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The rapid growth of the cryptocurrency market in the last few years promises a new

funding model for innovative digital platforms. Rampant speculation and volatility in the

trading of many cryptocurrencies, however, have also raised substantial concerns that asso-

ciate cryptocurrencies with potential bubbles. The failure of the DAO only a few months

after its ICO raised $150 million in 2016, together with a number of other similar episodes,

particularly highlights the risks and fragility of cryptocurrencies. Understanding the risks

and potential benefits of cryptocurrencies requires a systematic framework that incorporates

several integral characteristics of cryptocurrencies– their roles in funding digital platforms

and in serving as investment assets of speculators, and their integration of blockchain tech-

nology with decentralized consensus protocols to record transactions on the platforms. We

develop such a model in this paper.

Specifically, our model analyzes the properties of utility tokens, a subset of cryptocur-

rencies along with coins and security tokens. Utility tokens are native currencies accepted

on decentralized digital platforms that often provide intrinsic benefit to participants.1 The

benefits of utility tokens can range from provision of secure and verifiable peer-to-peer trans-

action services to the maintenance of smart contracts. Examples of such utility tokens include

Ether, which enables participants to write smart contracts with each other, Filecoin, which

matches the demand and supply for decentralized computational storage, and GameCredits,

which finances the purchase, development, and consumption of online games and gaming

contents. The development of these platforms is financed by the sale of tokens to investors

and potential users through the issuance of utility tokens.

In our model, a cryptocurrency serves as membership to a platform, created by its de-

veloper to facilitate decentralized bilateral transactions of certain goods or services among a

pool of users by using a blockchain technology. Users face diffi culty in making such transac-

tions outside the platform as a result of severe search frictions. The value of the platform,

consequently, lies with its design in filling the users’transaction needs, and in its capability

in pooling together a large number of users with the need to transact with each other. We

1In contrast, coins (and altcoins), such as Bitcoin and Litecoin, are fiat currencies that are maintained on
a public blockchain ledger by a decentralized population of record keepers, while security tokens are financial
assets that trade in secondary markets on exchanges, and whose initial sale is recorded on the blockchain of
the currency that the issuer accepts as payment. Coins are typically created through "forks" from existing
currencies, such as Bitcoin Gold from Bitcoin, and by airdrops, in which the developer sends coins to wallets
in an existing currency to profit from the price appreciation of its retained stake if the new currency becomes
widely adopted. Security tokens are typically sold through ICOs structured as "smart contracts" on existing
blockchains such as that of Ethereum.
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model a user’s transaction need by its endowment in a consumption good, and its prefer-

ence of consuming its own good together with the goods of other users. As a result of this

preference, users need to trade goods with each other, and the platform serves to facilitate

such trading. Specifically, we assume that, when two users are randomly matched, they can

trade their goods with each other only if they both belong to the platform. Consequently,

there is a key network effect– each user’s desire to join the platform grows with the number

of other users on the platform and the size of their goods endowments.

In addition to serving as the membership to transact goods with other users, the cryp-

tocurrency in our model is also an investable asset– for both users and speculators with no

transaction needs– to capitalize on the future growth of the platform. To systematically

analyze these dual roles, our model features an infinitely many periods, with users and spec-

ulators holding different beliefs about the capital gain from investing in the token issued by

the platform. In each period, a new generation of users choose whether to join the platform

by purchasing the tokens, partly from users of the previous period and partly from new token

issuance, which follows a deterministic schedule. In making its decision, each user trades

off the cost of buying a token with the benefits from transacting goods on the platform and

from the expected token price appreciation. We show that each user optimally adopts a

cutoff strategy to join the platform by purchasing the token only if its goods endowment is

higher than a threshold. The threshold and the token price are jointly determined by the

users’common goods endowment and optimism about the token price appreciation, which

determine the users’token demand, and the speculators’sentiment about the token price

appreciation, which determines the supply of tokens to users.

We analyze the equilibrium in two settings, one with perfect information and the other

with realistic informational frictions. In the latter setting, the platform’s demand fundamen-

tal (i.e., the users’common goods endowment) is unobservable and each user uses its own

goods endowment as private information and other public signals, including the token price,

to infer the demand fundamental. In both of these settings, despite the inherent nonlinear-

ity induced by each user’s cutoff strategy for joining the platform, we are able to derive a

tractable token price function and an analytical equilibrium condition for each user’s par-

ticipation threshold in each period, which allow us to systematically characterize the token

market equilibrium.

As a result of the network effect– if more users join the platform, each user benefits
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more from joining the platform and is thus willing to adopt a lower participation threshold

and pay a higher token price– the token market may break down under certain conditions.

That is, there may not exist any equilibrium price to clear the users’token demand with

the token supply. In particular, the token market breaks down if the platform’s demand

fundamental is suffi ciently low or if the speculators’ sentiment is suffi ciently high. Inter-

estingly, users’optimism about the token price appreciation mitigates the fragility of the

token market by inducing them to join the platform even when the benefits of trading their

endowments are low, while the speculators’sentiment exacerbates the fragility by raising the

users’participation cost and crowding them out.

Since the supply of tokens increases deterministically over time, the platform exhibits

life-cycle effects that are governed by the substitution of the token’s current convenience

yield and expected capital gains, which jointly determine the total token return to each user.

The inflation of the token base over time lowers expected capital gains by shifting out the

token supply curve. Consequently, the region of market breakdown and the relative weight

of the convenience yield in the total token return increase over time. Both of these effects in

turn raise the sensitivity of the user base to the current demand fundamental and log token

price volatility over time.

Our analysis also shows that informational frictions attenuate the token market fragility

by dampening the responses of the users’beliefs to fundamental shocks. This dampening

effect is particularly strong in our dynamic setting as each user needs to forecast the ex-

pectations of future users, leading to a bias reminiscent of Allen, Morris and Shin (2006),

even though our setting is highly nonlinear. Furthermore, informational frictions dampen

platform performance because the equilibrium token price is a convex function of the users’

common belief of the platform’s demand fundamental, following the Bayesian persuasion

arguments of Aumann and Maschler (1995) and Kamenica and Gentzkow (2011).

We also extend the model to incorporate miners who follow the Proof of Work protocol to

provide accounting and custodial services to record transactions on the platform’s blockchain.

Each miner incurs a computational cost in providing the service, and is compensated by

the seignorage from token inflation, which diminishes deterministically over time, and a

transaction fee, which is a fraction of the transaction surplus of the users on the platform.

This tradeoff determines the number of miners on the platform. When the number of miners

falls suffi ciently low, some corrupt miners may choose to attack the cryptocurrency so that
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they can gain from creating fraudulent seignorage and stealing other miners’ transaction

fees. While such attacks do not directly lead the platform to fail, our analysis shows that

the users’anticipation of future losses from miner attacks may exacerbate the fragility of the

token market, especially when the mining cost is high.

Our framework provides a rich set of empirical predictions for token price appreciation,

which is directly measurable by the econometrician and thus the focus of most empirical stud-

ies. As only part of users’token return, the expected token price appreciation is determined

by the marginal user’s equilibrium condition– as the total cost of capital and participation

minus the convenience yield from transaction surplus. Consistent with Liu and Tsyvinski

(2019), our model predicts a role for both news and investor sentiment in explaining the time

series of cryptocurrency price appreciation, not through risk premia but rather by predicting

the marginal user’s convenience yield. In addition, our model can rationalize the momentum

patterns that they observe in token price appreciation, through persistence of user partici-

pation costs and convenience yields, as well as the size effect that Liu, Tsyvinski, and Wu

(2019) show in the cross-section of cryptocurrency price appreciation.

Our paper contributes to the emerging literature on cryptocurrencies. Easley, O’Hara,

and Basu (2019) analyze the rise of transactions fees in Bitcoin through the strategic in-

teraction of users and miners. Chiu and Koeppl (2017) consider the optimal design of a

cryptocurrency, and emphasize the importance of scale in deterring double-spending by buy-

ers. Athey et al (2016) model Bitcoin as a medium of exchange of unknown quality that

allows users to avoid bank fees when sending remittances, and uses the model to guide

empirical analysis of Bitcoin users. Cong and He (2017) investigate the tradeoff of smart

contracts in overcoming adverse selection while also facilitating oligopolistic collusion, while

Biais et al (2019) consider the strategic interaction among miners. Abadi and Brunnermeier

(2018) examine disciplining writers to a blockchain technology with static incentives, and

Saleh (2018) explores how decentralized consensus can be achieved with the Proof of Stake

(PoS) protocol. Schilling and Uhlig (2019) study the role of monetary policy in the presence

of a cryptocurrency that acts as a private fiat currency.

Biais et al (2018) develop a structural model of cryptocurrency pricing with transac-

tional benefits and costs from hacking and estimate the model with data on Bitcoin. Our

model shares a similar pricing model, but differs by deriving a strong network effect in the

transactional benefits of cryptocurrency, as well as subtle interactions between the strategic
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attacks by miners and the fragility of the cryptocurrency. Cong, Li, and Wang (2018) also

emphasize the strong network effect in platform users by constructing a dynamic model of

crypto tokens to study the dynamic feedback between user adoption and the responsiveness

of the token price to expectations about future growth in the platform. Our model differs

from theirs in microfounding the network effect, in highlighting the fragility of the platform

induced by the rigidity of the token price in clearing the users’ token demand under the

network effect with the token supply, and in showing that miner attacks may exacerbate the

platform fragility through the users’anticipation of losses from future attacks. This effect

of miner attacks on platform stability overlaps with the analysis of Pagnotta and Buraschi

(2018) and Pagnotta (2018), who develop an equilibrium framework for Bitcoin with a focus

on the interaction between the network of users and the investment of miners into network

security. While their analysis shows that this interaction can amplify the volatility of Bitcoin

price, they do not address the platform fragility induced by the users’network effect.

Our work also adds to the literature on cutoff equilibrium with dispersed information.

With risk-neutral investors and normally distributed payoffs, Morris and Shin (1998) and

Dasgupta (2007) analyze coordination and delay in global games. Furthermore, Goldstein,

Ozdenoren, and Yuan (2013) investigate feedback effects of learning on firm investment de-

cisions, Albagli, Hellwig, and Tsyvinski (2014a, 2015) focus on the role of asymmetry in

security payoffs in distorting asset prices and firm investment incentives, and Gao, Sockin,

and Xiong (2018) analyze the distortion of informational frictions in housing markets. Like

our model, Albagli, Hellwig, and Tsyvinski (2014b) also investigate how dispersed informa-

tion in a dynamic setting impacts asset prices with non-linear payoffs, yet their emphasis is

on explaining the overpricing of downside risk in bond markets. In contrast, our model ex-

amines how informational frictions, operating through a Keynesian Beauty Contest, dampen

cryptocurrency platform performance when the convenience yield of the platform is endoge-

nously formed by its users.

1 The Model

Consider a cryptocurrency, which serves as the membership to a digital platform with a

pool of users who share a certain need to transact goods with each other. The platform

serves to reduce search frictions among these users. The benefits to participating on a utility

token platform, such as Ether or FileCoin, include securing transactions and writing smart
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contracts to sharing in gaming content and providing secure file storage. As the value of the

token may appreciate with the development of the platform over time, it also serves as an

investable asset for users and speculators to speculate about the growth of the platform.

The model is discrete time with infinitely many periods: t = 1, 2, ... There are three

types of agents on the platform: users, speculators, and an owner. The success of the cryp-

tocurrency is ultimately determined by whether the platform can gather a large number

of users together. In each period, a new generation of users purchase the cryptocurrency

as the membership to join the platform, and then are randomly matched with each other

to transact their goods endowments. We choose this specific form of gains from trade to

facilitate analysis within a standard trade framework. The goods transactions are supported

by the owner of the decentralized platform who acts as a service provider and completes all

user transactions. It records these transactions in an indelible ledger called the blockchain.

Since the owner can add and modify records, or blocks, on the blockchain, the blockchain is

called a permissioned blockchain. We will extend the model in Section 4 to incorporate de-

centralized miners, who follow the Proof of Work protocol to record transactions on a public

blockchain. Although the model features overlapping generations of users and speculators,

the setting is nonstationary because the demand fundamental follows a random walk and

the supply of available tokens is deterministically increasing over time.

1.1 Users

There are overlapping generations of users that join the platform. In each period t, there is

a pool of potential users, indexed by i ∈ [0, 1]. These potential users have needs to transact

goods with each other. Each of them may choose to purchase a unit of the cryptocurrency,

which we call a token of the platform, in order to participate on the platform. We can

divide the unit interval into the partition {Nt,Ot} in each period, with Nt ∩ Ot = ∅ and

Nt ∪ Ot = [0, 1] . Let Xi,t = 1 if user i purchases the token, i.e., i ∈ Nt, and Xi,t = 0 if he

chooses not to purchase. An indivisible unit of currency is commonly employed in search

models of money, such as Kiyotaki and Wright (1993). If user i at t = 1 chooses to purchase

the token, it purchases one unit at the equilibrium price Pt, denominated in the consumption

numeraire. In the next period t+ 1, each user from period t resells his token to future users

and to speculators.

In each period, user i is endowed with a certain good and is randomly paired with a
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potential trading partner, user j, who is endowed with another good. Users i and j can

transact with each other only if both have the token. After their transaction, user i has

a Cobb-Douglas utility function over consumption of his own good and the good of user j

according to

Ui,t (Ci,t, Cj,t;Nt) =

(
Ci,t

1− ηc

)1−ηc (Cj,t
ηc

)ηc
, (1)

where ηc ∈ (0, 1) represents the weight in the Cobb-Douglas utility function on his consump-

tion of his trading partner’s good Cj,t , and 1− ηc is the weight on consumption of his own
good Ci,t. A higher ηc means a stronger complementarity between the consumption of the

two goods. Both goods are needed for the user to derive utility from consumption. If one

of them is not a member of the platform, there is no transaction. As a result, each of them

gets zero utility in the absence of a transaction. This setting implies that each user cares

about the pool of users on the platform, which determines the probability of completing a

transaction.

The goods endowment of user i is eAi,t , where Ai,t is comprised of a component At common

to all users and an idiosyncratic component εi,t:

Ai,t = At + τ−1/2
ε εi,t,

with εi,t ∼ N (0, 1) being normally distributed and independent with each other, across time,

and from At. We assume that
∫
εi,tdΦ (εi,t) = 0 at each date by the Strong Law of Large

Numbers. The aggregate endowment At follows a random walk with a constant drift µ ∈ R:

At = At−1 + µ+ τ
−1/2
A εAt+1,

where εAt+1 ∼ iid N (0, 1) . The aggregate endowment At is a key characteristic of the plat-

form. A cleverly designed platform serves to attract users with strong needs to transact with

each other. As we will show, a higher At leads to more users on the platform, which, in turn,

implies a higher probability of each user to complete a transaction with another user, and

furthermore each transaction gives greater surpluses to both parties. One can therefore view

At as the demand fundamental for the cryptocurrency, and τ ε as a measure of dispersion

among users in the platform.

