURE IA5
Adjusted Buying Cutoffs for Different Expected Growth Rates

Panel A. Tax on all buyers Panel B. Tax on non-occupant buyers
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Notes: The adjusted buying cutoff for occupancy type n and horizon type λj is κκτn,j(ĝ)/κτ , where τ = (τ0, τ1) is the vector of tax rates. In Panel A,
we explore a 5% on all buyers, so that τ = (0.05, 0.05). In Panel B, we explore a tax that binds only on non-occupants, so that τ = (0.05, 0). Solid
lines correspond to occupants (n = 1); dashed lines correspond to non-occupants (n = 0). The horizontal grey dashed line gives κ.
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TABLE IA1
List of Metropolitan Statistical Areas Included in the Analysis Sample

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Akron, OH 1.00 x x New York-Newark-Jersey City, NY-NJ-PA 0.97 x
Ann Arbor, MI 1.00 x x North Port-Sarasota-Bradenton, FL 1.00 x
Atlanta-Sandy Springs-Roswell, GA 0.80 Norwich-New London, CT 1.00 x
Atlantic City-Hammonton, NJ 1.00 x x Ocala, FL 1.00 x x
Bakersfield, CA 1.00 x x Ocean City, NJ 1.00 x x
Baltimore-Columbia-Towson, MD 1.00 x Olympia-Tumwater, WA 1.00 x x
Barnstable Town, MA 1.00 x Orlando-Kissimmee-Sanford, FL 1.00 x
Bellingham, WA 1.00 x x Oxnard-Thousand Oaks-Ventura, CA 1.00 x x
Bend-Redmond, OR 1.00 x Palm Bay-Melbourne-Titusville, FL 1.00 x
Boston-Cambridge-Newton, MA-NH 0.89 x Pensacola-Ferry Pass-Brent, FL 1.00 x
Boulder, CO 1.00 x x Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.00 x
Bremerton-Silverdale, WA 1.00 x x Phoenix-Mesa-Scottsdale, AZ 1.00 x x
Bridgeport-Stamford-Norwalk, CT 1.00 x Pittsfield, MA 1.00
Buffalo-Cheektowaga-Niagara Falls, NY 0.80 x x Portland-Vancouver-Hillsboro, OR-WA 0.97 x x
California-Lexington Park, MD 1.00 x Port St. Lucie, FL 1.00 x x
Canton-Massillon, OH 0.92 x x Prescott, AZ 1.00 x x
Cape Coral-Fort Myers, FL 1.00 x x Providence-Warwick, RI-MA 0.78 x
Champaign-Urbana, IL 0.82 x Punta Gorda, FL 1.00 x
Charleston-North Charleston, SC 0.79 x Raleigh, NC 0.78 x
Chicago-Naperville-Elgin, IL-IN-WI 0.90 Reading, PA 1.00 x
Chico, CA 1.00 x Redding, CA 1.00 x
Cincinnati, OH-KY-IN 0.78 x x Reno, NV 0.99 x x
Cleveland-Elyria, OH 1.00 x x Riverside-San Bernardino-Ontario, CA 1.00 x x
Colorado Springs, CO 0.95 x Rockford, IL 0.84 x
Crestview-Fort Walton Beach-Destin, FL 1.00 x Sacramento–Roseville–Arden-Arcade, CA 1.00 x x
Dallas-Fort Worth-Arlington, TX 0.85 x Salem, OR 0.79 x
Dayton, OH 0.86 x x Salinas, CA 1.00 x
Deltona-Daytona Beach-Ormond Beach, FL 1.00 x x San Diego-Carlsbad, CA 1.00 x x
Denver-Aurora-Lakewood, CO 0.95 x San Francisco-Oakland-Hayward, CA 1.00 x x
El Centro, CA 1.00 x San Jose-Sunnyvale-Santa Clara, CA 1.00 x
El Paso, TX 0.99 x x Santa Cruz-Watsonville, CA 1.00 x
Elmira, NY 1.00 x San Luis Obispo-Paso Robles-Arroyo Grande, CA 1.00 x x
Erie, PA 1.00 x Santa Maria-Santa Barbara, CA 1.00 x
Eugene, OR 1.00 x x Santa Rosa, CA 1.00 x
Flagstaff, AZ 1.00 x Seattle-Tacoma-Bellevue, WA 1.00 x x
Fort Collins, CO 1.00 x x Sebastian-Vero Beach, FL 1.00 x
Fresno, CA 1.00 x Sebring, FL 1.00 x
Gainesville, FL 0.91 x Sierra Vista-Douglas, AZ 1.00 x
Gainesville, GA 1.00 Spokane-Spokane Valley, WA 0.87 x
Hanford-Corcoran, CA 1.00 x Springfield, IL 0.93 x
Hartford-West Hartford-East Hartford, CT 1.00 x Springfield, MA 1.00 x
Homosassa Springs, FL 1.00 x x Springfield, OH 1.00 x
Ithaca, NY 1.00 x x Stockton-Lodi, CA 1.00 x x
Jacksonville, FL 0.98 x Tampa-St. Petersburg-Clearwater, FL 1.00 x
Kahului-Wailuku-Lahaina, HI 1.00 x x The Villages, FL 1.00 x
Kingston, NY 1.00 x x Toledo, OH 0.92 x x
Lake Havasu City-Kingman, AZ 1.00 x x Trenton, NJ 1.00 x
Lakeland-Winter Haven, FL 1.00 x Tucson, AZ 1.00 x x
Lancaster, PA 1.00 x x Urban Honolulu, HI 1.00 x x
Las Vegas-Henderson-Paradise, NV 1.00 x Vallejo-Fairfield, CA 1.00 x
Los Angeles-Long Beach-Anaheim, CA 1.00 x x Vineland-Bridgeton, NJ 1.00 x x
Madera, CA 1.00 x Visalia-Porterville, CA 1.00 x
Merced, CA 1.00 x x Washington-Arlington-Alexandria, DC-VA-MD-WV 0.95 x
Miami-Fort Lauderdale-West Palm Beach, FL 1.00 x Worcester, MA-CT 1.00 x
Modesto, CA 1.00 x x Youngstown-Warren-Boardman, OH-PA 0.80 x x
Napa, CA 1.00 x Yuba City, CA 1.00 x
Naples-Immokalee-Marco Island, FL 1.00 x x Yuma, AZ 1.00 x
New Haven-Milford, CT 1.00 x

