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regression methods. While Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and 
Titiunik (2014b) provide guidance on bandwidth, the sensitivity to polynomial order still poses a 
conundrum to RD practitioners. It is understood in the econometric literature that applying the 
argument of bias reduction does not help resolve this conundrum, since it would always lead to 
preferring higher orders. We therefore extend the frameworks of Imbens and Kalyanaraman 
(2012) and Calonico, Cattaneo and Titiunik (2014b) and use the asymptotic mean squared error 
of the local regression RD estimator as the criterion to guide polynomial order selection. We 
show in Monte Carlo simulations that the proposed order selection procedure performs well, 
particularly in large sample sizes typically found in empirical RD applications. This procedure 
extends easily to fuzzy regression discontinuity and regression kink designs.
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1 Introduction

Regression discontinuity designs (RD designs or RDD) have been widely used in empirical social science

research in recent years. Two important reasons for its appeal are that the research design permits clear

and transparent identification of causal parameters of interest, and the design itself has testable implications

similar in spirit to those in a randomized experiment (Lee, 2008 and Lee and Lemieux, 2010).

Although the identification strategy is both transparent and credible in principle, many methods can be

used to estimate the same causal parameter of interest. The key challenge is to estimate the values of the

conditional expectation functions at the discontinuity cutoff without making strong assumptions about the

shape of that function.

Typical practice in applied research is to employ a nonparametric local regression estimator. We sur-

veyed leading economics journals between 1999 and 2017 (which included American Economic Review,

American Economic Journals, Econometrica, Journal of Political Economy, Journal of Business and Eco-

nomic Statistics, Quarterly Journal of Economics, Review of Economic Studies, and Review of Economics

and Statistics), and found that of the 110 studies employing RDD, 76 use a local polynomial regression as

their main specification (Appendix Table A.1). Among these 76 studies, local linear is the modal choice and

is applied as the main specification in 45 studies, but the remaining 31 (about 40%) choose a different order.

As a practical matter, researchers often report results from using different polynomial orders, and feel

re-assured when their estimates are robust. But what are they to do when their conclusions are sensitive to

polynomial order? This question mirrors the motivation behind optimal bandwidth proposals by Imbens and

Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b), and it is the focus of the present paper.

Reasoning grounded in bias reduction of the RD estimator provides no guidance on this question. As

both Hahn, Todd and Van der Klaauw (2001) and Porter (2003) point out, higher order polynomials have a

smaller asymptotic bias than lower orders. On the other hand, Gelman and Imbens (2019) argue that high

order polynomials can perform poorly in certain contexts.

In this paper, we propose to extend the now widely-used theoretical framework and data-driven approach

of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b)—which use estimated

asymptotic mean squared error (AMSE or asymptotic MSE) of the RD estimator as an optimality criterion

for bandwidth choice—to guide polynomial order selection.1 Thus, the proposed procedure is based on a

1Although the recent empirical literature continues to adopt the approach of Imbens and Kalyanaraman (2012) and Calonico,
Cattaneo and Titiunik (2014b), we do note that the recent work of Armstrong and Kolesár (2018a,b) has proposed an alternative
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local (as opposed to global) optimality criterion, as advocated by Gelman and Imbens (2019). Intuitively, the

procedure can choose a local linear specification when the true underlying conditional expectation function

has small curvature near the threshold, but a higher order polynomial when the curvature is large.

Our proposal is complementary to the recent work by Hall and Racine (2015), who call into question

the practice of choosing the polynomial order ad hoc for nonparametric estimation at an interior point, and

suggest a cross-validation method to select the polynomial order jointly with the bandwidth.2 Instead of

cross-validation, we provide a formal justification for the application of a suggestion by Fan and Gijbels

(1996) to RD designs, paralleling Imbens and Kalyanaraman (2012).

In order to assess the potential usefulness of the proposed procedure, we conduct Monte Carlo simu-

lations based on two well-known examples (Lee, 2008 and Ludwig and Miller, 2007), where we use the

exact same parameters as the simulations conducted by Imbens and Kalyanaraman (2012) and Calonico,

Cattaneo and Titiunik (2014b). First, we illustrate the nature of the conundrum that researchers face in

practice. Unsurprisingly, we find that in some cases the local linear specification performs the best, but in

many other configurations, alternative polynomials fare better in terms of their MSE, coverage rate of the

95% confidence interval (CI), and size-adjusted CI length. Second, we find that the estimator chosen by

comparing estimated AMSEs performs well in terms of MSE, CI coverage rate, and CI length, especially in

larger sample sizes we often see employed in RD applications.

Finally, we compute the AMSE of the fuzzy RD estimator, the sharp and fuzzy estimators in the regres-

sion kink design (RK design or RKD), and the bias-corrected estimator of Calonico, Cattaneo and Titiunik

(2014b) in all these contexts. We have implemented these computations in a Stata package rdmse. The

installation instruction is available at https://sites.google.com/site/peizhuan/programs/.

The remainder of the paper is organized as follows. Section 2 briefly summarizes the typical theoretical

arguments used for local polynomial RD estimators and establishes consistency of our proposed polynomial

order selection procedure. Section 3 presents simulation results. In section 4, we discuss the extensions of

our proposal to fuzzy RD designs and regression kink designs. Section 5 concludes.

paradigm for inference in regression discontinuity designs. In their alternative framework, the user supplies a bound on second
derivatives of the underlying conditional expectation function and inference is conducted uniformly over the class of data-generating
processes that satisfy the bound. In those analyses, the question of which polynomial order to use also arises (the current focus
is on the most commonly utilized order in practice—local linear), but addressing the issue of polynomial order choice within this
alternative framework is beyond the scope of this paper.

2Polynomial order choice is also discussed in the literature of sieve methods, but as reviewed by Chen (2007), only the rate at
which polynomial order increases with sample size is specified, which does not readily translate into practical advice.
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2 Local Polynomial Order in RD Designs: Theoretical Considerations

In this section, we review and re-examine the theoretical justification for the choices in nonparametric RD

estimation. In a sharp RD design, the binary treatment D is a discontinuous function of the running variable

X : D = 1[X>0] where we normalize the policy cutoff to 0. Hahn, Todd and Van der Klaauw (2001) and Lee

(2008) show that under smoothness assumptions, the estimand:

lim
x→0+

E[Y |X = x]− lim
x→0−

E[Y |X = x] (1)

identifies the treatment effect τ ≡ E[Y1−Y0|X = 0], where Y1 and Y0 are the potential outcomes. To estimate

(1), researchers typically use a polynomial regression framework to separately estimate limx→0+ E[Y |X = x]

and limx→0− E[Y |X = x]. Specifically, they solve the minimization problem using only observations above

the cutoff as denoted by the + superscript:

min
{β̃+

j }

n+

∑
i=1
{Y+

i − β̃
+
0 − β̃

+
1 X+

i − ...− β̃
+
p (X+

i )p}2K(
X+

i
h

). (2)

The resulting β̂
+
0 is the estimator for limx→0+ E[Y |X = x], and the estimator β̂

−
0 for limx→0− E[Y |X = x] is de-

fined analogously. The RD treatment effect estimator is τ̂p ≡ β̂
+
0 − β̂

−
0 , where we emphasize its dependence

on p by the subscript.