We start with describing each user’s problem in period t, conditional on joining the

platform and meeting a transaction partner, and then go backward to describe his earlier

decision on whether to join the platform. At t, when user i is paired with another user j on

7



the platform, we assume that they simply swap their goods, with user i using ηce
Ai,t units of

good i to exchange for ηce
Aj,t units of good j. Consequently, both users are able to consume

both goods, with user i consuming

Ci,t (i) = (1− ηc) eAi,t , Cj,t (i) = ηce
Aj,t

and user j consuming

Ci,t (j) = ηce
Ai,t , Cj,t (j) = (1− ηc) eAj,t .

We formally derive these consumption allocations between these two paired users in Appen-

dix A through a microfounded trading mechanism between them. Furthermore, we can use

equation (1) to compute the utility surplus Ui,t of each user from this transaction.

Before finding a transaction partner on the platform, each user needs to decide whether

to join the platform by buying the token. In addition to the utility surplus, Ui,t, from the

transaction, there is also a capital gain from retrading the token, Pt+1−RPt, withR ≥ 1 being

the interest rate for the holding period. We assume that users have quasi-linear expected

utility, and incur a linear utility gain equal to this capital gain net of a fixed participation

cost κ > 0 if they choose to join the platform. The participation cost may be either pecuniary

or mental, and could represent, for instance, the cost of setting up a wallet and installing

the software necessary for participating on the platform. Furthermore, we assume that each

user needs to give a fraction β of his utility surplus Ui,t from the transaction as service fee

to the platform.

In summary, user i makes his purchase decision at t according to

max
Xi,t

(E [(1− β)Ui,t + Pt+1 | Ii,t]−RPt − κ)Xi,t, (2)

where Ii,t is the information set of user i at date t. Note that the expectation of the user’s
utility flow is regarding the uncertainty associated with matching a transaction partner, while

the expectation of the capital gain from holding the token is regarding the uncertainty in the

growth of the platform. By adopting a Cobb-Douglas utility function with quasi-linearity in

wealth, users are risk-neutral with respect to the token’s capital gain.2

An important aspect of our analysis is how the weights of the token’s convenience yield

and capital gain transition over the life of the platform. When the platform is young, there

2As Liu and Tsyvinski (2018) find little evidence that cryptocurrencies load on conventional sources of
systematic risk, such as market or style factors, such an assumption for the token market is realistic.
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are few tokens in circulation and users benefit more from the token price appreciation. When

the platform matures, there are many tokens in circulation and users benefit mostly from

the convenience yield from transactions on the platform. This transition underlies several

interesting implications that more mature platforms might be more vulnerable to market

breakdown, that younger platforms might have higher market capitalizations, and that token

price volatility is increasing over time.

We now describe the information set, Ii,t, of each user. We assume that while each
user knows the value of his own goods endowment, Ai,t, when joining the platform, the

users do not directly observe the aggregate endowment, At, As such, they will have to form

expectations about the aggregate endowment when deciding whether to join the platform

and, consequently, the token price serves to aggregate their dispersed information.

To facilitate our analysis of how users’speculation of the token price may affect their

participation in the platform, we endow all users with a public signal about next period’s

innovation to aggregate endowment, εAt+1, which by construction is orthogonal to At:

Qt = εAt+1 + τ
−1/2
Q εQt ,

where εQt ∼ iid N (0, 1) . This public signal is similar to a "news" shock in the language

of Beaudry and Portier (2006). Since the public signal only reveals information about next

period’s At+1, it only impacts users’decisions through their beliefs about the next period’s

token price, E [Pt+1 | Ii,t] , and therefore represents a speculative shock to all of the users.
Even though we use the term “user optimism”to denote the speculative shock induced by

the public signal Qt, the users are fully rational in information processing in our model.

In addition to their private endowment, the market-clearing price of the token, and the

public signal Qt, users also observe a noisy public signal Vt about the volume of transactions

that take place on the platform in period t. An advantage of the blockchain technology that

cryptocurrencies employ is that it acts as an indelible and verifiable ledger that records de-

centralized transactions that take place in the cryptocurrency. As such, it provides a history

of public information about the volume of trade in the token. Assuming an equilibrium in

which users follow a cutoff strategy, such that they participate if Ai,t ≥ A∗t , we follow Sockin

(2019) and assume that the volume signal takes the following form

Vt = Φ
(√

τ ε (At − A∗t ) + εVt
)2
,

where Φ (·) is the CDF of normal distribution and εVt ∼ N (0, τ−1
v ) is independent of all other
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shocks in the economy. This specification has the appeal that the volume signal is always

between 0 and 1, and is highly correlated with the volume of traded tokens.3 Since the CDF

of normal distribution is a monotonically increasing function, we can invert Vt to construct

an additive summary statistic:

vt = τ−1/2
ε Φ−1

(
V

1/2
t

)
+ A∗t = At + τ−1/2

ε εVt , (3)

which serves as the volume statistic.4 The precision of the volume statistic is τ ετ v, so that

the less dispersed the endowments of users, the more informative is the volume signal.

In classical asset market models with dispersed information, e.g., Grossman and Stiglitz

(1980) and Hellwig (1980), trading volume plays no role in learning.5 6 In our setting,

users learn from both the price and volume of the cryptocurrency when deciding whether

to purchase it. As such, volume provides a complementary source of information to the

token price. Let It = σ
(
{Ps, Qs, Vs}s≤t

)
be the tribe formed by all public information. In

addition to the public information, each user also observes his own private endowment, Ai,t.

We denote Ii,t = σ
({
Ai,t, {Ps, Qs, Vs}s≤t

})
as the user i’s full information set.

It then follows that user i’s purchase decision is given by

Xi,t =

{
1 if E [(1− β)Ui,t + Pt+1 −RPt | Ii,t] ≥ κ

0 if E [(1− β)Ui,t + Pt+1 −RPt | Ii,t] < κ
.

As the user’s expected utility is monotonically increasing with his own endowment, regardless

of other users’strategies, it is optimal for each user to use a cutoffstrategy when next period’s

price is increasing in the demand fundamental. This, in turn, leads to a cutoff equilibrium,

in which only users with endowments above a critical level A∗t buy the token. This cutoff

is eventually solved as a fixed point in the equilibrium to equate the token price, net of
3The noise in the volume signal reflects that, in practice, the anonymous nature of cryptocurrency trans-

actions makes it diffi cult to accurately assess the volume of actual transactions, since transferring cryptocur-
rencies across wallets, in which no actual tokens are traded between two parties, is a transaction that hits the
blockchain, while innovations such as the Lightning Network process small transactions off the blockchain.
We parameterize the uncertainty arising from these issues as measurement error.

4In contrast to Kocherlakota (1998), in which memory implicitly encoded in monetary balance is used for
individual monitoring, memory encoded in the blockchain is explicit and serves as an aggregate signal about
the cryptocurrency’s fundamental.

5Notable exceptions are Blume, Easley, and O’Hara (1994) and Schneider (2009). In the former, past
prices and volumes trivially reveal the suffi cient statistics of all past trader private information (which still
contain residual uncertainty because of correlated signal error). In the latter, trading volume provides a
signal about how informative prices are about an asset’s fundamentals.

6This is, in part, an artifact of the CARA-Normal framework, in which trading volume is the expectation
of a folded normal random variable. This makes learning intractable if a noisy version of trading volume
were observed. An advantage of our model with a cutoff equilibrium is that we can incorporate a noisy
volume signal while still maintaining tractability.
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the expected resale value and participation cost, with the expected transaction utility of

the marginal user from joining the platform. As each user’s participation strategy also

depends on his expected token resale value E [Pt+1 | Ii,t] , the common optimism among

users induced by Qt and the private optimism induced by Ai,t with informational frictions

helps to overcome their participation cost κ. Given the cutoff strategy for each user, who

participates if Ai,t ≥ A∗t , the total token demand of users is given by∫ ∞
−∞

Xi,t (Ii,t) dΦ (εi,t) = Φ (
√
τ ε (At − A∗t )) . (4)

1.2 Token Supply and Speculators

The supply of tokens, Φ (yt) , grows over time according to a pre-determined schedule

Φ (yt) = Φ (yt−1 + ι) ,

where Φ (·) is the normal distribution function. This leads to a supply of tokens

Φ (yt) = Φ (y0 + ιt) ,

with y0 as the supply at the Initial Coin Offering (ICO). This specification captures, as

in practice, that the increase in supply from token inflation tapers over time. For PoW

platforms, such as Bitcoin and Ethereum, the number of new coins and tokens created by

inflation periodically halves over time, according to a predetermined schedule, so that the

total supply asymptotes to a fixed limit.7

In addition to the token inflation, we assume that there is a continuum of myopic specula-

tors, who trade the token to speculate on its price fluctuation over time. Speculators provide

liquidity by buying tokens, including those from the old generation of users, and then selling

them to the new generation of users. We assume speculators hold noisy expectations of the

next-period token price:

ES [Pt+1 | It] =
(
1 + eζt

)
RPt,

where RPt is the required risk-neutral return for holding the token to the next period, and

ζt ∼ iid N
(
0, σ2

ζ

)
is the speculators’aggregate sentiment, which is not observable to the

users. We consider speculators to be outsiders to the platform. They are distinct from

7With this specification, at most a unit measure of tokens exists. All of our key qualitative results remain
unchanged, however, if instead we cap token supply at a maximum smaller than one unit.
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users who actually participate on the platform. As such, they do not have private infor-

mation about the platform’s demand fundamental or fully understand how to interpret the

implications of the same public information as users. Instead, these speculators may trade

overconfidently on noisy information or on spurious correlations that give rise to mispecified

technical trading strategies. Given the nascent and highly speculative nature of the cryp-

tocurrency universe, and the limited data availability on the performance of its thousands

of constituent cryptocurrencies, such speculators are likely ubiquitous.

Through the speculators’trading, we assume that the net supply of token to users is

Φ
[
yt − λS log

(
ES [Pt+1 | It]−RPt

)
+ λP log (RPt)

]
= Φ (yt − λSζt + (λP − λS) log (RPt)) ,

where λS log
(
ES [Pt+1 | It]−RPt

)
represents speculators’ token demand driven by their

speculative motive with λS > 0, and λP log (RPt) represents the speculators’token supply

in response to the price with λP > 0. When the speculators are more optimistic about the

next-period token price, their token purchase tightens the token supply to users. On the

other hand, if the token price is higher, the usual downward-sloping demand effect leads to

stronger selling by the speculators and therefore more token supplied to users. To ensure an

upward-sloping net supply curve with respect to the token price, we impose that

λP > λS.

By equating the supply with the users’token demand in (4), we obtain that

Pt =
1

R
exp

( √
τ ε

λP − λS
(At − A∗t )−

1

λP − λS
yt +

λS
λP − λS

ζt

)
, (5)

where the market-clearing token price Pt is a log-linear function of the platform’s demand

fundamental At, the users’participation threshold A∗t , the token supply yt, and the specu-

lators’sentiment ζt. Note that this log-linear price function holds even though the users’

demand fundamental At and the speculators’sentiment ζt are not publicly observable to the

users. Instead, the informational frictions affect each user’s participation threshold A∗t , which

is yet to be determined by each user’s optimal strategy in equilibrium. Each user’s partici-

pation threshold also depends on the token market dynamics and the user’s expectation of

future token price appreciation.

1.3 Owner

The platform requires record keeping of all transactions. For the baseline model, we assume

that the owner of the platform completes all user transactions each period and records these

12



transactions on the blockchain.8 In a later section (Section 4), we expand the model to

include a group of miners, who record the transactions for a fee and who may also attack

the cryptocurrency. In the baseline setting, the payment to the owner in period t is both

the seignorage from the scheduled inflation of the token base, Φ (yt−1 + ι) − Φ (yt−1) , and

the transaction fees from users:

πt = (Φ (yt−1 + ι)− Φ (yt−1))Pt + βUt,

where Ut is the total transaction surplus on the platform. The owner has no use for tokens

and, potentially for liquidity reasons, sells them immediately to speculators. Assuming a

cutoff strategy for users, we can integrate the expression for the expected utility of a user

that joins the platform, as derived in Proposition 7 of Appendix A, over Ai,t for Ai,t ≥ A∗t

to arrive at the realized surplus from user transactions:

Ut = eAt+
1
2((1−ηc)2+η2

c)τ−1
ε Φ

(
(1− ηc) τ−1/2

ε +
At − A∗t
τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

At − A∗t
τ
−1/2
ε

)
.

As the platform’s token base matures from inflation, the compensation to the owner shifts

from seignorage to transaction fees.9

1.4 Rational Expectations Equilibrium

Our model features a rational expectations cutoff equilibrium, which requires the rational

behavior of each user and the clearing of the token market:

• User optimization: each user chooses Xi,t in each period t to solve his maximization

problem in (2) for whether to purchase the token.

• In each period, the token market clears:∫ ∞
−∞

Xi,t (Ai,t, Pt) dΦ (εi,t) = Φ (yt − λSζt + (λP − λS) log (RPt)) , (6)

where each user’s demand Xi,t depends on its information set Ii,t. The demand from
users is integrated over the idiosyncratic component of their endowments {εi,t}i∈[0,1],

which also serves as the noise in their private information.
8In contrast to traditional multi-sided platforms, such as in Rochet and Tirole (2003) and Evans (2003),

the owner issues a native token to users that has a floating exchange rate with other tokens and currencies
instead of collecting discriminating participation fees. This potentially buffers the pricing of the platform’s
services from external shocks, such as monetary policy shocks to fiat currencies, by denominating them in
the native token, and disciplines their valuation through price discovery in financial markets.

9We assume the owner completes all transactions without censorship or charging monopoly markups. See
Huberman et al (2018) for how Proof of Work decentralized consensus can overcome these issues at the cost
of transaction delays.
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2 Perfect Information Equilibrium

Before we analyze the equilibrium with informational frictions, we first analyze a benchmark

equilibrium with perfect information in this section. The key characteristics of the perfect

information equilibrium also hold in the equilibrium with information frictions.

Specifically, we characterize the equilibrium in each period t when At and ζt are publicly

observable. In this case, the token market is characterized by the following state variables:

the users’demand fundamental At, the token supply yt, the users’optimism driven by the

public signal Qt, and the speculators’sentiment ζt. We use the notation It = {At, yt, Qt, ζt}
to represent the state variables at t, which are also equivalent to the set of public information

discussed earlier. Note that the volume signal Vt is not a state variable, but the public

signal, Qt, which contains information about At+1, is still useful to users for forming their

expectations about the token price in period t + 1, Pt+1. Given that all users now have a

common expectation about Pt+1, we drop the i subscript from their information sets. After

observing Qt, users share the same posterior belief about At+1, which is normal with the

following conditional mean:

Ât+1 = At + µ+
τQ

τ ε + τQ
Qt.