Notes: This table lists the Metropolitan Statistical Areas that are included in the final analysis sample along
with the share of the total 2010 owner-occupied housing stock for each MSA that is represented by the subset
of counties for which CoreLogic has consistent data coverage back to 1995.
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TABLE IA2
Number of Transactions Dropped During Sample Selection

Original number of Transactions 57,668,026

Dropped: Non-unique CoreLogic ID 50
Dropped: Non-positive price 3,309,100
Dropped: Duplicate transaction 618,129
Dropped: Subdivision sale 1,321,261
Dropped: Vacant lot 839,078

Final Number of Transactions 51,580,408

Notes: This table shows the number of transactions dropped at each stage of our sample-selection procedure.
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TABLE IA3
Mechanical Short-Term Volume Estimates

Year α̂buyy − α̂
buy
2000 Total Volume

Actual
Short-Term

Volume

Counterfactual
Short-Term

Volume

2000 0 2821596 512787 512787
2001 0.0003 2757954 499643 494741
2002 0.0008 2985550 556987 534342
2003 0.0014 3226968 614429 557701
2004 0.0023 3667997 772708 659111
2005 0.0027 3857236 909976 725847

2000–2005
growth

– 36.7% 77.5% 41.5%

Notes: Total Volume gives annual transaction counts in our analysis sample. Actual Short-Term Volume are
sales of properties for which the previous purchased occurred less than 36 months in the past. We estimate
αbuyy , a fixed effect for the propensity to sell a house having bought it in year y, using the regression equation

in Section B.1. In the counterfactual, we assume that αbuyy remains constant at its level in y = 2000 for
y ∈ {2001, 2002, 2003, 2004, 2005}.
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TABLE IA4
Instrumental Variables Estimation of the Role of Short-Term Volume