Any nonparametric RD estimator is generally biased in finite samples. Expressions for the exact bias

require knowledge of the true underlying conditional expectation functions; thus, the econometric litera-

ture has focused on first-order asymptotic approximations for the bias and variance. Applying these ideas,

Lemma 1 of Calonico, Cattaneo and Titiunik (2014b) derives the AMSE of the pth order local polynomial

estimator τ̂p as a function of bandwidth as:

AMSEτ̂p(h) = h2p+2B2
p +

1
nh

Vp (3)

where Bp and Vp are unknown constants. The first term is the approximate squared bias, and the second term

the approximate variance. Bp depends on the (p+ 1)th derivatives of the conditional expectation function

E[Y |X = x] on two sides of the cutoff, and Vp on the conditional variance Var(Y |X = x) on two sides of the

cutoff as well as the density of X at the cutoff.
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First-order approximations like the one above have been used in the literature in two ways. First, Hahn,

Todd and Van der Klaauw (2001) argue in favor of the local linear RD estimator (p = 1) over the kernel re-

gression estimator (p = 0) for its smaller order of asymptotic bias—the biases of the two different estimators

are h2B1 and hB0 and are of orders O(h2) and O(h) respectively. However, by the same logic, the asymptotic

bias of the local quadratic estimator (p = 2) is of order O(h3), and the bias of the local cubic is of order

O(h4). More generally, the bias of the pth order estimator is of order O(hp+1). Therefore, if researchers

were exclusively focused on the maximal shrinkage rate of the asymptotic bias, they would choose p to be

as large as possible. Hahn, Todd and Van der Klaauw (2001) recommend p = 1, implicitly recognizing that

factors beyond bias shrinkage rate should also be taken into consideration.

Second, expression (3) is used as a criterion to determine the optimal bandwidth for a chosen order

p. Since the AMSE is a convex function of h, one can solve for the optimal bandwidth that leads to the

smallest value of AMSE: hopt (p) ≡ argmin
h

AMSEτ̂p (h). Imbens and Kalyanaraman (2012) do precisely

this to propose a bandwidth selector for local linear estimation (henceforth IK bandwidth) and Calonico,

Cattaneo and Titiunik (2014b) further extend the selector to polynomial estimators of alternative orders

(henceforth CCT bandwidth).

We now highlight that there is no theoretical ground to always prefer a specific polynomial order across

all empirical contexts. By evaluating expression (3) at hopt(p), which is of order O(n−
1

2p+3 ), AMSEτ̂p (hopt (p))

is equal to Cp ·n−
2p+2
2p+3 with Cp being a function of the constants Bp and Vp. Therefore, as the sample size n

increases, AMSEτ̂p (hopt (p)) shrinks faster for a larger p and will eventually, for the same n, fall below that

of a lower-order polynomial. Intuitively, if E[Y |X = x] is close to being linear on both sides of the cutoff,

then the local linear specification will provide an adequate approximation, and consequently τ̂1 will have

a smaller AMSE than that of τ̂2 for a large range of sample sizes. On the other hand, if the curvature of

E[Y |X = x] is large near the cutoff, a higher p will have a lower AMSE, possibly even for small sample

sizes. Although we expect higher-order polynomials to have lower AMSE in sufficiently large samples, the

precise sample size threshold at which that happens depends on the data generating process (DGP) through

the constant Cp.3

3Sun (2005) also studies the choice of polynomial order in an RDD, but focuses on the case where the degree of smoothness in
the underlying conditional expectation function is unknown. Sun (2005) shows that it is rate-suboptimal to use an order that is too
high given the amount of smoothness assumed, which Armstrong and Kolesár (2018b) echo when examining the issue in a general
nonparametric regression framework. Our argument is distinct from theirs: we are willing to assume sufficient smoothness, but we
do not just consider the convergence rates when choosing the polynomial order. We also account for the constant Cp, which often
plays an important role empirically.
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This point is concretely illustrated in Figure 1, using the two DGPs we rely on for subsequent sim-

ulations, which are based on Lee (2008) and Ludwig and Miller (2007) and described in greater detail

in Appendix B.1. Since we know the parameters of the underlying DGPs, we can analytically compute

the quantities on the right hand side of equation (3). Using Lemma 1 of Calonico, Cattaneo and Titiunik

(2014b), we plot AMSEτ̂p as a function of sample size n for p = 1,2, which are shown in Panels (A) and (B)

of Figure 1 for the two DGPs respectively (see Appendix C.1 for details).

In Panel (A), we see that at small sample sizes, AMSEτ̂1 is marginally below AMSEτ̂2 , but is larger at

sample sizes over n = 1,167. Therefore, for the actual number of observations in the analysis sample of Lee

(2008), nactual = 6,558, local quadratic should be preferred to local linear based on the AMSE comparison—

the associated reduction in AMSE is 9%. In Panel (B), the difference between p= 1 and p= 2 is much larger,

and AMSEτ̂2 dominates AMSEτ̂1 for all n under 7,000. At the actual number of observations in Ludwig and

Miller (2007), nactual = 3,105, the local quadratic estimator reduces the AMSE by a considerable 38%.4 It

is worth noting that at nactual , the AMSE closely matches the MSE from our simulations in section 3 below,

which are marked by a cross for the local linear estimator and a circle for local quadratic.

In practice, equation (3) cannot be directly applied because it depends on unknown derivatives of the

conditional expectation function, unknown conditional variances, and the density of X . Thus, Imbens and

Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b) use the empirical analog of (3):

ÂMSEτ̂p (h) = h2p+2B̂2
p +

1
nh

V̂p (4)

where the quantities Bp and Vp in (3) are replaced by consistent estimators B̂p and V̂p, and the optimal

feasible bandwidth is defined as ĥ(p) ≡ argmin
h

ÂMSEτ̂p (h). The two studies differ in how they arrive at

the estimates of B1 and V1. Additionally, Calonico, Cattaneo and Titiunik (2014b) generalize Imbens and

Kalyanaraman (2012) by proposing bandwidth selectors for τ̂p for any given p. Both bandwidth selectors

include a regularization term, which reflects the variance in bias estimation and prevents the selection of

large bandwidths. Even though the regularization term is asymptotically negligible, it often plays an impor-

tant role empirically: for the fuzzy regression kink design application in Card et al. (2015a) and Card et al.