As we discussed earlier, the noise in Qt is a shock to the users’speculative optimism, since

it has no impact on their current surplus from transacting with other users on the platform.

In each period, users sort into the platform according to a cutoff equilibrium determined

by the net benefit of joining the platform, which trades off the opportunity of transacting

with other users on the platform and the expected token price appreciation with the cost

of participation. Despite the inherent nonlinearity of our framework, we derive a tractable

cutoff equilibrium that is characterized by the solution to a fixed-point problem over the

endogenous cutoff of the marginal user that purchases the token, A∗t , as summarized in the

following proposition.

Proposition 1 The rational expectations equilibrium exhibits the following properties:

1. Regardless of other users’ strategies, it is optimal for each user i to follow a cutoff

strategy in purchasing the token:

Xi,t =

{
1 if Ai,t ≥ A∗ (At, yt, Qt, ζt)

0 if Ai,t < A∗ (At, yt, Qt, ζt)

14



2. In the equilibrium, the cutoff A∗t solves the following fixed-point condition:

(1− β) e(1−ηc)(A∗t−At)+At+ 1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − A∗t − At

τ
−1/2
ε

)
1{τ>t} + E [Pt+1|It]− κ

= e
−
√
τε

λP−λS
(A∗t−At)− 1

λP−λS
yt+

λS
λP−λS

ζt , (7)

where τ is the stopping time for the breakdown of the platform due to the failure of the

token market clearing:

τ = {inf t : At < Ac (yt, Qt, ζt)} ,

with Ac (yt, Qt, ζt) as a critical level for At, below which equation (7) has no root.

3. In each period t, there may be no or multiple equilibria, depending on the users’expected

token resale value:

• If E [Pt+1 | It]− κ ≤ 0, equation (7) has zero or two roots.

• If E [Pt+1 | It]− κ > 0, equation (7) has one or three roots.

4. In the dynamic equilibrium, the token price P (At, yt, Qt, ζt) is determined by equation

(5) according to the users’ equilibrium cutoff A∗t and how users coordinate on their

expectations of future equilibria.

Proposition 1 characterizes the cutoff equilibrium in the platform, and confirms the op-

timality of a cutoff strategy for users in their choice to purchase the token. Users in each

period sort into the platform based on their endowments, with those with higher endow-

ments, and thus more gains from trade, entering the platform. In this cutoff equilibrium, the

token price is a correspondence of the token market state variables (At, yt, Qt, ζt) , according

to equation (5) with A∗t as an implicit function of these state variables.

Equation (7) provides a fixed-point condition to determine the optimal cutoff in each

period. The left-hand side of equation (7) reflects the expected benefit to a marginal user with

Ai,t = A∗t from acquiring a token to join the platform: the first term is the expected utility

flow from transacting with another user on the platform, while the other terms E [Pt+1 | It]−
κ represent other benefits, given by the user’s expected next-period token price (i.e., the

expected token price under rational expectation E [Pt+1 | It] with the public signal Qt) net

of the user’s participation cost κ. The right-hand side of equation (7) reflects the cost of

purchasing a token.
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Figure 1 illustrates how the intersection of the two sides, each of which is plotted against

A∗t −At determines the equilibrium cutoff. The dashed bell-shaped line depicts the left-hand
side of equation (7) in a benchmark case when E [Pt+1 | It] − κ = 0. That is, it captures

a marginal user’s expected utility flow from transacting with another user. Note that this

curve goes to zero when A∗t − At goes to either −∞ or ∞. If A∗t ↘ −∞, the marginal
user’s own endowment is so low that there cannot be any gain from transacting with the

other user. On the other hand, if A∗t ↗ ∞, the equilibrium cutoff is so high that there are

so few other users on the platform to transact with the marginal user. This network effect

makes her expected utility from transaction zero, despite her high endowment. Once the

two end points are determined, it is intuitive that the marginal user’s expected utility flow

from transacting with another user on the platform has a bell shape.

The right-hand side of equation (7) is a negative exponential function of A∗t −At, because
the number of users on the platform is decreasing with the equilibrium cutoffA∗t and because

the token price is an increasing function of the number of users as in equation (5). Figure 1

shows that either the dashed bell-shaped curve intersects with the solid negative exponential

curve twice if they intersect, or not at all if the solid curve lies above the bell-shaped curve.

The latter case is particularly important as it represents the breakdown of the token market

and, consequently, the failure of the platform. This happens when the expected utility from

transacting is strictly lower than the cost of acquiring the token, either as a result of the

small token supply yt or strong speculator sentiment ζt. Proposition 1 shows that these two

curves do not intersect when At falls below a critical level Act (yt, Qt, ζt) , which is determined

by the other three state variables.

The terms E [Pt+1 | It] − κ may move the bell curve of the marginal user’s expected

benefit from participating in the platform up or down relative to the benchmark case. If

E [Pt+1 | It]−κ > 0, possibly as a result of the users’optimism about the future token price

appreciation (i.e., positive shock to Qt), the bell curve moves up relative the benchmark

dashed curve in Figure 1. In this case, the bell curve may intersect with the negative

exponential curve either once (as illustrated by the dotted curve) or three times.

If E [Pt+1 | It]− κ < 0, either as a result of users’pessimism or a high participation cost

κ, the bell curve moves down relative to the benchmark dashed line in Figure 1, creating

the possibility for the token market to break down. That is, an increase in κ may lead to

the failure of the platform. As each user does not account for his participation decision
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Figure 1: An illustration of the left-hand and right-hand sides of equation (7).

on other users through the network effect, this externality exacerbates the effect of κ on

the equilibrium user participation. Interestingly, users’optimism offsets the effect of their

participation cost, thus helping to overcome the network externality.

Market breakdown The market breakdown is caused by the network effect in the user

demand for tokens and the rigid supply by the speculators. The following proposition char-

acterizes the conditions for market breakdown to occur.

Proposition 2 As a result of the network effect, no equilibria exist, i.e., the token market

breaks down, under the following conditions:

1. The net speculative motive of users, E [Pt+1 | I∗t ]− κ, is nonpositive.

2. The users’demand fundamental is suffi ciently low, i.e., At < Ac (yt, Qt, ζt), or equiv-

alently speculator sentiment is suffi ciently high, i.e. ζt > ζc (At, yt, Qt).

The critical level Ac (yt, Qt, ζt) is decreasing in the user optimism Qt and increasing in spec-

ulator sentiment ζt and the user participation cost κ.

Proposition 2 characterizes the determinants of the fundamental critical levelAc (yt, Qt, ζt)

for the token market breakdown to occur. On the demand side, the users’speculative motive,
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Table I: Baseline Model Parameters

Demand Fundamental: µ = 0.01, τA = 10

Platform: y0 = −.84

Sentiment: τQ = 100, τ ζ = 2, λS = 1, λP = 2

Users: τ θ = 1, ηc = 0.3, κ = 0.03, R = 1.02

driven by their optimism, helps to overcome the participation externality. On the supply

side, speculators’sentiment has the opposite effect.

To further illustrate the properties of the token market equilibrium, we provide a series

of numerical examples based on the parameter values given in Table I. Figure 2 depicts

the fundamental critical level Ac across speculator sentiment (the left panel), user optimism

(the middle panel), and token supply (the right panel). When the platform fundamental

A is below Ac, the token market breaks down. The left panel shows that as speculator

sentiment increases, the crowding out effect of speculators holding more tokens lowers user

participation, shifting up the region of breakdown. In contrast, the middle panel shows that

an increase in user optimism, which incentivizes more users to participate, has the opposite

effect and shifts down the region of breakdown. Taken together, these two panels illustrate

the opposite effects generated by users’optimism and speculators’sentiment on the fragility

of the platform, as formally established by Proposition 2.

The right panel of Figure 2 shows that an increase in token supply, by lowering the

expected retrade value of the token, increases the breakdown boundary. When the token

base is small, there are at least two advantages: First, it is easier to clear markets with a

small pool of users. Second, the expected growth of the token value is also higher. As the

token supply inflates over time, the effects of token supply imply that the platform becomes

more fragile over time, as the token’s expected retrade value falls and user participation

is driven more by the flow of convenience yields from transactions on the platform. This

pattern thus suggests that large market capitalization tokens, such as Ethereum, might

be more fragile and thus have more pronounced price volatility than small capitalization

tokens. Interestingly, while Cong, Li and Wang (2018) emphasize the role of token resale in
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Figure 2: An illustration of the market breakdown boundary for the demand fundamental Ac with
respect to speculator sentiment (left panel), user optimism (middle pannel), and token supply (right
panel) in the perfect information equilibrium. Baseline values are ζ = 0, Q = 0, and y = 0.9.

facilitating adoption, our model shows that it also helps to stave off failure of the platform.

User participation and token price For the simplicity of our analysis, we assume that

all users coordinate on the highest price (i.e., the lowest cutoff) equilibrium in each period,

regardless of how many equilibria exist. One can motivate this refinement based on the

(dynamic) stability of the potential equilibria.10 Then, the following proposition derives

several comparative statistics of the equilibrium user participation and token price.

Proposition 3 The equilibrium has the following properties:

1. Demand fundamental: the token price and the fraction of users that participate in the

platform are increasing in the demand fundamental, At.

2. User Optimism: the token price and the fraction of users that participate in the platform

are increasing in user optimism, Qt.

10The second (high cutoff) and third (highest cutoff) equilibria may or may not exist at any given date,
depending on the expected retrade value of the token. As such, they are dynamically unstable, and we can
eliminate them as predictions for the equilibrium outcome. In addition, the second (high cutoff) equilibria
is unstable even fixing the token’s expected retrade value. Introducing a small amount of noise into users’
participation decisions, for instance, and letting this noise become arbitrarily small would ensure convergence
away from this second equilibrium to the highest price equilibrium.
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Figure 3: An illustration of the token price across the demand fundamental for different values of
speculator sentiment (left panel), user optimism (middle panel), and the token supply (right panel).
Baseline values are ζt = 0, Qt = 0, and y = 0.9.

3. Speculator Sentiment: the fraction of users that participate in the platform is decreasing

in speculator sentiment, ζt, while the token price is increasing (decreasing) in ζt when

A∗t − At is suffi ciently negative (positive).

Figure 3 illustrates the equilibrium token price across the demand fundamental A for

different values of speculator sentiment (the left panel), user optimism (the middle panel),

and token supply (the right panel). The middle panel shows that the token price is increasing

with user optimism, as formally established by Proposition 3. The left panel shows that

the token price is also increasing with speculator sentiment, which holds, as established

by Proposition 3, only when the demand fundamental is high. The difference across user

optimism is more pronounced because user optimism increases user participation by raising

their expectations of the token’s resale value, which in turn raises the price today; speculator

sentiment, in contrast, raises the token price, but also crowds out user participation, which,

in turn, lowers the price, leading to a more muted overall effect on the token price. Finally,

the right panel shows that the token price is decreasing in token supply because it lowers

the expected retrade value of the token.
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Life-cycle Effects Since our model is nonstationary with the token supply increasing

deterministically over time, it has nuanced implications for how platform performance varies

over the platform’s life cycle. Central to understanding this pattern is the tension between

the contemporaneous convenience yield and the capital gains in each user’s total return from

holding the token. Since users are risk-neutral, the sum of the two pieces always equal the

cost of carry plus the participation cost, R + κ/Pt in equilibrium. Thus, when expected

future token price appreciation is high, the current demand fundamental and convenience

yield must be low.

The demand fundamental’s expected growth rate µ and the token supply yt are the two

key model parameters that determine the expected token price. A platform with a higher

µ will, on average, see At trend upward over time, sustaining a high expected token price,

while a high yt depresses token prices across all values of At from supply saturation. The

tension between the convenience yield and the expected future token price also impacts the

log token price volatility over time. When the demand fundamental growth rate µ is high,

the expected token price remains higher over time. Since more of the token return for high µ

platforms is from the capital gains part of the token return, the user base is less sensitive to

instantaneous fluctuations in the demand fundamental, which drive the convenience yield.

As such, we expect higher µ platforms to have lower token price volatility. In contrast, as

the token supply increases, both the region of market breakdown and the importance of the

convenience yield in token returns increase, leading to a more volatile token price.

To see this graphically, we consider two platforms that differ only in the expected funda-

mental growth rate, one with µ = 0.01 and the other with µ = 0.10. To avoid concerns that

the patterns are driven by the token supply asymptoting to 1, which covers the full popula-

tion of users, we instead assume a maximum token supply of 0.90.11 Figure 4 illustrates our

intuition. When the expected growth rate of the demand fundamental is small (µ = 0.01),

the token supply effect dominates and the expected log token price is falling over time, while

the log token price volatility is rising over time. In contrast, when the expected growth rate

is high (µ = 0.10), the expected token price declines more slowly over time and log price

volatility is more attenuated. Taken together, our analysis suggests that stronger platforms

(with a higher µ) see both higher expected token prices and lower log token price volatility,

while weaker platforms (with a lower µ) experience a quicker decline in their expected token

11With a fixed token supply less than 1, we must now iterate over a fixed point equation to find the
terminal value of the token price and then backwardly solve the model when the supply is less than 0.90.
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Figure 4: An illustration of unconditional expected log token price (left panel) and unconditional
log price volatility (right panel) over time. The solid line is for a demand fundamental growth rate
µ = 0.01,and the dashed is for µ = 0.10. The maximum token supply is 0.90.

price and a more pronounced increase in token price volatility over time.

3 Informational Frictions Equilibrium

In this section, we analyze the more realistic setting with informational frictions, in which

both the users’demand fundamental At and the speculators’sentiment ζt are not publicly

observable. As such, each user needs to form an expectation about At before making his

token purchase decision. A key insight from this section is that informational frictions will

act akin to insurance on the platform against failure from market breakdown, mitigating

breakdown when the demand fundamental is weak at the cost of more tepid performance

when the fundamental is strong. They dampen platform performance because users, facing

the non-trivial inference problem, under-react to the fundamental.

As we discussed earlier, even though both At and ζt are not publicly observable, the token

price nevertheless takes the same log-linear form given in (5), as in the perfect-information

case. It is convenient to denote pt as the suffi cient statistic for the information contained by

the token price Pt:

pt =
(λP − λS) log (RPt) + yt√

τ ε
+ A∗t = At +

λS√
τ ε
ζt, (8)

which is a linear combination of the two unobservables At and ζt. Equivalently, the token
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price is given by

Pt =
1

R
exp

( √
τ ε

λP − λS
(pt − A∗t )−

1

λP − λS
yt

)
.