Volume Boom Price Boom Price Bust

First Stage OLS IV OLS IV OLS IV

Short-Volume Boom 2.28*** 2.28*** 2.18*** 2.78*** -0.77*** -1.05***
(0.12) (0.18) (0.38) (0.57) (0.09) (0.13)

Old Share 1.69***
(0.26)

Young Share 0.66**
(0.32)

Number of Observations 102 102 102 102 102 102 102
R-squared 0.45 0.79 0.79 0.25 0.23 0.45 0.39
F-Statistic 39.95

Notes: This table presents OLS and IV regressions at the MSA level of price and volume housing cycle
measures on the change in short-holding-period volume from 2000 to 2005 relative to total volume in 2000.
In the IV regressions, Short-Volume Boom is instrumented with demographic data from the 2000 Census 5%
microdata. The instruments are the share of recent buyers under 35 and the share of recent buyers aged 65
or older. Census microdata was not available for 13 MSAs in our sample, hence the lower sample count in
this table. The first column presents the first-stage regression and F-statistic.
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TABLE IA5
House Price Appreciation and Speculative Buyer Shares (Monthly Panel VAR)

House Price Appreciation Rate

Lagged Price Appreciation 0.375*** 0.387*** 0.372***
(0.026) (0.027) (0.026)

Lagged Short-Buyer Share 0.021*** 0.023***
(0.005) (0.005)

Lagged Non-Occupant Share 0.009 0.006
(0.008) (0.006)

Short-Buyer Share

Lagged Price Appreciation 0.163*** 0.162***
(0.048) (0.048)

Lagged Short-Buyer Share 0.780*** 0.781***
(0.024) (0.023)

Lagged Non-Occupant Share 0.001
0.017

Non-Occupant Share

Lagged Price Appreciation 0.124*** 0.172***
(0.044) (0.045)

Lagged Short-Buyer Share -0.071***
(0.016)

Lagged Non-Occupant Share 0.892*** 0.900***
(0.025) (0.021)

Notes: This table presents estimates from MSA-by-month panel vector autoregressions (pVARs) describing
the relation between house price growth and the share of purchases made by non-occupant buyers and “short
buyers,” defined as buyers who will sell within three years of purchase. The left-hand-side variables are house
price appreciation from t− 1 to t, the short-buyer share of total volume in t, and the non-occupant share of
total volume in t. The right-hand-side variables are lagged versions of these variables. The sample includes
8,568 observations for 102 MSAs for which we can consistently identify non-occupant buyers. House price
appreciation has a mean of 0.84% and a standard deviation of 1.32%. Short-buyer share has a mean of 21.0%
and a standard deviation of 5.5%. Non-occupant share has a mean of 32.8% and a standard deviation of
18.9%. Column (1) includes only house price appreciation and the short-buyer share. Column (2) includes
only house price appreciation and the non-occupant share. Column (3) includes both speculative volume
measures. The sample period includes the boom and quiet, which runs from January 2000 through December
2006. Regressions include MSA and month fixed effects and thus report the average autoregressive relations
within MSAs over time. We seasonally adjust house prices by removing MSA-by-calendar-month fixed effects
before computing house price growth. Standard errors are clustered at the MSA level.
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TABLE IA6
Speculators and Housing Market Outcomes (Extra Listing Outcomes)

Panel A. Propensity to List

∆ New Listings Boom ∆ New Listings Quiet

Short-Volume Boom 0.270 0.649***
(0.182) (0.160)

Non-Occupant Volume Boom 0.115 0.308***
(0.092) (0.080)

Number of Observations 57 48 57 48
R-squared 0.038 0.033 0.229 0.243

Panel B. Sale Probability

∆ P(Sale) Boom ∆ P(Sale) Quiet

Short-Volume Boom 0.142*** -0.163***
(0.032) (0.031)

Non-Occupant Volume Boom 0.058*** -0.047**
(0.017) (0.018)