(2017), the inclusion of the regularization term leads to 30 - 70% reductions in bandwidths and has a consid-

erable impact on the point estimate and confidence interval of the treatment effect parameter. In our Monte

4We conduct the same exercise for other values of p in a previous working paper—see Tables 3-4, A.3-A.4 in Card et al. (2014).
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Carlo simulations below, we experiment with the CCT bandwidth both with and without regularization.

In this paper, we simply extend the logic that justifies the optimal bandwidth by noting that we should

choose the polynomial order corresponding to the lowest estimated AMSE. That is, we can define

p̂≡ argmin
p∈Ω

ÂMSEτ̂p

(
ĥ(p)

)
,

where Ω consists of a finite number of candidate polynomial orders (Ω can contain as few as two elements

if a researcher is just choosing between two orders). For the AMSE of τ̂p, no new quantities need to be

computed beyond the estimators B̂p and V̂p and the optimal ĥ(p), which must already be calculated when

implementing, for example, the CCT bandwidth.

In summary, once one has already chosen an estimator (and the corresponding AMSE-minimizing band-

width selector such as CCT), then it is straightforward to also report the resulting ÂMSEτ̂p for any given

p and compare ÂMSEτ̂p across different candidate polynomial orders. Appendix C.2 provides the exact

expressions needed from Calonico, Cattaneo and Titiunik (2014b) for the calculation of the AMSE of τ̂p,

which is implemented in the Stata package rdmse.5

Although this simple order selection approach was suggested by Fan and Gijbels (1996) for general local

polynomial regression, to the best of our knowledge, a formal theoretical justification for the suggestion has

yet to be discussed, and the approach has yet to be applied to RD designs. We investigate the asymptotic

property of the procedure in section 2.1 and report on its finite sample performance in section 3.

2.1 Theoretical Justification: Consistency of p̂

This subsection presents a theoretical justification of choosing p on the basis of estimated AMSE. The

justification parallels previous results on bandwidth selection, e.g. Imbens and Kalyanaraman (2012) and

Calonico, Cattaneo and Titiunik (2014b), which prove the consistency of the bandwidth selector ĥ(p) for

hopt(p). There are two alternative asymptotic frameworks employed in the literature, and we show the

consistency of p̂ in both. The first asymptotic framework adopts bandwidths that shrink at the optimal rates.

This is the framework that has been used to argue for the use of p = 1 over p = 0, as mentioned at the

beginning of section 2; it is also the framework for the discussion about Figure 1. In the second framework,

5In addition, Appendix C.2 details the calculation of the AMSE of the bias-corrected estimator of Calonico, Cattaneo and
Titiunik (2014b) (denoted by τ̂bc

p ), which is also implemented in the Stata package rdmse.
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which is used by Calonico, Cattaneo and Titiunik (2014b) to derive their key inference results, we assume

that bandwidths for polynomial estimators of different orders shrink at the same rate as a function of sample

size.

We first define

popt ≡ argmin
p∈Ω

MSEτ̂p(h(p))

as the MSE-optimal polynomial order in the candidate set Ω, where h(p) denotes the bandwidth choice

for the pth order local regression estimator. In general, popt is a function of n, and consistency means

p̂/popt
P→ 1. Using pmax to denote the largest candidate polynomial order (pmax ≡max{p|p ∈Ω})—which

can be as low as 1 if a researcher is choosing between local constant and local linear specifications—we

state our assumptions.

Assumption 1. pmax is constant.

Assumption 2. a) Assumptions 1 and 2 in Calonico, Cattaneo and Titiunik (2014b) hold with S = pmax+1;

b) B̂p and V̂p in equation (4) are consistent estimators for Bp and Vp in equation (3).6

Assumption 3. h(p) = Hp ·n−
1

2p+3 with Hp > 0 and ĥ(p)/h(p) P→ 1.

Assumption 1 states that pmax does not increase with n. This assumption is not restrictive in practice

since the researcher may always pick a large enough pmax a priori regardless of n.7 Part a) of Assumption 2

consists of standard regularity conditions that allow for the asymptotic approximation of MSE, and part b)

encompasses the estimators B̂p and V̂p in Imbens and Kalyanaraman (2012) for p = 1 and Calonico, Catta-

neo and Titiunik (2014b) as special cases. Note that a larger pmax translates to a higher degree of smoothness

6Assumption 1 in Calonico, Cattaneo and Titiunik (2014b) consists of regularity conditions for the fourth moment of Y given
X , the density of X , and the conditional expectation and variance functions of the potential outcomes given X . In particular, the
conditional expectation functions of the potential outcomes are assumed to be S-times differentiable in a neighborhood around zero.
Assumption 2 in Calonico, Cattaneo and Titiunik (2014b) requires the kernel function K(·) in the minimization problem (2) to have
compact support, be nonnegative, and be continuous.

7Calonico, Cattaneo and Titiunik (2015) and Gelman and Imbens (2019) connect their concerns regarding a high-order global
polynomial estimator to the Runge phenomenon. The Runge phenomenon arises in the polynomial interpolation of a function
f (x) over an interval [a,b]: using a polynomial of order n to interpolate a function through n+1 equispaced knots when n is large
does not imply uniform convergence to f . In fact, large departures from the function may result outside the interpolation knots,
especially toward the edge of [a,b]. One textbook remedy (Ch. 4 of Dahlquist and Björck, 2008 and Ch. 8 of Björck, 1996) to
guard against the Runge phenomenon is to employ least squares regression as opposed to interpolation. As a rule of thumb, the
recommendation is to use a polynomial order no larger than 2

√
n where n is the number of (equispaced) observations, which still

leaves many polynomial order candidates. In practice, researchers typically choose polynomial orders from a much smaller set, and
the concern of considering too-high a polynomial order is further alleviated by our consideration of local, as opposed to global,
polynomials. In previous working papers Card et al. (2014) and Pei et al. (2018), we also follow Gelman and Imbens (2019) and
plot the regression weights for various local estimators using the actual Lee (2008) and Ludwig and Miller (2007) data, and the
weights appear reasonable for all of the polynomial orders we consider, up to a quintic specification.
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in Assumption 2, which may seem undesirable ostensibly. But it is also arbitrary to assume, for example,

that the conditional expectation functions E[Y1|X = x] and E[Y0|X = x] have continuous second derivatives

(S = 2) but not continuous third derivatives (S = 3). The technicality of Assumption 2 notwithstanding, for

all practical purposes, we treat these conditional expectation functions as infinitely smooth.

Assumption 3 is the key assumption of the first asymptotic framework we consider. It states that the

theoretical bandwidth for each p shrinks at the optimal rate and that the bandwidth selector is consistent.

The CCT bandwidth selector, for example, satisfies this property.