Despite the seemingly tractable price function, the token-market equilibrium is highly nonlin-

ear as a result of the cutoff strategy used by each user, which is captured by the equilibrium

threshold A∗t , which is a nonlinear function of the state variables at t, and which serves as

the channel for informational frictions to affect the equilibrium.

To forecast the platform’s demand fundamental At in each period, each user’s infor-

mation set Ii,t now includes its own endowment Ai,t and the public information set It =

σ
({
{ps, vs, Qs}s≤t

})
, which include the history of equilibrium token price, volume, and the

public signal. In what follows, we focus on the deterministic steady-state of the Kalman

Filter recursion for users’belief formation, the proof of its characterization is given in the

proof of Proposition 4. Conditional on the public information set It, users hold the follow-
ing common posterior belief about the platform fundamental At | It ∼ N (Ât,ΣA) with the

conditional mean Ât determined by the following iterative dynamics:

Ât = Ât−1 + µ+ Σ−1
A


τQ

1
2

+

√√√√ 1
4

+
τA+τQ

τετv+
τετζ

λ2
S

τετζ
λ2
S

τ ετ v


′  Qt−1

pt − Âi,t−1 − µ
vt − Âi,t−1 − µ

 ,
and the conditional variance at a steady-state level:

ΣA =

√√√√( 1

2 (τA + τQ)

)2

+
1

τA + τQ

1

τ ετ v +
τετζ
λ2
S

− 1

2 (τA + τQ)
.

The users’ common belief Ât summarizes the relevant information in {ps, vs, Qs−1}s≤t re-
garding the current-period demand fundamental At. The current period signal Qt contains

information about the future innovation to At+1, but not about the current period At. As a

result, Ât does not subsume the information in Qt, which serves as a shock to the users’spec-

ulative demand for the token, just as in the perfect information equilibrium. Furthermore,

the token market’s common belief about speculator sentiment is

ζ̂t = E (ζt | It) =

√
τ ε
λS

(
Ât − pt

)
,

which is derived from the definition of pt. Taken together, we can represent the state of

the token market by the following state variables: It =
{
Ât, Qt, ζ̂t, yt

}
, which summarize
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all relevant information in the public information set and which are almost the same as the

state variables in the perfect-information equilibrium, except with the actual values of At

and ζt replaced by the users’common filtered beliefs, Ât and ζ̂t.

Further conditional on its own endowment Ai,t, user i’s private belief is also Gaussian

At | Ii,t ∼ N (Âi,t,Σi), with its conditional mean and variance given by

Âi,t = ΣiΣ
−1
A Ât + Σiτ εAi,t, (9)

Σ−1
i = Σ−1

A + τ ε.

In addition to the common optimism introduced by the public signal, Qt, about next period’s

innovation to At+1, users now have heterogeneous beliefs about the current value of At

because each user’s private endowment, Ai,t, acts as a private signal about At. Since the

demand fundamental is persistent, this also translates to heterogeneous beliefs about next

period’s demand fundamental At+1, and consequently about the token’s expected retrade

value.

By solving each user’s token demand and clearing the users’ aggregate demand with

the supply from the speculators, we derive the token market equilibrium. The following

proposition summarizes the equilibrium price and each user’s optimal token demand in this

equilibrium.

Proposition 4 In the presence of informational frictions, the token market equilibrium ex-

hibits the following properties:

1. If other users follow a cutoff strategy, it is optimal for each user i to follow a cutoff

strategy in purchasing the token:

Xi,t =

{1 if Ai,t ≥ A∗
(
Ât, yt, Qt, ζ̂t

)
0 if Ai,t < A∗

(
Ât, yt, Qt, ζ̂t

) ,
where the cutoff A∗t is measurable with respect to the public information set.

2. In the equilibrium, the cutoff A∗t solves the following fixed-point condition:

(1− β) e
Ât+

(
1− ηc

1+τεΣA

)
(A∗t−Ât)+ 1

2
η2
c(Σi+τ

−1
ε )

·Φ

ηc√τ−1
ε +

ΣA

1 + τ εΣA

+

√
τ ε

(
Ât − A∗t

)
√

(1 + τ εΣA) (1 + 2τ εΣA)

1{τ>t}
+E [Pt+1|I∗t ]− κ = e

−
√
τε

λP−λS (A∗t−Ât)+
λS

λP−λS
ζ̂t− 1

λP−λS
yt , (10)
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where I∗t is the information set of the marginal user whose endowment is Ai,t = A∗t ,

and τ is the stopping time for the breakdown of the platform:

τ =
{

inf t : Ât < Ac
(
yt, Qt, ζ̂t

)}
,

with Ac
(
yt, Qt, ζ̂t

)
as a critical level for Ât, below which equation (10) has no root.

Proposition 4 confirms that even when At and ζt are not publicly observable, each user

continues to follow a cutoff strategy for his token purchase decision, except that the equi-

librium threshold A∗t is determined by the users’common beliefs Ât and ζ̂t. The fixed-point

condition for A∗t in (10) is similar to (7) for the perfect-information setting, with a few key

differences: Ât replaces At, ζ̂t replaces ζt, and learning modifies various coeffi cients in the

marginal user’s expected utility on the left-hand side to reflect the additional uncertainty

that the demand fundamental is unobserved.

The equilibrium cutoffA∗
(
Ât, yt, Qt, ζ̂t

)
is the only channel for informational frictions to

directly affect the market equilibrium. By distorting users’expectations of the retrade value

of the token, informational frictions have both a static and a dynamic effect on the platform,

specifically by making the equilibrium token price over-weight public information and, con-

sequently, be less responsive to fundamental shocks. To see this, note that the equilibrium

token price is crucially determined by the expected convenience yield (1− β)E
[
Ui,t | I∗i,t

]
from the perspective of the marginal user i at date t. Similar to Albagli, Hellwig, and

Tsyvinski (2017), the marginal user has a signal realization equal to the participation cutoff,

Ai,t = A∗t , which is an equilibrium function of all public information, as summarized by{
Ât, yt, Qt, ζ̂t

}
. For this particular user, his private signal is not conditionally uncorrelated

with this public information, but is instead a function of it. The marginal user therefore

overweights the public information when forming his conditional expectation Âi,t.

The dynamic effect further exacerbates this distortion. Specifically, iterating forward on

the equilibrium cutoff condition (10) gives

Pt =

τ∑
t′=t

E

[
1

Rt′+1−tE
[
E [(1− β)Ui,t′ − κ | I∗t′ ] | I∗t′−1...

]
| I∗t

]
,

where we have switched the order of summation and expectation because Ui,t is nonnegative.

In addition, the E
[
E [Ui,t′ | I∗t′ ] | I∗t′−1...

]
is shorthand for the iterated expectations arising

from the Keynesian Beauty Contest that today’s marginal user must forecast the expecta-

tions of future marginal users, who must themselves forecast the expectations of marginal
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users that temporally follow them. Since the information sets across the marginal users are

temporally non-nested, these iterated expectations do not collapse to first-order expecta-

tions, leading to a bias toward public information, which is reminiscent of Allen, Morris, and

Shin (2006) and discussed in the context of downside risk in Albagli, Hellwig, and Tsyvinski

(2014b). Given that the marginal user at each date, in equilibrium, overweights the price in

inferring the demand fundamental, the price’s bias toward the public versus private infor-

mation through the "forecasting the forecasts" of others is even more acute. Taken together,

informational frictions dampen the platform performance by making the equilibrium token

price systematically underreact to the users’private information and, consequently, to the

fundamental shocks as well.

The following proposition summarizes several properties of the informational frictions

equilibrium.

Proposition 5 The informational frictions equilibrium has the following properties:

1. All of the comparative statics for the token price and user participation from Proposition

3 are preserved, except that the users’demand fundamental and speculator sentiment,

At and ζt, are replaced by their filtered counterparts„Ât and ζ̂t, respectively.

2. Consider a temporary increase in uncertainty about the demand fundamental, ΣA, at

date t, leaving the uncertainty ΣA in all future periods unchanged. This temporary

increase in uncertainty lowers (increases) the token price and user participation at

date t when the filtered demand fundamental Ât and user optimism Qt are suffi ciently

high (low) or when filtered speculator sentiment ζ̂t is suffi ciently low (high).

Proposition 5 reveals that the comparative statics from the perfect information equilib-

rium are preserved under informational frictions. This is natural since users form posterior

beliefs about the latent states, At and ζt, by observing the public signals (Pt, Vt, Qt) and their

private information Ai,t, and then choose their optimal entry decisions as they would under

perfect information. The difference is that users now need to account for the additional

uncertainty of their inference problem.

The second part of Proposition 5 provides an insight into how informational frictions

impact the current-period platform performance. A one-time increase in uncertainty from

learning, ΣA, lowers user participation when the platform fundamentals are strong (high Ât,
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Figure 5: An illustration of the market breakdown boundary across the demand fundamental for
different values of speculator sentiment (left panel), user optimism (middle panel), and token supply
(right panel) for the cases with perfect information (solid line) and asymmetric information (dashed
line). Values are the filtered demand fundamental and speculator sentiment for the asymmetric
information case. Baseline values are ζt = ζ̂t = 0, Qt = 0, and y = 0.9.

high Qt, or low ζ̂t), and raises participation when the fundamentals are weak. As such,

informational frictions are dampening, in that the platform performs less well when the

fundamentals are strong, and less poor when the fundamentals are weak. A limitation of

this analysis, however, is that it abstracts from the effect of a persistent increase in ΣA at

all future dates, which further feeds back into the expected retrade value of the token by

changing the cutoff function at all future dates. As informational frictions systematically

dampen the poor performance of the platform, this dynamic feedback effect can further

shrink the region of market breakdown.

As part of the analysis, we establish that the token price is convex in the filtered demand

fundamental whenever an equilibrium exists, which is important for conveying the intuition

of the role of informational frictions.

To fully understand how informational frictions dampen platform performance, we appeal

to the logic of the Bayesian Persuasion literature, e.g., Aumann and Maschler (1995) and

Kamenica and Gentzkow (2015). A key idea of the Bayesian Persuasion analysis is that

since the token price is convex with respect to the filtered demand fundamental Ât whenever

an equilibrium exists, informational frictions lower the token price. This is because more

information makes the users’common belief Ât more responsive to the actual value of At,
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Figure 6: An illustration of the unconditional expected log token price (left panel) and log price
volatility (right panel) over time. The solid line is the perfect information case and the dashed is
the asymmetric information case under the assumption A0 = Â0 = 0.

so that users benefit more from the possible high values of At although do not lose as much

from the possible low values. By Jensen’s Inequality, the higher variance of user beliefs Ât

raises the unconditional average of token price. On the other hand, informational frictions

make Ât underreact to both high values and low values of the demand fundamental, thus also

reducing the region of market breakdown. In this sense, informational frictions introduce a

tradeoffbetween platform fragility (market breakdown) and performance (high participation

when the demand fundamental is strong).

Figure 5 is the asymmetric information analogue of Figure 2 with τ v = 1. Similar to

the perfect information equilibrium, the left panel demonstrates that market breakdown

occurs when the filtered demand fundamental Ât is suffi ciently weak, while this boundary

shifts down when the filtered speculator sentiment ζ̂t is low (left panel), user optimism Qt

is high (middle panel), or when the token supply yt is small (right panel). Interestingly,

market breakdown occurs at lower values of the filtered demand fundamental than with

perfect information, with the exception of high values of filtered speculator sentiment since

it is negatively correlated with the filtered demand fundamental. This is because users

underreact to negative information about the platform and, consequently, are willing to

participate over a wider region of the filtered demand fundamental.
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Figure 6 shows the unconditional expected log token price and log price volatility as the

platform matures, assuming initially that A0 = Â0 = 0. While the expected token price is

lower with informational frictions, the expected log price (left panel) overtakes its perfect

information counterpart as the platform matures. This occurs because of the dampening

mechanism discussed earlier. As a result of informational frictions, the region of market

breakdown is smaller than with perfect information, and this boosts the expected log price

by minimizing downside risk. Consistent with dampening, the log token price volatility is

lower with informational frictions, as users underreact to new information that arrives on

the platform.

Taken together, informational frictions attenuate platform fragility. Not only is market

breakdown less likely with informational frictions, especially when the platform is young, but

it also mutes token price volatility. The cost of this dampening, however, is the worsened

platform performance when the demand fundamental is strong, because users underreact to

At and thus under-participate when At is actually high. As a result, the expected token price

is also lower with informational frictions as a result of the convexity of the price function.

This cross-subsidization of informational frictions, consequently, mitigates platform fragility

at the expense of a lowered token price by expectation. In this way, informational frictions

act as a form of insurance that protects against weak fundamentals at an insurance premium.

4 Mining and Strategic Attacks

Up until now, we have assumed that the cryptocurrency platform has a permissioned blockchain

because the owner verifies and completes all transactions. A key feature of the blockchain

technology underpinning cryptocurrencies, however, is that they are permissionless and verify

transactions through decentralized consensus, amongst an anonymous population of miners,

while maintaining trust in the cryptocurrency by deterring strategic attacks. The risk of

strategic attacks by miners is a central concern for cryptocurrency platforms. Attacks on

Bitcoin Gold, ZenCash, Vertcoin, Monacoin, Ethereum Classic, Verge (twice) have already

led to losses of approximately $18.6M, $550K, $50K, $90K, $1.1M, and $2.7M, respectively.

Such attacks include, for instance, fifty-one percent attacks that lead to "double spending"

fraud and transaction failures through denials of service.12

12This issue has also received significant attention in the literature. See, for instance, Chiu and Koeppl
(2017), Pagnotta (2018), and Budish (2018).
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To illustrate how Proof of Work mining can impact platform performance and stability,

we consider a simple extension of our perfect information setting in this section. We now

assume that in each period, a new population of potential miners mine the token by pro-

viding accounting and custodial services using its underlying blockchain technology.13 As in

practice, there is free entry of miners onto the platform.