Number of Observations 57 48 57 48
R-squared 0.268 0.206 0.332 0.122

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures at
the MSA level. Short-Volume Boom has a mean of 16.0% and a standard deviation of 12.9%. Non-Occupant
Volume Boom has a mean of 29.3% and a standard deviation of 27.1%. ∆ New Listings Boom is defined as
the change in the flow of listings from 2003 through 2005. ∆ New Listings Quiet is defined as the change
in the flow of listings from 2005 through 2007. These outcomes correspond to listing propensities among
existing homeowners. ∆ P(Sale) Boom is defined as the change in the probability of sale among the observed
stock of listings from 2003 through 2005. ∆ P(Sale) Quiet is defined as the change in the probability of sale
among the observed stock of listings from 2005 through 2007. To aid interpretation of these relations, we
scale the change in outcomes for all quantity measures relative to total volume in 2003. We do not scale the
sale probability. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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TABLE IA7
Speculative Booms and Housing Market Outcomes (Sand State Control)

Panel A. MSA-Level Prices

Price Boom Price Bust

Short-Volume Boom 1.022*** -0.237***
(0.272) (0.061)

Non-Occupant Volume Boom 0.228 -0.044
(0.142) (0.032)

Number of Observations 115 102 115 102
R-squared 0.514 0.453 0.696 0.662

Panel B. MSA-Level Inventories

∆ Listings Boom ∆ Listings Quiet

Short-Volume Boom -1.581 4.276***
(1.163) (1.461)

Non-Occupant Volume Boom -0.206 1.930***
(0.525) (0.642)

Number of Observations 57 48 57 48
R-squared 0.034 0.020 0.337 0.440

Panel C. MSA-Level Volume Quiet and Bust

∆ Volume Quiet + Bust Foreclosures Bust

Short-Volume Boom -1.145*** -0.233
(0.105) (0.377)

Non-Occupant Volume Boom -0.516*** -0.451**
(0.053) (0.185)

Number of Observations 115 102 115 102
R-squared 0.533 0.505 0.317 0.333

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures
at the MSA level. The table follows Table 2 while adding a control for “Sand States,” which is an indicator
for MSAs in Arizona, California, Florida, and Nevada.
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TABLE IA8
Speculators and Housing Market Outcomes (Extra Listing Outcomes, Sand State Control)

Panel A. Propensity to List

∆ New Listings Boom ∆ New Listings Quiet

Short-Volume Boom 0.050 0.431**
(0.198) (0.171)

Non-Occupant Volume Boom 0.040 0.228***
(0.087) (0.072)

Number of Observations 57 48 57 48
R-squared 0.131 0.213 0.323 0.451

Panel B. Sale Probability

∆ P(Sale) Boom ∆ P(Sale) Quiet

Short-Volume Boom 0.146*** -0.086***
(0.036) (0.028)

Non-Occupant Volume Boom 0.058*** -0.021
(0.018) (0.013)

Number of Observations 57 48 57 48
R-squared 0.268 0.206 0.598 0.607

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures
at the MSA level. The table follows Table IA6 while adding a control for “Sand States,” which is an indicator
for MSAs in Arizona, California, Florida, and Nevada.
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TABLE IA9
All-Cash Buyer Shares and Mean LTV by Buyer Type

Transaction-Level MSA-Level

All Months All Months Boom Quiet Bust

All-Cash Buyer Share

Short Buyers 0.29 0.38 0.29 0.28 0.52
(0.21) (0.16) (0.17) (0.20)

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50
(0.18) (0.15) (0.14) (0.18)

All Buyers 0.20 0.25 0.22 0.20 0.30
(0.16) (0.15) (0.14) (0.16)

Mean LTV

Short Buyers 0.59 0.52 0.60 0.59 0.41
(0.40) (0.18) (0.13) (0.13) (0.17)

Non-Occupant Buyers 0.50 0.48 0.52 0.54 0.41
(0.41) (0.14) (0.12) (0.11) (0.15)

All Buyers 0.65 0.62 0.64 0.64 0.59
(0.36) (0.13) (0.12) (0.11) (0.14)

Mean LTV | LTV > 0

Short Buyers 0.84 0.85 0.84 0.82 0.85
(0.16) (0.06) (0.05) (0.04) (0.07)