Proposition 1. Under Assumptions 1, 2 and 3, popt → pmax and p̂/popt
P→ 1.

The proofs of the Propositions are provided in Appendix A. Proposition 1 says that under standard

asymptotics as provided by Assumption 3, a) the optimal polynomial order is the “corner solution” pmax

when the sample size is large; b) the order we select will also converge to pmax in probability. Point a)

echos the insight from Porter (2003) and our discussion above that a higher order estimator will dominate

in a sufficiently large sample when using optimal bandwidths. However, to reiterate our point made at the

beginning of section 2, which we will illustrate again in section 4 using an empirical example from RKD, the

“corner solution” here reflects the theoretical property that AMSEτ̂p decreases at a higher rate as a function

of the sample size when p is larger. As we highlight earlier, although popt converges to pmax asymptotically,

popt may not coincide with pmax in any finite sample. This is true even in sample sizes conventionally

considered to be large, as is the case with our RKD example below in section 4. It is worth emphasizing that

this is not a statement about the finite sample performance of p̂—popt is not subject to sampling variation;

instead, as argued in the discussion of Figure 1, it is about the important role of the constants (Bp and Vp

for p ∈Ω) in determining popt , beyond the asymptotic rates that push popt toward pmax.

To highlight the role of these constants, we consider a second, alternative, asymptotic framework used in

the literature, in which popt can be an “interior solution”. That is, even in the limit as the sample size tends

to infinity, we can still have popt < pmax. The key assumption of this alternative asymptotic framework is:

Assumption 4. h(p) = Hp ·n−α with Hp > 0 and α ∈ (0,1) for all p ∈Ω.

Unlike in Assumption 3, all bandwidths shrink at the same rate in Assumption 4 regardless of the polyno-

mial order p. It is analogous to the defining assumption of the asymptotic framework in Calonico, Cattaneo

and Titiunik (2014b): for their inference result, Calonico, Cattaneo and Titiunik (2014b) assume that the
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bandwidth for estimating the bias and the bandwidth for estimating the treatment effect shrink at the same

rate. Calonico, Cattaneo and Titiunik (2014b) maintain this assumption even though the bias term contains

higher order derivatives of the conditional expectation functions than the treatment effect and that their cor-

responding bandwidth selectors in Calonico, Cattaneo and Titiunik (2014b) shrink at different rates as the

sample size increases.

We now establish the consistency of p̂ in this alternative asymptotic framework.

Proposition 2. Under Assumptions 1, 2 and 4, p̂/popt
P→ 1 provided that popt is unique asymptotically.

Under Assumption 4, MSEτ̂p shrinks at the same rate for all p. Therefore, the limit of popt is generally

not pmax, and the MSE of τ̂pmax does not always dominate that of alternative polynomial orders as is the

case under Assumption 3. Instead, the optimal polynomial order depends on the magnitudes of the con-

stants Bp and Vp from equation (3). To see this, consider the case where α = 1/5: in the limit as n→ ∞,

AMSEτ̂2(h(2))/AMSEτ̂1(h(1)) depends on the constants Hp, Bp, and Vp for p = 1,2 and can be larger than

one, whereas under Assumption 3, AMSEτ̂2(h(2))/AMSEτ̂1(h(1)) goes to zero. There is another implica-

tion of this observation: under Assumption 3, popt is unique asymptotically, but there exist DGPs for which

the AMSEs are the same for different p. Because of this implication, we assume the uniqueness of popt in

Proposition 2. If the uniqueness assumption is relaxed, we still have the asymptotic no-regret property of

p̂ as per Li (1987) and Imbens and Kalyanaraman (2012): there is no loss asymptotically by using p̂, as

compared to any of the optimal orders that deliver the lowest MSE.

In summary, Propositions 1 and 2 establish the consistency of our polynomial order selection procedure

in two asymptotic frameworks that have been invoked in the literature. In the first and more conventional

framework, popt converges asymptotically to the corner solution pmax, the largest polynomial order in the

candidate set. But even in a sample typically considered large, popt may not coincide with pmax depending

on the bias and variance constants (Bp and Vp for p ∈ Ω). Our second asymptotic framework, which is

analogous to that of Calonico, Cattaneo and Titiunik (2014b), further emphasizes the role of the constants,

which justifies p̂ as consistent for popt when popt is distinct from pmax. We now move on to assess the

practical performance of p̂ in Monte Carlo exercises.
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3 Monte Carlo Results

Although AMSE provides the theoretical basis for bandwidth selection and our complementary proposal for

polynomial order selection, it is nevertheless a first-order asymptotic approximation of the true MSE. In this

section, we conduct Monte Carlo simulations to examine the finite sample performance of local polynomial

estimators of various orders—which themselves utilize the CCT bandwidth selectors—and our proposed

order selection procedure.

We employ DGPs from two well-known empirical examples, Lee (2008) and Ludwig and Miller (2007),

and the specifications of these DGPs follow exactly those in Imbens and Kalyanaraman (2012) and Calonico,

Cattaneo and Titiunik (2014b). The conditional expectation functions are specified as piecewise quintic

polynomials (see Appendix B.1 for details). Because of the 5th-order specification of the DGPs, the highest

polynomial order we allow is pmax = 4 so that we do not mechanically favor estimators from correctly

specified regressions.

Our simulations draw 10,000 repeated samples from the two DGPs. Below, we present results using

a uniform kernel; results from the triangular kernel are available in a previous working paper Card et al.

(2014), and the qualitative conclusions are the same.

The simulation results are organized as follows. Tables 1-4 report on the performances of conventional

RD estimators (τ̂p) applied to the two DGPs respectively, while Tables 5-8 report on the bias-corrected

RD estimators (τ̂bc
p ) and the associated robust confidence intervals as per Calonico, Cattaneo and Titiunik

(2014b). Results corresponding to two sample sizes are displayed in the eight tables: the actual sample size

in Tables 1, 3, 5, 7, and large sample size in Tables 2, 4, 6, 8. The actual sample size is that of the analysis

sample in the two empirical studies: nactual = 6,558 for Lee (2008) and nactual = 3,105 for Ludwig and

Miller (2007). We set the large sample size to nlarge = 60,000 for the Lee DGP and nlarge = 30,000 for

Ludwig-Miller. nlarge is about 10×nactual in both studies, and it is comparable or lower than the number of

observations in many recent empirical papers.