All miners provide computing power to facilitate transactions among users, subject to a

cost of setting up the required hardware and software to mine the token: e−ξtMj,t, where

Mj,t ∈ {0, 1} is the miner’s decision to mine and ξt measures the miner’s mining effi ciency
by inversely parameterizing the miner’s cost of mining. This mining effi ciency ξt is common

to all miners and follows an AR(1) process:

ξt = ξt−1 + τ
−1/2
ξ εξt ,

with εξt ∼ iid N (0, 1) . Instead of the platform owner, miners are compensated with the

transaction fee βUt, which is a fraction of the transaction surplus, and the seignorage from

token inflation, (Φ (yt−1 + ι)− Φ (yt−1))Pt. Consistent with many token platforms with PoW

mining, miners also earn transaction fees since, over time, the number of tokens created by

inflation will diminish. It is thus necessary to shift the compensation toward fees. Miners

have no use for tokens and sell them to users and speculators. If NM,t miners join the

platform at date t, each miner earns βUt+(Φ(yt−1+ι)−Φ(yt−1))Pt
NM,t

−e−ξt in expected net gain.14

Suppose that when a strategic attack occurs, users lose half of their transaction surplus

from failed transactions in the current period as a result of service delays and denials. The

interruption of service also reduces transaction fees by half. Furthermore, we assume that a

strategic attack occurs whenever

(Φ (yt + ψι)− Φ (yt))Pt +
(Φ (yt−1 + ι)− Φ (yt−1))Pt + β

2
Ut

2
≥ αN2

M,t, (11)

where α, ψ > 0. On the left-hand side of this condition, the first term has the interpretation

of fraudulent seignorage created by corrupt miners from double spending, and the second is

13In practice, several miners are randomly drawn from a queue to compete to complete each transaction,
and miners often pool their revenue to insure each other against the risk of not being selected. See Cong,
He and Li (2018) for an extensive analysis of this issue. Our modeling of mining as a static problem when
there is free-entry is consistent with that in Abadi and Brunnermeier (2018).
14To focus on the broader implications of the cryptocurrency for users, we abstract from the strategic

considerations that miners face in adding blocks to the blockchain to collect fees, such as consensus protocols
and on which chain to add a block. See, for instance, Easley, O’Hara, and Basu (2017) and Biais et al (2017)
for game theoretic investigations into these issues.
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half the mining fees, in the forms of legitimate seignorage and transaction fees, earned from

mining the attack. The right-hand side is the cost of attack, which is a convex function of

the number of miners, reflecting that a larger pool of miners makes it increasingly costly

for corrupt miners to acquire the necessary computing power for completing a 51% attack.

In Appendix B, we provide a microfoundation for this strategic attack condition, although

all that we require is that strategic attacks occur whenever the cost of mining is suffi ciently

high and the number of miners is suffi ciently low.

Consider the incentives of miners to join the platform at date t. With rational expecta-

tions, miners choose whether to join, fully anticipating the possibility of a strategic attack.

Miner j with the common mining effi ciency ξt thus maximizes his expected gain:

Πj = max
Mj,t

(
(Φ (yt−1 + ι)− Φ (yt−1))Pt + β

1+χt
Ut

(1 + χt)NM,t

− e−ξt
)
Mj,t, (12)

where χt ∈ {0, 1} is the indicator for whether there is a strategic attack at date t. The
1

1+χt
factor reflects that the mining pool receives only 1

2
of the total mining revenue from

completing less than half of the blocks when a strategic attack occurs.

For simplicity, we characterize strategic attacks by miners under the perfect information

setting when the platform’s demand fundamentalAt is publicly observable. Note that relative

to the perfect information equilibrium characterized in Section 2, the miners’common mining

effi ciency ξt becomes an additional state variable. The following proposition shows that

strategic attacks occur when either At or ξt falls below a certain level.

Proposition 6 The equilibrium has the following properties:

1. There exists a critical level ξa (At, yt, Qt, ζt) such that strategic attacks occur when

ξt < ξa (At, yt, Qt, ζt) .

2. There exists a critical level Aa (yt, Qt, ζt, ξt) , which is decreasing in ξt, such that strate-

gic attacks occur when At < Aa (yt, Qt, ζt, ξt) .

3. Both an attack equilibrium and a no-attack equilibrium can exist as a result of the

positive relationship between the benefits and costs of attacks.

From Proposition 6, a strategic attack occurs when the mining fundamental and/or the

user demand fundamental are suffi ciently weak, since in these situations the number of
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Figure 7: An illustration of the strategic attack boundary (left), the market breakdown boundary
(middle), and the token price (right) with respect to mining fundamental ξt. Market breakdown
boundary without mining (solid line) is for comparison. User optimism is turned off (τQ = 0) in
this illustration. Baseline values are ζt = 0, and yt = 0.90.

miners is too small to deter a strategic attack. Although the impact of each strategic attack

is transitory, the occurrence of strategic attacks is persistent, since an attack will occur every

period in which the platform is in the attack region. As attacks reduce the token price and

thus the incentives of miners to join the platform, it may be possible for both a no-attack

equilibrium and an attack equilibrium to be self-fulfilling.

Figure 7 depicts the strategic attack boundary (left panel) and the platform breakdown

boundary with and without mining (middle panel) for τ ξ = 10, α = 0.8, and ψ = 3. Min-

ers choose to attack the cryptocurrency if the user fundamental At falls below the attack

boundary Aa. This attack boundary is decreasing with the mining fundamental ξt, as for-

mally derived in Proposition 6. While each strategic attack does not lead to the failure of

the platform, the expected losses induced by future attacks lead to a higher threshold Ac for

market breakdown. As such, the possibility of strategic attacks by miners also exacerbates

platform fragility.

As our analysis highlights, the PoW protocol introduces several novel features to cryp-

tocurrency platforms. First, the anticipation of future attacks makes such a strategic attack

easier to execute through an adverse feedback loop. An attack lowers the revenue each
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honest miner receives, which reduces the number of miners that join the platform and thus

lowers the cost of an attack. Interestingly, the decentralized consensus protocol exacerbates

the problem, by dispersing the revenue from mining over the whole population of miners.

As a result, an honest miner captures only a fraction of the revenue that is recovered by

increasing its own mining power to preempt attacks.15 In this way, decentralized consensus

averts internalization of incentives to ensure the platform security.

Second, the feedback effects from mining to the platform token’s intrinsic value through

service delays and denials are peculiar to the decentralized consensus protocol. Users are

also shareholders in the platform through the retradability of the token. As such, delays,

and expectations of future delays, have an important impact on the token price because they

reduce user participation and, consequently, demand for the token.

Finally, from Figure 7 (right panel), there is a non-linear relation between the mining

fundamental and token price. When the mining fundamental is far away from the strategic

attack boundary, an incremental change in the effi ciency of mining has a limited impact on

the token price, since the probability of an attack is small. When the mining fundamental

is close to the strategic attack boundary, however, a small change in the effi ciency of mining

can have a substantial impact on the token price, which in turn leads to a substantial impact

on the platform’s stability.

The role of rational bubbles The presence of mining on the platform introduces a role

for rational bubbles to improve the platform’s security and stability by inflating the token

price that compensates miners for their services. Since our setting features overlapping

generations of agents over an infinite horizon, it is also suitable for investigating the role of

rational bubbles, which we briefly discuss here. Suppose that we augment the token price

with a rational bubble bt ≥ 0 that, following Blanchard and Watson (1982), satisfies the

following law of motion:

bt+1 =

{
Rbt

(1−ρ) Pr(τ>t+1 | It) if τ > t+ 1

0 otherwise
,

15While, in principle, mining pools could coordinate to preempt a strategic attack, their primary function is
risk-sharing. Further, such coordination would undermine the spirit of the decentralized consensus protocol.
In May 2019, the BTC.top and BTC.com mining pools, with combined 44% mining power, were criticized
for coordinating an "attack" on the BTC Cash blockchain to reverse a hacker’s transactions.
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where ρ is an exogenous probability of the bubble bursting in the next period and R is

the gross interest rate in the economy.16 Since the bubble also bursts if the token market

breaks down, the endogenous possibility of market breakdown from the users’coordination

failure raises the return on the bubble, conditional on the platform’s survival. Interestingly,

when the platform is most vulnerable is also when the bubble sees its largest ex post price

appreciation conditional on survival.

To save space, we briefly discuss several possible effects of this rational bubble, without

formally characterizing them. First, it has no direct effects on users since they always pay

the fair value to purchase the token. Second, the rational bubble reduces the likelihood

of strategic attacks by miners, because it raises the token price and miners are partially

compensated by seignorage from token inflation. Third, the lower likelihood of strategic

attacks today and in the future raises the token’s expected retrade value, increases user

participation, and consequently the token price and transaction surplus today. Fourth,

when the platform matures, however, all miner revenue is derived from transaction fees, and

the rational bubble ceases to have real effects. Finally, the bubble bursting for exogenous

reasons is also a source of instability on the platform, as it generates a sudden drop in the

token price and consequently a fall in user participation.

5 Empirical Implications

In this section, we discuss several empirical implications of our conceptual framework for

cryptocurrency returns. Cryptocurrency returns in our framework have three components:

a convenience yield of the marginal user, which acts like a dividend, a capital gain from the

token price appreciation, and an embedded discount in the token price to compensate users

for their participation cost. By the marginal user’s equilibrium condition in (7), these three

components satisfy the following relationship:

R =
(1− β)U∗t

Pt
+
E [Pt+1 | It]

Pt
− κ

Pt
.

In contrast to fiat currencies, the expected capital gain can be quite positive, despite

token inflation, and substantial, which has attracted many speculators to the nascent asset

16To avoid the restrictive conditions in Santos and Woodford (1998), since tokens are in positive supply,
we implicitly assume users are unconstrained in their resources in the numeraire to purchase tokens. This
assumption reflects that cryptocurrencies, in practice, are a small part of the overall asset universe and, if
the rest of the economy grows suffi ciently fast, then users could, in principle, finance the bubble.
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class. In addition, and novel to cryptocurrencies, the convenience yield is created by share-

holders acting in their dual capacity as users of the platform, which gives rise to a feedback

mechanism from the cryptocurrency return to user participation.17 As the platform matures

and participation increases, the cryptocurrency return transitions from being driven more

by the capital gain component to more by the convenience yield.18

The empirical literature is mostly focused on the capital gain component of the cryp-

tocurrency return, as it is directly measurable by the econometrician. In equilibrium, the

expected excess capital gain can be expressed as

E [Pt+1 | It]
Pt

−R =
κ

Pt
− (1− β)U∗t

Pt
. (13)

Consistent with the empirical findings of Hu, Parlour, and Rajan (2018) and Liu and Tsyvin-

ski (2019), the expected excess capital gain in our setting does not exhibit conventional risk

premia. The capital gain may still exhibit predictibility through the underlying state vari-

ables that explain the convenience yield. These state variables are the demand fundamental,

user optimism, speculator sentiment, and token supply. In the presence of informational

frictions, the demand fundamental and speculator sentiment are replaced by their filtered

counterparts, which are linear functions of the full history of token prices, trading volumes,

and public news signals. Liu and Tysvinski (2019), for instance, show that investor atten-

tion, measured either with Google searches or Twitter post counts for "Bitcoin", predicts

future cryptocurrency returns, with positive (negative) attention, as measured by keywords,

positively (negatively) predicting future weekly returns.19 Liu and Tsyvinski (2019) also find

that investor sentiment, measured as either the log ratio between the number of positive and

negative phrases of cryptocurrencies in Google searches or the ratio of trading volume to

return volatility, predicts future cryptocurrency returns.

Our model also suggests the participation cost borne by users, which is not directly

observed by the econometrician, as an additional channel of return predictability. As this

cost effect is inversely related to the token price and, consequently, market capitalization,

17Shams (2019) provides evidence of the importance of network effects for cryptocurrency returns by show-
ing that return comovement arising from overlapping exposures to demand shocks is significantly stronger
among "high community-based" cryptocurrencies.
18A subtle issue is how to measure the marginal user’s convenience yield in practice. If users were all

identical, then Ut√
Vt
, which is similar to the average transaction fee, would be this yield. With selection onto

the platform, however, a reasonable, noisy proxy is the minimum transaction size on the blockchain.
19Although the measure is constructed with searches for "Bitcoin" specifically, we view this measure as a

noisy proxy for interest in cryptocurrencies more geneally.

35



our model predicts a size effect in the capital gain of cryptocurrencies. This prediction

is consistent with Liu, Tsyvinski, and Wu (2019), who find a size factor in the cross sec-

tion of cryptocurrency returns, with size measured as either market capitalization, price, or

maximum price.

In addition, the persistence of the two return components κ
Pt
and (1−β)U∗t

Pt
in (13) can lead

to a positive autocorrelation in the capital gain:

Cov

(
Pt+2

Pt+1

,
Pt+1

Pt

∣∣∣∣ It−1

)
= Cov

(
κ

Pt+1

−
(1− β)U∗t+1

Pt+1

,
κ

Pt
− (1− β)U∗t

Pt

∣∣∣∣ It−1

)
> 0,

because the innovations Pt+1−E[Pt+1 | It]
Pt

and Pt+2−E[Pt+2 | It+1]
Pt+1

are uncorrelated with rational

expectations. This positive autocorrelation implies momentum, as empirically documented

by Liu and Tsyvinski (2019) in the prices of cryptocurrencies. Furthermore, the momentum

effect in our model is independent of investor attention and sentiment, which is also consistent

with Liu and Tsyvinski (2019), who find time-series momentum over 1-to-8 week horizons

that is not subsumed by their measures of attention or sentiment.

Finally, our extension with mining suggests that the capital gain from a cryptocurrency

has a non-linear relation with the marginal cost of mining. When the cost of mining is low

relative to the strategic attack threshold, small changes in it have a muted impact on the

capital gain, as the potential loss from strategic attacks, which can be viewed as an extended

form of the participation cost in (13), is small. As the mining cost increases toward the

strategic attack boundary, however, incremental changes become more relevant. Our model

therefore predicts that measures of mining costs should have more predictive power for the

capital gain when there is a nontrivial chance of strategic attacks, such as when the hash

rate or the number of miners is low.

6 Conclusion

This paper develops a model to analyze cryptocurrencies. In our model, a cryptocurrency

constitutes membership in a platform developed to facilitate transactions of certain goods

or services. As a result of the strong network effect among users to participate on the

platform and the rigidity induced by market-clearing with token speculators, the market can

break down with no equilibrium. While user optimism of future price appreciation raises

user participation, and consequently reduces the risk of breakdown, speculator sentiment

instead exacerbates it by crowding out users. The presence of realistic informational frictions
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also mitigates this risk of market breakdown because users systematically underreact to

information about platform fundamentals, both favorable and unfavorable, at the cost of

worse average platform performance. In addition, the potential for strategic attacks when

transactions are recorded on a blockchain by miners acts as a drag on the platform by feeding

back into both the incentives of miners to mine and of users to join the platform, which makes

such attacks more likely. Our model also provides several predictions for cryptocurrency price

changes that are broadly consistent with recent empirical evidence.
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Appendix A Microfoundation of Goods Trading

In this Appendix, we microfound the goods trading between two users when they are matched

on the platform at date t. For clarity, we ignore the impact of strategic attacks on the likeli-

hood of transactions being completed. As all objects are at date t, we omit time subscripts

to economize on notation. We assume that user i maximizes its utility by choosing its con-

sumption demand {Ci, Cj} through trading with its trading partner user j subject to its
budget constraint:

Ui = max
{Ci,Cj}

U (Ci, Cj;N ) (14)

such that piCi + pjCj = pie
Ai ,

where pi is the price of its good. Similarly, user j solves a symmetric optimization problem

for its trading strategy. We also impose market clearing for each user’s good between the

two trading partners:

Ci (i) + Ci (j) = eAi and Cj (i) + Cj (j) = eAj .
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Furthermore, we assume that the goods endowments of the two users, Ai and Aj, are

observable to them at the time of their trading, regardless of whether the platform strength

A is publicly observed. Users behave competitively and take the prices of their goods as

given.