Non-Occupant Buyers 0.81 0.82 0.82 0.80 0.82
(0.17) (0.06) (0.06) (0.05) (0.06)

All Buyers 0.82 0.83 0.82 0.80 0.85
(0.16) (0.05) (0.04) (0.04) (0.05)

Notes: This table presents statistics on LTV ratios and the share of buyers of various types who purchased
their homes without the use of a mortgage. In column 1, statistics are measured at the transaction level
and includes all transactions recorded between January 2000 and December 2011 from the CoreLogic deeds
records described in Section 1.1. The first row of each panel includes only transactions by homebuyers
who are observed to have sold the home within three years of purchase. The second row of each panel
includes only non-occupant buyers. The third row of each panel includes all buyers. In columns 2–5, means
are first calculated at the MSA-by-month level and then averaged across MSA-months within a given time
period. The standard deviation of these MSA-month means is reported in parentheses. Column 2 includes
all MSA-months between January 2000 and December 2011. Column 3 includes only MSA-months between
January 2000 and August 2005. Column 4 includes only MSA-months between August 2005 and December
2006. Column 5 includes only MSA-months between December 2006 and December 2011. All statistics are
calculated in the full sample of 115 MSAs with the exception of those for non-occupants, which are calculated
in the sample of 102 MSAs with valid non-occupancy data.
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TABLE IA10
Model counterfactuals

All long-term buyers All occupants

Outcome Baseline No occupant Occupant No short-term Short-term
adjustment adjustment adjustment adjustment

Price boom 14.5 8.7 8.7 9.4 14.6
Price bust −8.2 −0.4 −0.4 −0.6 −8.3
Volume boom 5.8 2.9 2.9 2.1 5.8
Listings, end of boom −1.3 −3.1 −3.1 −0.2 −1.3
Listings, end of quiet 1.4 0.4 0.4 0.0 1.4
Short volume boom 14.1 3.4 3.4 6.4 14.1
Non-occupant volume boom 12.3 3.6 3.6 – –
Sale probability boom 7.1 6.0 6.0 2.3 7.1

Notes: We report 100 times changes in log outcomes between treatment and control simulations. See notes
to Table 6 for outcome definitions. A two-sided minimum for prices does not occur in the 48 analysis periods
in the fourth column, so we extend the analysis 60 additional periods to find such a minimum in order to
measure the price bust. The counterfactals involve different values of the underlying distribution of potential
buyers, βn,j , that the text describes. We alter κ in each counterfactual to maintain a zero demand error
while keeping other parameters the same. The baseline values correspond to Figure 11.
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TABLE IA11
Robustness to larger occupant premium (µ1)

µ1 = 0.033 µ1 = 0.066

Outcome Baseline
All

long-term
buyers

All
occupants

Baseline
All

long-term
buyers

All
occupants

Price boom 14.0 8.7 14.6 12.8 8.6 14.6
Price bust −7.6 −0.4 −8.3 −5.6 −0.3 −8.3
Volume boom 5.6 2.9 5.8 4.9 2.9 5.8
Listings, end of boom −1.2 −3.1 −1.3 −1.0 −3.0 −1.3
Listings, end of quiet 1.3 0.4 1.4 0.9 0.3 1.4
Short volume boom 13.8 3.4 3.4 12.5 3.4 14.1
Non-occupant volume boom 11.3 5.6 – 7.5 9.1 –
Sale probability boom 6.8 6.0 7.1 6.0 5.9 7.1

Notes: We report 100 times changes in log outcomes between treatment and control simulations. See notes
to Table 6 for outcome definitions. For each value of µ1, we re-choose the other parameters in Table 5
by matching the targets in Table 4 other than non-occupant boom/occupant boom. The Baseline column
reports outcomes under each new set of parameters. In the All long-term buyers column, we further change
the βn,j distribution to put all weight on λ = 0.03 while keeping the occupancy distribution unchanged,
corresponding to the third column of results in Table IA10. In the All occupants column, we further change
the βn,j distribution to put all weight on n = 1 while keeping the λ distribution unchanged, corresponding
to the fifth column of results in Table IA10.
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