In part (a) of each table, we show the summary statistics for the local linear estimator with three band-

width choices: i) the (infeasible) theoretical optimal bandwidth (hopt), which minimizes AMSE using knowl-

edge of the underlying DGP,8 ii) the default CCT bandwidth selector from Calonico, Cattaneo and Titiunik

8Even though the theoretically optimal bandwidth is never known in an empirical application, we show simulation results for
hopt as a check on our theoretical intuition. As documented below, MSE decreases monotonically with p under hopt with moderately
large sample sizes. This is consistent with our discussion of the asymptotic behavior of AMSEτ̂p(hopt(p)) in section 2. Moreover,
comparing the simulation results under hopt with those under data-driven bandwidth selectors gives a sense of how much the
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(2014b) (ĥCCT ), and iii) the CCT bandwidth selector without the regularization term (ĥCCT,noreg). We report

averages and percentages across the simulations: the average bandwidth in column (2), average number of

observations within the bandwidth in column (3), bias in column (4), variance in column (5), MSE in col-

umn (6), coverage rate of the 95% CI in column (7), the average CI length in columns (8), and the average

size-adjusted CI length in columns (9). We make three remarks on these statistics that we report. First, al-

though the emphasis of Calonico, Cattaneo and Titiunik (2014b) is on inference, examining the MSE of the

bias-corrected estimator τ̂bc
p is informative—holding constant the coverage rate, an estimator that delivers a

lower MSE is preferable. Second, the conventional 95% CI associated with the estimator τ̂p ignores the bias

term, but we can justify it by treating the bandwidth selector as shrinking slightly faster than at the optimal

rate as in Card et al. (2012). And third, while the other statistics are standard in Monte Carlo exercises, the

size-adjusted CI length warrants further explanation. Size-adjustment is necessary because not all 95% CIs

achieve the nominal coverage rate, in which case no standard metric tells us how to trade off a lower cover-

age rate for a shorter confidence interval. Therefore, we adapt the size-adjusted power proposal from Zhang

and Boos (1994) to calculate size-adjusted 95% CIs. Specifically, instead of using 1.96 as the critical value

for constructing the 95% CI, we find the smallest critical value so that the resulting size-adjusted 95% CI

has the nominal coverage rate in the simulation. We simply report the average length of these size-adjusted

CIs in column (9).

In part (b) of each table, we present the same statistics for different polynomial orders; in columns

(4)-(9), we express the quantities as a ratio to the quantity in the local linear specification.

3.1 Performances of Alternative Polynomials

The set of polynomial orders we assess is limited by the piecewise quintic specification of the two DGPs. As

mentioned above, since the kth order derivative of the conditional expectation function is zero at the cutoff

for k > 5, the highest-order estimator we allow is local quartic to ensure the finiteness of the theoretical

optimal bandwidth. For the Lee DGP, the alternative polynomial orders are p = 0,2,3,4, as well as the

order p̂ selected from the set {0,1,2,3,4} that minimizes estimated AMSE. For Ludwig-Miller, we exclude

p = 0 from the simulations under the actual sample size, because hopt for p = 0 is so small (0.004) that the

average effective sample size is only 17.9

behavior of τ̂p is driven by the bandwidth selector.
9The bias-corrected estimator of Calonico, Cattaneo and Titiunik (2014b) of order p is known to be equivalent to the con-

ventional estimator of order (p+ 1) when the main and pilot bandwidths are the same. We do not use the same main and pilot
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We highlight several findings from Tables 1 to 8. First, although the de facto local linear estimator

performs competitively in some cases (e.g., Lee DGP with data-driven bandwidth selectors as seen from

Tables 1 and 5), it does not deliver the lowest MSE. Looking down column (6) in part (b) of every table,

there is at least one alternative estimator for which the MSE ratio is less than one. In these cases, the

reduction in MSE ranges from 5.5% (local quadratic with ĥCCT in Table 5) to 73% (local quartic with hopt

in Table 4), and lower bias contributes more to the decrease in MSE than variance.

Second, from column (7) in all tables, alternative estimators may improve upon the local linear in terms

of its 95% CI coverage rate. It is worth noting that the coverage rate of the local linear CI is close to the

nominal level in many instances, in which case the improvement by alternative estimators is small. But

the improvement can be substantial in other cases. Given the analysis of Calonico, Cattaneo and Titiunik

(2014b), it is not surprising that the conventional local linear CI sometimes undercover. The undercoverage

is more serious under the Lee DGP: The local linear CI coverage rate is as low as 66% in simulations with

nactual and when the larger ĥCCT,noreg is used (Table 1(a)). But this undercoverage is alleviated with the use of

any alternative order, and the local quartic estimator has the highest coverage rate of 1.389×66.0% = 91.7%.

The robust local linear CI has coverage rates closer to the nominal level, although it once again significantly

undercovers in simulations with the Lee DGP, nactual , and ĥCCT,noreg – the coverage rate is 84.6% as shown in

Table 5(a). By comparison, the local cubic and quartic robust CIs cover the true treatment effect parameter

between 94% and 95% of the time.

Third, since all else equal, researchers prefer tighter confidence intervals, we compare the length of

confidence intervals across different choices of p. Tables 7 and 8 show that the coverage rates are close

to the nominal 95% for all robust confidence intervals for the Ludwig-Miller DGP, and almost all of the

polynomial orders greater than one yield confidence intervals that are smaller, and substantially so (above 35

percent) in some cases. In Tables 1 to 6, the coverage rates of both local linear and higher-order polynomials

are noticeably below the nominal 95% rate. Thus, we rely on size-adjusted confidence intervals in column

(7) to compare the precision of the estimates on equal footing. Of the 54 specifications that use higher-order

polynomials in those tables, 52 of them have shorter size-adjusted confidence intervals than local linear.

Our final observation about the performance of higher-order polynomials is that the optimal bandwidths

bandwidth in our simulation, and therefore the 4th-order bias-corrected estimator differs from the 5th-order conventional estimator,
and we choose pmax = 4 for both the bias-corrected and conventional estimators for simplicity. If one is still concerned with the
4th-order bias-corrected estimator used in the simulation being “close” to being a 5th order conventional estimator and that it is
being mechanically favored, we used pmax = 3 for the bias-corrected estimator in our previous working paper Card et al. (2014),
and our conclusions were not affected.
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for each of those orders suggest that the intuition that RD designs should only use observations “close” to the

discontinuity threshold can be misleading. The intuition is reasonable for the hypothetical infinite sample,

but in practice, with a finite sample, the optimal (in the AMSE sense) bandwidth may be relatively large.

For example, in Tables 1 and 2, the order with the lowest MSE is p = 4. With p = 4, the (theoretically)

optimal bandwidth implies using an average of 5,227 of the 6,558 observations under nactual , or 39,983 of

the 60,000 observations under nlarge. The same pattern consistently holds true for the remaining tables: the

better performing estimators use higher-order polynomials, which in turn imply larger optimal bandwidths,

and therefore use a substantial fraction of the sample.

3.2 Performance of the Polynomial Order Selection Procedure

We have thus far provided both theoretical arguments and Monte Carlo evidence that point toward a more

flexible view regarding the choice of p. We have presented simulation results on the performance of esti-

mators that take p as given and use existing methods for choosing the ÂMSE-minimizing h, conditional on

the given p. The evidence of the local linear specification performing well in some cases but not in others

underscores the polynomial-order-choice conundrum researchers sometimes face.