Proposition 7 User i’s optimal good consumptions are

Ci (i) = (1− ηc) eAi , Cj (i) = ηce
Aj ,

and the price of his good is

pi = eηc(Aj−Ai).

Furthermore, the expected utility benefit of user i at t = 1 is given by

E [U (Ci, Cj;N )| Ii] = e(1−ηc)Ai+ 1
2
η2
cτ
−1
ε E

[
eηcAΦ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ Ii] ,
and the ex ante utility benefit of all users before observing their goods endowments is

U0 = eA+ 1
2((1−ηc)2+η2

c)τ−1
ε Φ

(
(1− ηc) τ−1/2

ε +
A− A∗

τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
.

Proposition 7 shows that each user spends a fraction 1−ηc of his endowment on consuming
his own good Ci (i) and a fraction ηc on the good of his trading partner Cj (i). The price

of each good is determined by its endowment relative to that of the other good. One user’s

good is more valuable when the other user has a greater endowment, and consequently each

user needs to take into account the endowment of his trading partner when making his own

decision. The proposition demonstrates that the expected utility of a user in the platform

is determined by not only his own endowment eAi but also the endowments of other users.

This latter component arises from the complementarity in the user’s utility function.

Appendix B Microfoundation for Strategic Attacks

In this Appendix, we provide a microfoundation for the strategic attack condition in the

main text. Specifically, we examine whether rogue miners wish to collude to engage in

a 51% "double spending" attack. This requires that a group of miners amasses enough

computational power, compared to the rest of the mining community, to be able to verify, on

average, the majority of transactions on the blockchain. Conceptually, by winning enough

blocks to add to the blockchain, these corrupt miners will be able to eventually validate their

own blocks on the longest chain, or to mine secretly a second chain longer than the current

blockchain and broadcast it to the mining community as the legitimate chain. When this
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occurs, these miners can reverse their own transactions to undo their expenditures, returning

their spent tokens to their wallet to be spent again. This is the so-called "double spending"

problem. By creating duplicate tokens, the strategic attack temporarily increases the token

supply through fraudulent inflation.20

The benefits and costs of of a 51% attack are linked to participation by both users and

miners. As more miners join the mining pool, the probability of completing any transaction

and adding it to the blockchain falls, increasing the effective computational cost of attacking

the currency. In addition, user and miner participation also increase the computational cost

of an attack through the diffi culty of mining each transaction, or the hashrate. Many PoW

protocols, such as those of Bitcoin and Ethereum, set the hashrate to maintain a fixed average

time for new blocks to be added to the blockchain, and the hashrate increases in the number

of users and miners to prevent blocks from being added too quickly. As a consequence,

having more subscribers and a more diverse mining pool can make the platform more secure.

We assume that miners lack commitment, which is consistent with the static incentives

miners face because of free entry (Abadi and Brunnermeier (2018)). Any miner can attack the

blockchain by engaging in a fifty-one percent attack to "double spend" the coins they receive

from seignorage. If corrupt miners attack the blockchain, the strategic attack artificially

inflates the token base by Φ (yt + ψι)−Φ (yt) , for ψ > 0, and the miner sells these additional

tokens to earn (Φ (yt + ψι)− Φ (yt))Pt in additional revenue. These additional tokens have to

be absorbed by users and speculators by increasing the effective token supply to Φ (yt + ψι) .

In addition, since the corrupt miners add over half the blocks to the blockchain, they earn

fifty percent of the transaction fees from users and seignorage. As a result of increased

waiting times and service denials, users also experience a loss in expectation of half their

trade surplus.21

To acquire fifty-one percent of the computing power, corrupt miners must replicate the

mining power of the existing NM,t miners by expending a convex technological cost αN2
M,t,

where α > 0. That the cost is convexly increasing in the number of miners NM,t reflects that

it is increasingly diffi cult to acquire more mining power because of additional hardware and

electricity costs.22 To join the strategic attack, a potential attacker has to pay a participation

20To date, the major attacks on blockchains have been 51%. In 2015, the Bitcoin mining pool ghash.io
voluntarily committed to reducing its share of mining power from over fifty percent to less than forty percent
to assuage fears of it coordinating a potential 51% attack amongst its miners on the currency. There is even
a website, Crypto51, that tracks the computational cost of a 51% attack in real-time.
21In addition to fraud and theft, hackers have engaged in 51% attacks to disrupt the blockchain and deny

service to undermine confidence in the cryptocurrency. It should be stressed that, while hackers can disrupt
the blockchain and double spend, they cannot steal tokens from user wallets.
22Implicitly, we assume that, to avoid detection by the mining pool, which could result in punishment and

unraveling the attack, that these rogue miners must acquire additional computing power to compete with
their own honest mining.
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cost, which can be viewed as the cost or disutility of coordinating with the other attackers,

that we normalize to 1 in the numeraire good.

Suppose that NM,t miners providing mining services at date t and that a fraction pt of

miners attack and split the proceeds from the attack equally. They then need to acquire

half of total mining power and, consequently, they must acquire NM,t in additional mining

power. An attack will occur when the benefit, the fraudulent seignorage and additional
1
2
fraction of the seignorage and transaction fees, is greater than the cost of doubling the

existing computing power of the mining community(
Φ (yt + ψι)− Φ (yt) +

1

2
(Φ (yt)− Φ (yt − ι))

)
Pt +

1

2

β

2
Ut − αN2

M,t ≥ 0,

When this situation happens, a strategic attack occurs. Notice, however, that when this

condition is satisfied that all miners will want to attack the platform, which will dilute the

mining power and undermine a strategic attack. If all miners increase their mining by NM,t

units, then the no miner achieves fifty-one percent of the mining power on the platform.

As this cannot be an equilibrium, the miners must play a mixed strategy when a strategic

attack is possible. The probability of a miner attacking, pt, is the date t probability then

ensures that every miner is indifferent to attacking based on the outcome of an i.i.d. draw

of a Bernoulli random variable with Pr (Attack) = pt. By the weak LLN, exactly a fraction

pt of the existing mining pool will attack. This probability satisfies that the fraction 1
pt
of

the revenue from attacking is offset by the disutility of participation(
Φ (yt + ψι)− 1

2
Φ (yt)− 1

2
Φ (yt − ι)

)
Pt + 1

2
β
2
Ut − αN2

M,t

ptNM,t

− 1 = 0,

from which follows, when pt > 0, that

pt =

(
Φ (yt + ψι)− 1

2
Φ (yt)− 1

2
Φ (yt − ι)

)
Pt + 1

2
β
2
Ut − αN2

M,t

NM,t

.

otherwise there is no attack. Consequently, we can interpret the strategic attack condition

(11) as arising from a 51% attack on the currency, and the possibility of attack leads to a

stability boundary in the state space of the platform.

Appendix C Proofs of Propositions

C.1 Proof of Proposition 1

We first examine the decision of a user to purchase the token. We first recognize that each

user’s expectation about Pt+1, E [Pt+1| It] , depends on each user’s expectation of At+1. By
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the Bayes Rule, it is straightforward to conclude that the conditional posterior of users about

At+1 after observing At and Qt is Gaussian At+1|It ∼ N
(
Ât+1, τ̂

−1
A

)
, where the conditional

estimate and precision satisfy

Ât+1 = At + µ+
τQ

τ ε + τQ
Qt,

τ̂A = τ ε + τQ.

We define τ as the stopping time, at which the platform fails as a result of the breakdown

of the token market. We shall derive the conditions that determine τ later. Conditional on

t < τ , the expected utility of user i, who chooses to purchase the token at t, from transacting

with another user is

E [Ui,t |It, τ > t, Ait, matching with user j] = e(1−ηc)Ai,tE
[
eηcAj,t |It

]
,

which is monotonically increasing with the user’s own endowmentAi,t. Note thatE
[
eηcAj,t | It

]
is independent of Ai,t, but dependent on the strategies used by other users. It then follows

that user i will follow a cutoff strategy that is monotonic in its own type Ai,t.

Suppose that every user uses a cutoff strategy with a threshold of A∗t . Then, the expected

utility of user i is

E [Ui,t|It, τ > t] = e(1−ηc)Ai,t+ηcAt+ 1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε +

At − A∗t
τ
−1/2
ε

)
1{τ>t},

since losing a transaction is independent of the identities of the two transacting parties.

To determine the equilibrium threshold, consider a user with the critical endowment

Ait = A∗t . As this marginal user must be indifferent to his purchase choice, it follows that

E [(1− β)Ui,t + Pt+1| It, Ait = A∗t ] = RPt + κ,

which is equivalent to

(1− β) e(1−ηc)Ai,t+ηcAt+ 1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε +

At − A∗t
τ
−1/2
ε

)
1{τ>t} + E [Pt+1| It] = RPt + κ, (15)

with Ai,t = A∗t . Fixing the critical value A
∗
t , the expected token price E [Pt+1| It] , and the

price Pt, we see that the LHS of equation (15) is monotonically increasing in Ai,t, since

1 − ηc > 0. This confirms the optimality of the cutoff strategy that users with Ai,t ≥ A∗t

acquire the token to join the platform, and users with Ai,t < A∗t do not. Since Ai,t = At+εi,t,

it then follows that a fraction Φ
(
−√τ ε (A∗t − At)

)
of the users enter the platform, and

a fraction Φ
(√

τ ε (A∗t − At)
)
choose not to. As one can see, it is the integral over the

idiosyncratic endowment of users εi that determines the fraction of potential users on the

platform.
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By substituting Pt from equation (5) into equation (15), we obtain an equation to deter-

mine the equilibrium cutoff A∗t = A∗t (It):

(1− β) eAt+(1−ηc)(A∗t−At)+ 1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε +

At − A∗t
τ
−1/2
ε

)
1{τ>t} + E [Pt+1| It]

= e
√
τε

λP−λS
(At−A∗t )− 1

λP−λS
yt+

λS
λP−λS

ζt + κ. (16)

Define zt =
√
τ ε (A∗t − At), which determines the population that buys the token. We can

rewrite equation (16) as

(1− β) e

[
(1−ηc)τ

−1/2
ε + 1

λP−λS

]
zt+At+

1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − zt

)
1{τ>t} (17)

+e
1

λP−λS
zt (E [Pt+1| It]− κ) = e

− 1
λP−λS

yt+
λS

λP−λS
ζt

Note that the first term in the LHS of equation (17) has a humped shape with respect

to zt, and the second term is an exponential function of zt with a coeffi cient that may be

either positive or negative. As the RHS of equation (17) is constant with respect to zt, this

equation may have zero, one, two, or three roots:

• If E [Pt+1| It]−κ ≤ 0, the LHS has a humped shape with a maximum at z̄, and it may

intersect with the RHS at zero or two points:

1. If LHS (z̄) < RHS, then equation (17) has no root.

2. If LHS (z̄) > RHS, then equation (17) has two roots.

• If E [Pt+1| It]−κ > 0, the LHS is non-monotonic with LHS(−∞) = 0, LHS(∞) =∞,
and one local maxium z̈ and one local minimum ż in (−∞,∞), and it may intersect

the RHS at one or three points:

3. If RHS < LHS (ż) or if RHS > LHS (z̈) , then equation (17) has one root.

4. If LHS (ż) < RHS < LHS (z̈) , then equation (17) has three roots.

In the first scenario outlined above, there is no equilibrium, and the token market breaks

down. Note that At shifts up and down the left-hand side of equation (17). Thus, equation

(17) has no root when At is suffi ciently small. For this situation to occur, the speculative

motive, E [Pt+1 | It]−κ, must be nonpositive, otherwise equation (17) has one or three roots.
This condition is also satisfied when At is suffi ciently small because E [Pt+1 | It] is increasing
with At. Thus, the token market breaks down when At falls below a certain critical level,
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which we denote as Ac (yt, Qt, ζt). Thus, the stopping time τ of the platform’s disbandment

is

τ = {inf t : At < Ac (yt, Qt, ζt)} .

Finally, note that, since the only difference among users is the value of their transaction

benefit, E [Ui,t | It, τ > t] , which is monotonically increasing in Ai,t regardless of the mass

of users that join the platform, it follows that, regardless of the strategies of other users, it

is always optimal for each user i to follow a cutoff strategy.

C.2 Proof of Proposition 2

The first part of the proposition follows from the derivation of Proposition 1 and the definition

of Ac. This proof characterizes the determinants of the fundamental critical level Ac.

With regard to speculator sentiment, notice from equation (17) that, when E [Pt+1 | It]−
κ is nonpositive, there is a critical value of speculator sentiment ζc (At, yt, Qt):

ζct =
λP − λS
λS

log

{
sup
zt

{
(1− β) e

[
(1−ηc)τ

−1/2
ε + 1

λP−λS

]
zt+At+

1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − zt

)
+e

1
λP−λS

zt (E [Pt+1| It]− κ)
}}

+
yt
λS
,

such that no equilibrium exists if ζt ≥ ζc (At, yt, Qt) , with the convention that ζ
c
t = −∞ if

the argument in the log is negative.

It is straightforward to see that, in the high price (low cutoff) equilibrium, the Implicit

Function Theorem implies that dzt
dζt

> 0. Since the user participation is Φ (−zt) , it follows that
an increase in ζt exacerbates the market breakdown region by lowering user participation.

Since ζt is i.i.d., there is only this static impact of an increase in speculator sentiment on

the equilibrium cutoff. As such, by lowering user participation, it shifts up Ac (yt, Qt, ζt) for

any given pair of {yt, Qt}.
We next consider how user optimism Qt impacts the market breakdown region. Since

user optimism Qt raises each user’s estimate of the resale value of the token at date t+ 1, it

raises user participation and the token price at date t. Since Qt is i.i.d., this is the only impact

of an increase in user optimism. As such, it shifts down the market breakdown threshold,

Ac (yt, Qt, ζt) , for any given pair of {yt, ζt}.
Similarly, an increase in the user participation cost, κ, deters user participation at all

dates and therefore exacerbates the market breakdown by both increasing the cost today and

lower the expected retrade value of the token tomorrow through the reduced participation

in the future. As such, it also shifts up Ac (yt, Qt, ζt) .
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C.3 Proof of Proposition 3

We first establish that the map from the demand fundamental At to the equilibrium user

cutoff for joining the platform is monotone when the highest price equilibrium is always

played.23

Suppose that the token price at date t + 1, Pt+1, is increasing in At for all (yt, Qt, ζt)

triples in the high price equilibrium. Then, since At follows a random walk, its cumulative

distribution function satisfies the Feller Property, and the conditional expectation operator

preserves this relation

∂E [Pt+1 | It]
∂At

= E

[
∂P
(
At + µ+ εt+1, yt+1, Qt+1, ζt+1

)
∂At

| It

]
> 0,

where the expectation is take over εt+1. Consequently, E [Pt+1 | It] is increasing in At.Then,
we can rewrite equation (17) as the function Gt

Gt = (1− β) e

[
(1−ηc)τ

−1/2
ε + 1

λP−λS

]
zt+At+

1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − zt

)
1{τ>t}

+e
1

λP−λS
zt (E [Pt+1| It]− κ)− e−

1
λP−λS

yt+
λS

λP−λS
ζt

≡ 0. (18)

Assuming existence of an equilibrium, applying the Implicit Function Theorem to Gt, one

has that
∂zt
∂At

= −∂Gt/∂At
∂Gt/∂zt

,

where

∂Gt

∂At
= (1− β) e

[
(1−ηc)τ

−1/2
ε + 1

λP−λS

]
zt+At+

1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − zt

)
+ e

1
λP−λS

zt ∂E [Pt+1 | It]
∂At

> 0.