We now turn to the performance of our proposed order selection procedure. Specifically, we designate

our candidate set Ω to contain all of the polynomial orders considered in section 3.1, and for a particular

Monte Carlo draw, we compute the RD estimator for each p in Ω and their corresponding ÂMSE τ̂p . For

that same draw, we choose the p with the lowest ÂMSE . By repeating this process over the Monte Carlo

draws, we can examine how well this procedure performs in terms of MSE, coverage, and the length of the

confidence interval.

We report the results in the rows labeled “ p̂” below the quartic in Tables 1 to 8. Overall, our procedure

tends to select a polynomial specification that performs well. Although the selected polynomial order varies

across repeated sample draws, the modal value of p̂ coincides with the lowest MSE order in the majority of

cases. In fact, this happens for all 12 permutations (2 DGPs times 3 bandwidth selectors times 2 estimators)

under the large sample size, nlarge. Sometimes, our procedure leads to the local linear specification being the

modal choice, but when it does not, it results in an estimator with an MSE improvement over local linear.

In these cases, the reduction in MSE can be more than 40% for the Lee DGP and more than 70% for the

Ludwig-Miller DGP, and the proportional decrease in bias is generally larger than that in variance. We see

qualitatively similar results for the p̂-selected estimator in terms of its CI coverage rate and length: when
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the procedure does not select linear as the modal choice, it improves both the CI coverage rate and length

relative to local linear, with the exception of one case (Lee DGP, bias-corrected estimator, and theoretical

bandwidth—Table 5) where the coverage rate decreases by a small amount (0.1 percentage point).

We show additional results in Appendix Tables A.2 to A.4 for the sample size nsmall = 500. This is

the sample size used in the simulations of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and

Titiunik (2014b). We see from Table A.2 that because p = 1 minimizes the MSE of the conventional

estimator τ̂p under the Lee DGP, our polynomial selection procedure fares worse than always using local

linear. As shown in Table A.4, p̂ does better for the bias-corrected estimator τ̂bc
p , for which local constant

is MSE-minimizing(!), leading to comparable or lower MSEs, but the corresponding CI may undercover.

This somewhat underwhelming performance of p̂ in small sample size is an important caveat, but we note

that it is rare to find RD studies that rely on 500 or fewer observations. In our survey of 110 studies, only

three papers use fewer than 500 observations, a third of the papers use fewer than 6,000 observations, and

the median sample size is 21,561. A sample size of 60,000, the largest sample size used in our simulations,

sits at the 63rd percentile. Therefore, it is fairly common to see studies with sample size at or larger than

60,000, much more so than seeing studies with about 500 observations. But even with 500 observations, our

selection procedure performs well under the Ludwig-Miller DGP as shown in Tables A.3 and A.5: the modal

p̂ always coincides with the MSE minimizing polynomial order, and relative to local linear, our procedure

leads to an estimator with improved MSE, CI coverage rate, and CI length.

To summarize, we have implemented simulations under two DGPs (Lee and Ludwig-Miller), three

bandwidth choices (hopt , hCCT , and hCCT,noreg), two types of estimators (conventional and bias-corrected),

and three sample sizes (nsmall , nactual , and nlarge). We see that the best performing polynomial order varies

across context: the MSE minimizing specification ranges from local constant to local quartic (the highest

order we consider), and local linear does perform best in some cases. We also find that our polynomial

selection procedure generally performs well, especially in larger sample sizes typically used in RD studies.

4 Extensions: Fuzzy RD and RKD

In this section, we briefly discuss how AMSE-based local polynomial order choice applies to two popular

extensions of the sharp RD design. The first extension is the fuzzy RD design, where the treatment assign-

ment rule is not strictly followed. In the same way that we can estimate the AMSE of a sharp RD estimator,
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we can rely on Lemma 2 and Theorem A.2 of Calonico, Cattaneo and Titiunik (2014b) to estimate the

AMSE of a fuzzy RD estimator (consistent with the prevailing practice of using the same bandwidth for the

first stage and outcome equations in a fuzzy RD design, we use the same polynomial order for both in our

Stata implementation rdmse).

The same principle can be applied to the regression kink design proposed and explored by Nielsen,

Sørensen and Taber (2010) and Card et al. (2015a). For RKD, Calonico, Cattaneo and Titiunik (2014b)

and Gelman and Imbens (2019) recommend using local quadratic (p = 2) by extending the Hahn, Todd and

Van der Klaauw (2001) argument. But similar to our RD discussion, the AMSE of local quadratic may or

may not be lower than alternative orders, depending on the sample size and DGP characteristics.

To illustrate this once again, but in the case of fuzzy RKD, we use the bottom-kink and top-kink samples

of the application in Card et al. (2015b) to approximate the actual first-stage and reduced-form conditional

expectation functions with global quintic specifications on each side of the cutoff (see Appendix B.2 for

details). The specification of these approximating DGPs again allows us to compute AMSEτ̂p as a function

of sample size for different p (which is slightly different from equation (3) for the RD case):

AMSEτ̂p(h) = h2p+2B2
p +

1
nh3 Vp. (5)

As shown in Panel (C) of Figure 1, the AMSE of the local quadratic fuzzy estimator is asymptotically

smaller. However, it takes about 88 million observations for the local quadratic to dominate local linear. In

Panel (D) of Figure 1, the local linear fuzzy estimator dominates its local quadratic counterpart for sample

sizes up to 200 million observations; in fact, the threshold sample size that tips in favor of the local quadratic

estimator is 61 trillion. Even though we had the universe of the Austrian unemployed workers over a span

of 12 years, the number of observations is about 270,000 for both the top- and bottom-kink samples. In this

case, these calculations give reason to prefer the local linear fuzzy RK estimator.

Once again, the results here highlight the importance of accounting for the bias and variance constants in

the AMSE expression (analogous to RD, one can derive Bp and Vp for the pth order RK estimator) and not

just the asymptotic shrinkage rate when selecting an estimator. Through simple algebraic manipulations of

(5), we can show that the sample size equalizing the AMSEs of the local linear and quadratic RK estimators
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(i.e. location of the dashed line in Panels (C) and (D) of Figure 1) has the form

Equalizing Sample Size = 1.06 ·
(

V2

B2
2

)(
V2

V1

) 7
3
(

B2

B1

)7

. (6)

First note that the equalizing sample size is larger when V2 is larger relative to B2
2, because V2 carries

more weight relative to B2
2 in AMSEτ̂2 than V1 relative to B2

1 in AMSEτ̂1 . More importantly, equation (6)

reveals that the equalizing sample size increases with the ratios V2/V1 and B2/B1: higher variance and

bias constants for the quadratic estimator require more observations to overcome them. As we emphasize

throughout this paper, the optimal polynomial order depends on these DGP specific constants and therefore

varies across empirical contexts.

5 Conclusion

This paper is motivated by the question of what researchers should do when their RD estimates are sensitive

to the choice of polynomial order used in local regressions. Since the existing literature does not provide a

practical answer, we propose to extend the logic of the widely-used approach of Imbens and Kalyanaraman

(2012) and Calonico, Cattaneo and Titiunik (2014b) and use the estimated AMSE to guide polynomial

order selection. In Monte Carlo simulations based on two well-known RD examples, we see that the best

polynomial ranges from local constant to quartic (the maximum order we allow) and varies across sample

size and DGP characteristics. Our proposed order selection procedure performs reasonably well, especially

in larger sample sizes we typically see in RD applications.

We make two concluding remarks. First, we choose to incorporate polynomial order selection into the

framework of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b) because it

is the modal paradigm empirical studies now follow. As mentioned in the introduction, however, recent

papers by Armstrong and Kolesár (2018a,b) propose alternative estimation and inference strategies under

uniformity.10 Studying the choice of polynomial in Armstrong and Kolesár (2018a,b) could be a future

avenue of research.

Second, we view the proposed polynomial selection procedure as a complement—not a substitute—to

10Similarly, Imbens and Wager (2019) propose a linear RD estimator through numerical convex optimization that minimizes the
worst-case-scenario mean-squared-error over the class of DGPs with a known global bound on the second derivative. In a previous
working paper Pei et al. (2018), we compare the performances of the procedures in Armstrong and Kolesár (2018a) and Imbens
and Wager (2019) to that of Calonico, Cattaneo and Titiunik (2014b)—see Appendix D of Pei et al. (2018) for details.
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analyses that explore result robustness to order choice. In many cases, different polynomial orders may yield

substantively similar results, and the procedure will not be needed. But when researchers are confronted

with estimate sensitivity with respect to polynomial order, the procedure can be used to rule out suboptimal

estimators which yield drastically different results, as in the RKD context of Card et al. (2017).
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Figure 1: Asymptotic Mean-Squared-Error as a Function of Sample Size
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Note: In Panels (A) and (B), we superimpose the simulated MSEs of the local linear (cross) and quadratic

(circle) estimators with the theoretical optimal bandwidth. These MSEs are taken from Tables 1 and 3.

At the actual sample size of the two studies, the theoretical AMSEs appear to be quite close to the

corresponding MSEs.
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Table 1: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Lee DGP,
Actual Sample Size (n=6,558)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance×

1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.078 637 0.008 0.419 0.481 0.934 0.081 0.086
CCT 1 0.111 908 0.013 0.402 0.571 0.822 0.068 0.100
CCT w/o reg. 1 0.167 1335 0.018 0.437 0.768 0.660 0.060 0.138

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio of 
MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.015 127 1.969 1.275 1.610 0.960 1.123 1.271

2 0.180 1477 0.723 0.975 0.917 1.008 0.987 0.964
3 0.353 2888 0.631 0.902 0.837 1.008 0.945 0.918
4 0.663 5227 0.672 0.780 0.738 1.009 0.879 0.856
p̂ 0.627 0.816 0.762 1.008 0.891

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .194, .806)

CCT 0 0.023 190 1.722 1.058 1.623 0.895 1.085 1.198
2 0.207 1699 0.561 1.077 0.851 1.096 1.093 0.892
3 0.298 2443 0.187 1.209 0.861 1.146 1.214 0.862
4 0.348 2843 0.007 1.574 1.108 1.151 1.407 0.983
p̂ 0.926 1.097 1.026 0.996 1.002

Fraction of time p̂=(0,1,2,3,4): (.001, .779, .182, .038, 0)

CCT w/o reg. 0 0.025 208 1.334 0.941 1.302 1.037 1.187 0.893
2 0.274 2221 0.705 1.126 0.855 1.187 1.116 0.852
3 0.425 3427 0.516 1.303 0.856 1.287 1.188 0.778
4 0.539 4243 0.149 1.213 0.701 1.389 1.335 0.660
p̂ 1.013 1.122 1.081 0.967 0.996

Fraction of time p̂=(0,1,2,3,4): (.004, .646, .173, .123, .054)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 2: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Lee DGP,
Large Sample Size (n=60,000)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance×

1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.050 3746 0.004 0.073 0.086 0.927 0.033 0.036
CCT 1 0.064 4778 0.005 0.069 0.098 0.847 0.030 0.040
CCT w/o reg. 1 0.069 5157 0.006 0.070 0.107 0.811 0.029 0.043

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio of 
MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.007 554 2.146 1.677 2.115 0.960 1.301 1.438

2 0.131 9852 0.690 0.844 0.789 1.013 0.926 0.889
3 0.276 20702 0.555 0.721 0.659 1.013 0.855 0.819
4 0.542 39983 0.545 0.590 0.546 1.013 0.772 0.740
p̂ 0.545 0.590 0.546 1.013 0.772

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, 0, 1)

CCT 0 0.009 692 1.764 1.557 2.016 0.961 1.311 1.367
2 0.151 11344 0.637 0.906 0.759 1.060 0.974 0.869
3 0.280 20988 0.370 0.830 0.626 1.097 0.956 0.766
4 0.357 26656 0.039 0.977 0.690 1.118 1.063 0.792
p̂ 0.484 0.953 0.741 1.061 0.948

Fraction of time p̂=(0,1,2,3,4): (0, .038, .172, .713, .078)

CCT w/o reg. 0 0.009 704 1.585 1.506 1.853 0.997 1.345 1.285
2 0.167 12501 0.730 0.959 0.813 1.050 0.964 0.889
3 0.321 23959 0.562 0.986 0.756 1.085 0.931 0.800
4 0.519 37787 0.347 1.042 0.725 1.093 0.935 0.833
p̂ 0.541 0.969 0.737 1.055 0.903

Fraction of time p̂=(0,1,2,3,4): (0, .02, .075, .349, .556)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 3: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Ludwig-Miller
DGP, Actual Sample Size (n=3,105)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.045 175 0.018 1.609 1.926 0.922 0.155 0.174
CCT 1 0.050 195 0.022 1.550 2.055 0.886 0.147 0.182
CCT w/o reg. 1 0.051 198 0.023 1.520 2.061 0.882 0.145 0.181

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 2 0.151 587 0.576 0.654 0.601 1.015 0.817 0.778

3 0.352 1362 0.364 0.503 0.442 1.021 0.718 0.666
4 0.723 2653 0.220 0.397 0.340 1.028 0.642 0.583
p̂ 0.209 0.412 0.351 1.026 0.648