In the high price equilibrium, the RHS of equation (17) intersects the hump-shaped curve of

the LHS in zt on the left-side of the hump, and consequently ∂Gt
∂zt
≥ 0.24 It then follows that,

in the high price equilibrium, ∂zt
∂At

< 0. Therefore, user participation Φ (−zt) is increasing in
At.

Furthermore, since Pt = e
− 1
λP−λS

zt− 1
λP−λS

yt+
λS

λP−λS
ζt , it follows that

∂Pt
∂At

= − Pt
λP − λS

∂zt
∂At

> 0.

Consequently, Pt is increasing in At in the high price equilibrium. Since the choice of t and

t+ 1 are arbitrarily, Pt is increasing in At generically if the high price equilibrium is played

at each date.
23Our proof is based on a modified argument of Milgrom and Roberts (1994) for comparative statics in

the presence of strategic complementarity.
24 ∂Gt

∂zt
= 0 at the critical value of zt at which breakdown occurs if the fundamentals deteriorate.
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Finally, since user optimism Qt enters into the user’s problem by raising the expected

resale token price, it raises user participation and the token price. In contrast, speculator

sentiment ζt lowers user participation by leading to nonfundamental upward pressure on the

token price. Since it also lowers user participation, the overall impact on the token price is

ambiguous. To see this, we rewrite equation (18) as

Ht ≡ (1− β) e(1−ηc)τ
−1/2
ε (z̃t+λSζt)+At+

1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε − z̃t − λSζt

)
1{τ>t}

−e−
1

λP−λS
z̃t− 1

λP−λS
yt + E [Pt+1 | It]− κ = 0,

where the change of variables z̃ now absorbs speculator sentiment, so that the price is

Pt = e
− 1
λP−λS

z̃t− 1
λP−λS

yt . Since speculator sentiment is i.i.d., and the equilibrium is Markovian

in the state space (At, yt, Qt, ζt), the retrade value of the token is unaffected by changes

in sentiment today. It is straightforward by the Implicit Function Theorem to the above

equation that
∂z̃t
∂ζt

= −dHt/dζt
dHt/dz̃t

.

Since z̃ enters Ht symmetrically as z does in equation (17), dHt/dz̃t > 0 in the high price

equilibrium. In contrast, dHt/dζt is

dHt/dζt ∝ (1− ηc) τ−1/2
ε −

φ
(
ηcτ
−1/2
ε − z̃t − λSζt

)
Φ
(
ηcτ
−1/2
ε − z̃t − λSζt

) = (1− ηc) τ−1/2
ε −

φ
(
ηcτ
−1/2
ε − zt

)
Φ
(
ηcτ
−1/2
ε − zt

) .
Consequently, if zt is suffi ciently small, then dHt/dζt > 0, while if zt is suffi ciently large,

then dHt/dζt < 0. Since ∂Pt
∂ζt

= − 1
λP−λSPt

∂z̃t
∂ζt
, it follows that ∂Pt

∂ζt
> 0 for zt suffi ciently small,

and ∂Pt
∂ζt

< 0 for zt suffi ciently large. Since zt = A∗t − At, the result follows.

C.4 Proof of Proposition 4

In this proof, we construct an equilibrium by conjecturing and verifying that every user

follows a cutoff strategy with a threshold of A∗t . Since there can be multiple equilibria, as

in the perfect information model, we assume that users will always coordinate on the lowest

threshold (or highest token price) equilibrium. This helps ensure a positive relation between

the price and the demand fundamental, At, which is needed for a cutoff equilibrium to exist.

Given our assumption about the suffi cient statistic in token price in equation (8), the

posterior about At given all public information is Gaussian At|It ∼ N
(
Ât,ΣA,t

)
with the
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conditional mean and variance satisfying the Kalman Filter recursion:

Ât =

 τ−1
A

ΣA,t−1 + τ−1
A

ΣA,t−1 + τ−1
A

′

 τ−1

Q 0 0

0 ΣA,t−1 +
λ2
S

τετζ
ΣA,t−1

0 ΣA,t−1 ΣA,t−1 + τ−1
ε τ−1

v

+ τ−1
A ιι′


−1

·

 Qt−1

pt − Âi,t−1 − µ
vt − Âi,t−1 − µ

+ Ât−1,

ΣA,t = ΣA,t−1 + τ−1
A −

 τ−1
A

ΣA,t−1 + τ−1
A

ΣA,t−1 + τ−1
A

′

·


 τ−1

Q 0 0

0 ΣA,t−1 +
λ2
S

τετζ
ΣA,t−1

0 ΣA,t−1 ΣA,t−1 + τ−1
ε τ−1

v

+ τ−1
A ιι′


−1  τ−1

A

ΣA,t−1 + τ−1
A

ΣA,t−1 + τ−1
A

 .
By the Sherman-Morrison formula, since ιι′ is an outer product of column matrices, we can

express

(C + ~u~v′)
−1

= C−1 − C−1~u~v′C−1

1 + ~v′C−1~u
,

and therefore
 τ−1

Q 0 0

0 ΣA,t−1 +
λ2
S

τετζ
ΣA,t−1

0 ΣA,t−1 ΣA,t−1 + τ−1
ε τ−1

v

+ τ−1
A ιι′


−1

=


τQ 0 0

0

τετζ

λ2
S

(Σ−1
A,t−1+τετv)

Σ−1
A,t−1+

τετζ

λ2
S

+τετv
−

τετζ

λ2
S

τετv

Σ−1
A,t−1+

τετζ

λ2
S

+τετv

0 −
τετζ

λ2
S

τετv

Σ−1
A,t−1+

τετζ

λ2
S

+τετv

τετv

(
Σ−1
A,t−1+

τετζ

λ2
S

)
Σ−1
A,t−1+

τετζ

λ2
S

+τετv



−

1

Σ−1
A,t−1+

τετζ

λ2
S

+τετv+τε

 τQ

(
Σ−1
A,t−1 +

τετζ
λ2
S

+ τ ετ v

)
τετζ
λ2
S

Σ−1
A,t−1

τ ετ vΣ
−1
A,t−1


 τQ

(
Σ−1
A,t−1 +

τετζ
λ2
S

+ τ ετ v

)
τετζ
λ2
S

Σ−1
A,t−1

τ ετ vΣ
−1
A,t−1


′

(τA + τQ)
(

Σ−1
A,t−1 +

τετζ
λ2
S

+ τ ετ v

)
+ Σ−1

A,t−1

(
τετζ
λ2
S

+ τ ετ v

) .

It then follows that the above recursion simplifies to

Ât = Ât−1 + µ+ ΣA,t


τQ

1+(τA+τQ)ΣA,t−1
τετζ
λ2
S

τ ετ v


′  Qt−1

pt − Âi,t−1 − µ
vt − Âi,t−1 − µ

 ,
ΣA,t =

1
τA+τQ

1+(τA+τQ)ΣA,t−1
+

τετζ
λ2
S

+ τ ετ v
.
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Note that the Ricatti Equation for ΣA,t has a deterministic steady-state, ΣA, that satisfies

(τA + τQ) Σ2
A + ΣA −

1

τ ετ v +
τετζ
λ2
S

= 0,

which has a unique positive, real root:

ΣA =

√√√√( 1

2 (τA + τQ)

)2

+
1

τA + τQ

1

τ ετ v +
τετζ
λ2
S

− 1

2 (τA + τQ)
.

Consequently, a stationary solution to the Kalman Filter exists and the economy, from any

initial conditions, converges to this steady-state solution as t→∞.
Then, the common conditional belief follows

Ât = Ât−1 + µ+ Σ−1
A


τQ

1
2

+

√√√√ 1
4

+
τA+τQ

τετv+
τετζ

λ2
S

τετζ
λ2
S

τ ετ v


′  Qt−1

pt − Âi,t−1 − µ
vt − Âi,t−1 − µ

 .
Given the steady-state posterior based on common knowledge, it is straightforward by the

Bayes Rule to update to the steady-state private posterior of user i, which is Gaussian

At|Ii,t ∼ N
(
Âi,t,Σi

)
with the conditional mean and variance given by

Âi,t = ΣiΣ
−1
A Ât + Σiτ εAi,t,

Σ−1
i = Σ−1

A + τ ε.

Note that the conditional estimate of Âi of user i is increasing in its own endowment Ai.

Given each user’s posterior Ai,t, it is straightforward to construct by the Bayes Rule their

posterior forAt+1 after observingQt, which will also be GaussianAt+1|Ii,t ∼N
(
Âi,t+1,Σi + τ̂−1

A

)
,

where the conditional estimate and precision satisfy:

Âi,t+1 = Âi,t + µ+
τQ

τA + τQ
Qt,

τ̂A = τA + τQ,

and consequently the conditional forecast of the next period’s demand fundamental At+1 by

users is also increasing in their endowment. This completes our characterization of learning

by users.

We define τ as the stopping time, at which the platform fails as a result of the breakdown

of the token market. Then, the expected utility of user i if all other users follow a cutoff
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strategy with cutoff A∗t is

E [Ui,t|Ii,t, τ > t] = e(1−ηc)Ai,t+ηcA∗t+ 1
2
η2
cτ
−1
ε E

[
eηc(At−A

∗
t )Φ

(
ηcτ
−1/2
ε +

At − A∗t
τ
−1/2
ε

)∣∣∣∣ Ii,t]

= e(1−ηc)Ai,t+ηcÂi,t+ 1
2
η2
c(Σi+τ

−1
ε )Φ

ηcτ−1/2
ε +

Âi,t+ηcΣi−A∗t
τ
−1/2
ε√

1 + τ εΣi

 .

It follows that the transaction benefit to user i is monotonically increasing in his private

signal, Ai,t.

Furthermore, let us conjecture that the token price is (weakly) increasing in At. Then, it

follows that E [Pt | Ii,t] is increasing in a user’s private signal Ai,t, since with Pt nonnegative
∂
∂At

E [Pt | Ii,t] = E
[
∂Pt
∂At
| Ii,t

]
. Consequently, E [(1− β)Ui,t + Pt+1 | Ii,t] is also increasing

in Ai,t. As such, the user will follow a cutoff strategy

Xi,t =

{1 if Ai,t ≥ A∗
(
Ât, yt, Qt, pt

)
0 if Ai,t < A∗

(
Ât, yt, Qt, pt

) ,
for a critical productivity A∗

(
Ât, yt, Qt, pt

)
. Since the household with the critical produc-

tivity A∗t must be indifferent to its token choice at the cutoff, it follows that

E [(1− β)Ui,t + Pt+1 | Ii,t] + κ−RP = 0,

which implies

(1− β) e(1−ηc)Ai,t+ηcÂi,t+ 1
2
η2
c(Σi+τ

−1
ε )Φ

ηcτ−1/2
ε +

Âi,t+ηcΣi−A∗t
τ
−1/2
ε√

1 + τ εΣi

+E [Pt+1 | Ii,t]− κ = RPt

with Ai,t = A∗t . Those with the LHS above RPt purchase the currency, and those below

choose to refrain. This equation does not depend on the unobserved At or speculator opti-

mism, ζt. As a result, A
∗
t = A∗

(
Ât, yt, Qt, pt

)
. Substituting for the beliefs of the marginal

user, we arrive at the indifference condition

(1− β) eA
∗
t+ηcΣiΣ

−1
A (Ât−A∗t )+ 1

2
η2
c(Σi+τ

−1
ε )Φ

ηc√τ−1
ε + Σi +

ΣiΣ
−1
A

τ
−1/2
ε

(
Ât − A∗t

)
√

1 + τ εΣi

1{τ>t}
+E [Pt+1|It]− κ = e

−
√
τε

λP−λS
(A∗t−pt)− 1

λP−λS
yt , (19)

which is measurable to the public information. Substituting for Σi and

ζ̂t =
√
τ ε

(
Ât − pt

)
,
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we recover the cutoff condition stated in the proposition. Since
(
Ât, ζ̂t

)
is informationally

equivalent to
(
Ât, pt

)
, we can express the optimal cutoff policy of households as

Xi,t =

{1 if Ai,t ≥ A∗
(
Ât, yt, Qt, ζ̂t

)
0 if Ai,t < A∗

(
Ât, yt, Qt, ζ̂t

) ,
Given that each user follows a cutoff strategy, it follows that the token price takes the

functional form in (5). Thus, we recover the linear statistic pt from the token price and the

linear statistic vt from the volume signal, both as conjectured.

C.5 Proof of Proposition 5

Rewriting (10) as

(1− β) e

[(
1− ηc

1+τεΣA

)
τ
−1/2
ε + 1

λP−λS

]
zt+Ât+

1
2
η2
c(ΣA+τ−1

ε )

·Φ
(
ηcτ
−1/2
ε

√
1 +

τ εΣA

1 + τ εΣA

− zt√
(1 + τ εΣA) (1 + 2τ εΣA)

)
1{τ>t}

+e
1

λP−λS
zt (E [Pt+1|I∗t ]− κ) = e

− 1
λP−λS

yt+
λS

λP−λS
ζ̂t , (20)

it is immediate that (17) is the informational frictions analogue of (17) with Ât replacing

At, ζ̂t replacing ζt, and the several terms related to the expected convenience yield for the

marginal user now reflecting the uncertainty about At through the posterior variance of

public beliefs, ΣA. Notice that the modifications by ΣA do not alter the sign of any of the

modified terms compared to the perfect information case. It then follows that we can repeat

the same arguments from Proposition 3 to establish the comparative statics for Ât, ζ̂t, and

Qt.

We now apply the Implicit Function Theorem by rewriting the above expression as

G = (1− β) e
Ât+

1
λP−λS

zt+
(

1− ηc
1+τεΣA

)
1√
τε
zt+

1
2
η2
c(ΣA+τ−1

ε )

·Φ
(
ηcτ
−1/2
ε

√
1 +

τ εΣA

1 + τ εΣA

− zt√
(1 + τ εΣA) (1 + 2τ εΣA)

)
+e

1
λP−λS

zt (E [Pt+1|I∗t ]− κ)− e
λS

λP−λS
ζ̂t− 1

λP−λS
yt ,

where G ≡ 0. Holding fixed the retrade value of the token, E [Pt+1|I∗t ] , it then follows that:

dA∗t
dΣA

= −dG/dΣA

dG/dzt
.

Since (10) is analogous to (7), from the proof of Proposition 1, G is hump-shaped in zt

and, in the high price (low cutoff) equilibrium, dG/dzt > 0.This sign leads to the intuitive
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comparative statics, compared to the unstable low price (high cutoff) equilibrium. Conse-

quently, the sign of dA∗t/dΣA is negative the sign of dG/dΣA. Notie that ΣA only enters

G through the expected transaction benefit or contemporaneous convenience yield for the

marginal household E [Ui,t | I∗t ] . It then follows that dG/dΣA = dE [Ui,t | I∗t ] /dΣA. Since

E [Ui,t | I∗t ] is always nonnegative it follows that we can express dE [Ui,t | I∗t ] /dΣA as

dE [Ui,t | I∗t ]

dΣA

=
1

2
η2
c +

ηc
√
τ ε

(1 + τ εΣA)2 zt

+
1
2
ηcτ
−1/2
ε + 1

2
(3+4ΣA)τe
1+2τεΣA

zt

(1 + τ εΣA)3/2√1 + 2τ εΣA

φ

(
ηcτ
−1/2
ε

√
1 + τεΣA

1+τεΣA
− zt√

(1+τεΣA)(1+2τεΣA)

)
Φ

(
ηcτ
−1/2
ε

√
1 + τεΣA

1+τεΣA
− zt√

(1+τεΣA)(1+2τεΣA)

) .
Notice that there is a cutoff z∗∗t < 0 such that dE[Ui,t | I∗t ]

dΣA
≥ 0 if zt ≥ z∗∗t and dE[Ui,t | I∗t ]

dΣA
< 0

for zt < z∗∗t . It then follows that
dA∗t
dΣA
≤ 0 for zt ≥ z∗∗t and dA∗t

dΣA
≥ 0 for zt < z∗∗t . Consequently,

uncertainty ΣA raises the cutoffwhen participation is suffi ciently high (zt suffi ciently small),

while uncertainty lowers the cutoffwhen participation is suffi ciently low (zt suffi ciently large).

We now relax our assumption on the retrade value of the token. Suppose instead of

holding fixed the token retrade value, we hold fixed uncertainty ΣA at date t + 1. The

thought experiment is we are then considering a one time increase in ΣA at date t. Notice

since user and speculator sentiment are i.i.d. that we need only focus on how the token

price varies with the demand fundamental, At, when forecasting the retrade value of the

token tomorrow. Further notice from the law of motion of user beliefs derived in the proof of

Proposition 4 that informational frictions have no impact on how the user sentiment signal

Qt is used in forecasting At+1 (same weight in conditional mean
τQ

τQ+τA
).

Notice now that the convexity (or concavity) of the token price in the filtered demand

fundamental is given by:

1

Pt

∂2Pt

∂Â2
t

=

(
1 +

∣∣∣∣∂A∗t∂Ât

∣∣∣∣)2

− ∂2A∗t

∂Â2
t

,

since dA∗t
dÂt
≤ 0 as argued above. Informational frictions preserve the relation found with Â′ts

perfect information counterpart, albeit with underreaction. Notice now, from the equilibrium

cutoff condition (17) that, as Ât → ∞, A∗t → −∞, since the retrade value E [Pt+1 | I∗t ] is

increasing in At and the convenience yield E [Ui,t | I∗t ] becomes unbounded. Consequently,

even for the users with the lowest endowments, the benefits of joining become arbitrarily

large, which corresponds to an arbitrarily large token price. At the opposite extreme, since

the token price is nonnegative, and therefore bounded from below, it either falls to some

finite minimum or no long exists if Ât falls below its critical threshold Ac
(
Qt, yt, ζ̂t

)
. Since
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dA∗t
dÂt
≤ 0 and dA∗t

dÂt
becomes increasingly negative so as to be unbounded for arbitrarily high

Ât ≤ 0, it follows that d2A∗t
dÂ2

t

≤ 0 when an equilibrium exists (and undefined otherwise) and

consequently the token price Pt is convex in Ât whenever an equilibrium exists. Notice that,

if it were not convex, then Pt must then have an even number of inflection points (d
2Pt
dÂ2

t

= 0),

which can be ruled out intuitively since (by linearity)

∂E [Pt | I∗t ]

∂Ât
= (1− β)

τ∑
t′=t

E

[
1

Rt′−tE

[
E

[
∂Ui,t′

∂Ât
| I∗t′

]
| I∗t′−1...

]
| I∗t

]
,

and the only direct impact of Ât on Ui,t′ is to increase the convenience yield by a factor of

eÂt .

Since market breakdown occurs for pt ≤ Act , and therefore when At is suffi ciently small,

since the cutoff function at date t + 1 is unchanged, it then follows that increasing ΣA at

date t lowers 4 for high values of Ât where more probability weight is put on the convex part

of the price function, and raises it for low Ât where more probability weight is put on the

concave part of the price function near the step function of the non-existence boundary.

A one time increase in uncertainty therefore subsidizes participation and the token price

for low performing platforms (high zt) at the expense of participation and the token price

for high performing platforms (low zt). From our comparative statics analysis, a high cutoff,

zt, for a fixed yt corresponds to low Ât, low Qt, and high ζ̂t.

C.6 Proof of Proposition 6

From the miner optimization problem (12), it is straightforward to see that, with free en-

try, miners must indifferent to participating on the platform. Consequently, the number of

potential miners that choose to mine is given by

NM,t =
(Φ (yt−1 + ι)− Φ (yt−1))Pt + β

1+χt
Ut

1 + χt
eξt

Substituting the optimal number of miners, NM,t from (12) into the attack condition

given in (11) conjecturing an attack, χt = 1, we can define

f (yt, Pt, E [Ut | It]) =

(
Φ (yt + ψι)− 1

2
Φ (yt)−

1

2
Φ (yt − ι)

)
Pt

+
1

2

β

2
E [Ut | It]−

αe2ξt

4

(
(Φ (yt)− Φ (yt − ι))Pt +

β

2
Ut

)2

.

There is an attack whenever f (yt, Pt, Ut) > 0.25 It is clear since ξ enters only through the

25Since there is no profit when f (yt−1, Pt, E [Ut | It]) = 0, and only a loss in revenue from honest mining,
it follows that miners would rather not attack at the indifference threshold.
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quadratic term that there exists a threshold ξc (At, Qt, ζt) such that:

{χt = 1 : ξt < ξa (At, Qt, ζt)} ,

where:

ξc (At, yt, Qt, ζt) =
1

2
log

(
Φ (yt + ψι)− 1

2
Φ (yt)− 1

2
Φ (yt − ι)

)
Pt + 1

2
β
2
Ut

a
4

(
(Φ (yt)− Φ (yt − ι))Pt + β

2
E [Ut | It]

)2 .

Assume now that E [Ut | It] and Pt are (weakly) increasing in At whenever Pt is positive,
and we define Pt = 0 whenever a market equilibrium does not exist. Define:

xt =
(Φ (yt)− Φ (yt − ι))Pt + β

2
Ut

2
,

and rewrite f (yt, Pt, E [Ut | It]) as:

f (yt, Pt, xt) = (Φ (yt + ψι)− Φ (yt))Pt + xt − αe2ξtx2
t .

Notice that f (yt, Pt, xt) is concave in xt, increasing for xt < 1
2αe2ξt

from 0 to 1
4αe2ξt

, and then

decreasing to −∞ for xt > 1
2αe2ξt

. It has two roots at xt ∈
{

0, 1
αe2ξt

}
.

It then follows that a strategic attack occurs whenever xt ≤ 1
αe2ξt

, or whenAt is suffi ciently

small. This occurs because Ut and Pt are (weakly) increasing in At and Ut and Pt converge to

0 as At → −∞, as there is no benefit to any (positive measure of) users joining the platform.
Consequently, since Pt and Ut are (weakly) increasing in At, it follows there is a connected

set At = {At : At < Aa (yt, Qt, ζt; ξt)} , where Aa (yt, Qt, ζt; ξt) = infAt {f (yt, Pt, xt) = 0} ,
such that χt = 1 when At < At.
In contrast, whenAt is suffi ciently large, it must be the case that limAt→∞ f (yt, Pt, xt) < 0

since the highest-order terms in Pt and Ut are quadratic through−x2
t . Consequently, there is a

connected set Āt =
{
At : At > Āa (yt, Qt, ζt; ξt)

}
, whereAa (yt, Qt, ζt; ξt) = supAt {f (yt, Pt, xt) = 0} ,

such that χt = 0 when At > Āt.
Consequently, it follows that there is a strategic attack when At ∈ At and no attack when

At ∈ Āt. What remains is to determine if At ∪ Āt = R or if there are more strategic attack
regions for some At > At. Notice now that f (yt, Pt, xt) is a quadratic function of xt and, by

Descartes’Rule of Signs, has at most one positive root, which we know must exist by the

above arguments. Consequently, f (yt, Pt, xt) has one zero when, substituting for xt,

β

2
E [Ut | It] =

1

αe2ξt
+

√(
1

αe2ξt

)2

+ 4
Φ (yt−1 + ψι)− Φ (yt)

αe2ξt
Pt − (Φ (yt)− Φ (yt − ι))Pt.

(21)
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Therefore, it must be the case that Aa (yt, Qt, ζt; ξt) = Aa (yt, Qt, ζt; ξt) , and therefore the

strategic attack region can be characterized as

χt =

{
1, ξt < ξa (At, yt, Qt, ζt)

0, ξt ≥ ξa (At, yt, Qt, ζt)
,

or alternatively

χt =

{
1, At < Aa (, yt, Qt, ζt; ξt)

0, At ≥ Aa (yt, Qt, ζt; ξt)
.

In addition, we recognize from (21) that, since a higher ξt lowers the critical
β
2
Ut, all else

equal, it follows that Aa (yt, Qt, ζt; ξt) is decreasing in ξt.

One may be concerned that no mining equilibrium may exist if, conditional on no attack,

miners want to attack the blockchain, while, conditional on an attack, no miner ex post wants

to attack the blockchain. This does not occur because the (convex) cost of attacks from less

miners falls faster than the benefit from the attack from lower revenue. To see this, notice

that the only endogenous object determined by users is A∗t , and a strategic attack raises A
∗
t ,

lowering prices and transaction fees, by reducing the benefit of joining the platform for all

users. This is equivalent to a fall in At to some Ãt. Since if an attack that would occur at

At would also occur at A′t < At, by the above arguments, it follows that if a strategic attack

would occur when users and miners do not anticipate an attack, it would also occur if it is

anticipated. Consequently, such a strategic attack inconsistency issue does not arise.

Furthermore, although there cannot be an inconsistency in the attack decision on the

platform, there can be self-fulfilling prophecies in which both the no attack and the attack

equilibria can be sustained. This arises because both the benefit (Φ (yt + ψι)− Φ (yt))Pt

and the cost xt − αe2ξtx2
t of an attack are positively correlated.

Finally, we verify that the token price and transaction fees are indeed (weakly) increasing

in At. Let us conjecture that the token price, Pt, and transaction fees are (weakly) increasing

in At.We further define Pt = 0 whenever there is market breakdown. Under this assumption,

strategic attacks occur when At is suffi ciently small by the above arguments. It then follows

that strategic attacks preserve the monotonicity of Pt inAt from Proposition 3, confirming the

conjecture. Similarly, since a higher token price is associated with a higher user population,

and consequently higher transaction fees, this confirms our second conjecture. Further, since

the strategic attacks occur when the mining fundamental, ξt, is suffi ciently small, and mining

has no direct impact on platform performance when there is no strategic attack, it follows

that the token price and user participation are (weakly) increasing in ξt.
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C.7 Proof of Proposition 7

The first order conditions of user i’s optimization problem in (14) respect to Ci (i) and Cj (i)

at an interior point are:

Ci (i) :
1− ηc
Ci (i)

U (Ci (i) , Cj (i) ;N ) = θipi, (22)

Cj (i) :
ηc

Cj (i)
U (Ci (i) , Cj (i) ;N ) = θipj, (23)

where θi is the Lagrange multiplier for the budget constraint. Rewriting (23) as

ηcU (Ci (i) , Cj (i) ;N ) = θipjCj (i) .

Dividing equations (22) by this expression leads to ηc
1−ηc

=
pjCj(i)

piCi(i)
, which in a symmetric

equilibrium implies pjCj (i) = ηc
1−ηc

piCi (i) . By substituting this equation back to the user’s

budget constraint in (14), we obtain:

Ci (i) = (1− ηc) eAi .

The market-clearing for the user’s good requires that Ci (i) + Ci (j) = eAi , which implies

that Ci (j) = ηce
Ai .

The first order condition in equation (22) also gives the price of the good produced by

user i. Since the user’s budget constraint in (14) is entirely in nominal terms, the price system

is only identified up to θi, the Lagrange multiplier. We therefore normalize θi to 1. It follows

that:

pi =
1− ηc
Ci (i)

U (Ci (i) , Cj (i) ;N ) = eηc(Aj−Ai). (24)

Furthermore, given equation (1), it follows since Ci (i) = (1− ηc) eAi and Cj (i) = ηce
Aj that:

U (Ci (i) , Cj (i) ;N ) = e(1−ηc)AieηcAj = pie
Ai ,

from substituting with the user’s budget constraint at t = 2.

It then follows that, conditional on matching with another user on the platform, the

expected utility of user i conditional on his endowment Ai and a successful match is:

E [U (Ci (i) , Cj (i) ;N )|Ai, matching] = e(1−ηc)Ai+ηcA+ 1
2
η2
cτ
−1
ε

Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) ,

and, since the probability of meeting another holder of the token is Φ
(
A−A∗
τ
−1/2
ε

)
, the expected

utility of user i is:

E [U (Ci (i) , Cj (i) ;N )|Ai, A] = e(1−ηc)Ai+ηcA+ 1
2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
.
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Finally, the ex ante expected utility benefit of a user before it learns its endowment Ai is

U0 = E [E [Ui|Ai, A] |A]

= E

[
e(1−ηc)Ai+ηcA+ 1

2
η2
cτ
−1
ε Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
| A
]

= eA+ 1
2((1−ηc)2+η2

c)τ−1
ε Φ

(
(1− ηc) τ−1/2

ε +
A− A∗

τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
.
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