Fraction of time p̂=(1,2,3,4): (0, 0, .082, .918)

CCT 2 0.167 646 0.599 0.689 0.608 1.027 0.823 0.773
3 0.293 1135 0.171 0.679 0.519 1.060 0.832 0.701
4 0.341 1321 0.013 0.896 0.676 1.067 0.965 0.793
p̂ 0.307 0.699 0.550 1.039 0.811

Fraction of time p̂=(1,2,3,4): (0, .291, .701, .009)

CCT w/o reg. 2 0.173 670 0.642 0.685 0.614 1.023 0.816 0.781
3 0.390 1495 0.397 0.672 0.537 1.015 0.739 0.732
4 0.536 1996 0.059 0.701 0.518 1.057 0.806 0.697
p̂ 0.347 0.625 0.493 1.027 0.733

Fraction of time p̂=(1,2,3,4): (0, .062, .689, .249)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 4: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Ludwig-Miller
DGP, Large Sample Size (n=30,000)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.029 1072 0.007 0.253 0.304 0.924 0.062 0.069
CCT 1 0.031 1158 0.008 0.250 0.318 0.901 0.060 0.071
CCT w/o reg. 1 0.031 1168 0.008 0.248 0.319 0.900 0.060 0.070

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio of 
MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.002 76 2.899 3.596 4.395 0.964 1.889 2.077

2 0.109 4102 0.568 0.584 0.541 1.015 0.767 0.724
3 0.273 10245 0.364 0.416 0.369 1.021 0.649 0.602
4 0.588 21534 0.231 0.314 0.271 1.023 0.562 0.518
p̂ 0.231 0.314 0.271 1.023 0.562

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, 0, 1)

CCT 0 0.002 80 2.623 3.570 4.279 0.971 1.912 2.054
2 0.119 4450 0.612 0.591 0.545 1.015 0.766 0.731
3 0.274 10257 0.295 0.457 0.378 1.037 0.675 0.607
4 0.356 13288 0.000 0.547 0.430 1.052 0.744 0.642
p̂ 0.258 0.470 0.383 1.035 0.675

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .881, .119)

CCT w/o reg. 0 0.002 80 2.578 3.586 4.266 0.972 1.918 2.066
2 0.120 4515 0.624 0.587 0.543 1.014 0.764 0.734
3 0.296 11070 0.390 0.461 0.392 1.020 0.654 0.621
4 0.534 19349 0.102 0.445 0.349 1.029 0.628 0.584
p̂ 0.213 0.434 0.348 1.022 0.619

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .345, .655)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 5: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Lee DGP,
Actual Sample Size (n=6,558)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.078 637 0.004 0.495 0.507 0.950 0.088 0.088
CCT 1 0.111 906 0.007 0.461 0.514 0.900 0.077 0.092
CCT w/o reg. 1 0.165 1332 0.011 0.518 0.629 0.846 0.076 0.109

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.015 127 1.121 1.306 1.305 0.997 1.136 1.148

2 0.180 1476 0.708 0.908 0.898 0.999 0.952 0.954
3 0.353 2887 0.544 0.799 0.786 1.003 0.892 0.882
4 0.663 5227 -0.010 0.751 0.732 1.002 0.865 0.856
p̂ 0.299 0.804 0.786 0.999 0.880

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .567, .433)

CCT 0 0.023 190 1.281 0.971 1.041 1.006 1.031 1.009
2 0.207 1698 0.378 1.037 0.945 1.041 1.063 0.940
3 0.299 2443 0.015 1.190 1.067 1.053 1.166 0.990
4 0.347 2835 -0.031 1.568 1.406 1.054 1.335 1.132
p̂ 1.111 0.982 1.008 0.994 0.987

Fraction of time p̂=(0,1,2,3,4): (.297, .57, .12, .013, 0)

CCT w/o reg. 0 0.025 208 1.055 0.831 0.881 1.033 0.995 0.890
2 0.274 2224 0.481 1.117 0.960 1.076 1.070 0.888
3 0.423 3415 0.230 1.130 0.940 1.112 1.201 0.879
4 0.54 4247 0.057 1.626 1.339 1.122 1.532 1.070
p̂ 1.005 0.935 0.948 0.985 0.935

Fraction of time p̂=(0,1,2,3,4): (.323, .427, .134, .109, .007)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 6: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Lee DGP,
Large Sample Size (n=60,000)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.050 3746 0.001 0.083 0.084 0.945 0.035 0.036
CCT 1 0.064 4778 0.002 0.074 0.078 0.928 0.032 0.035
CCT w/o reg. 1 0.069 5157 0.002 0.073 0.079 0.920 0.032 0.035

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio of 
MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.007 554 1.210 1.669 1.665 1.000 1.297 1.293

2 0.131 9852 0.690 0.807 0.800 1.003 0.905 0.890
3 0.276 20702 0.476 0.667 0.658 1.004 0.821 0.806
4 0.542 39983 -0.060 0.550 0.539 1.004 0.745 0.728
p̂ -0.033 0.568 0.557 1.003 0.749

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .058, .943)

CCT 0 0.009 692 1.240 1.512 1.513 1.003 1.257 1.240
2 0.151 11344 0.499 0.898 0.861 1.012 0.965 0.928
3 0.280 20988 0.178 0.840 0.794 1.020 0.940 0.875
4 0.357 26656 -0.021 1.022 0.963 1.025 1.043 0.956
p̂ 0.285 0.860 0.815 1.012 0.932

Fraction of time p̂=(0,1,2,3,4): (0, .014, .203, .751, .032)

CCT w/o reg. 0 0.009 704 1.121 1.498 1.480 1.011 1.273 1.223
2 0.167 12501 0.614 0.931 0.891 1.010 0.958 0.935
3 0.321 23959 0.355 0.867 0.813 1.020 0.928 0.872
4 0.519 37787 0.219 1.199 1.116 1.028 1.142 1.040
p̂ 0.275 0.808 0.755 1.014 0.894

Fraction of time p̂=(0,1,2,3,4): (0, .004, .09, .666, .241)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 7: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Ludwig-
Miller DGP, Actual Sample Size (3,105)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.045 175 0.004 1.698 1.715 0.941 0.160 0.168
CCT 1 0.050 195 0.005 1.610 1.632 0.935 0.154 0.162
CCT w/o reg. 1 0.051 199 0.005 1.589 1.613 0.936 0.152 0.162

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 2 0.151 587 0.777 0.654 0.654 1.001 0.813 0.809

3 0.352 1361 0.434 0.495 0.492 1.006 0.709 0.689
4 0.723 2653 0.051 0.459 0.454 1.011 0.689 0.655
p̂ 0.292 0.494 0.490 1.004 0.701

Fraction of time p̂=(1,2,3,4): (0, 0, .677, .323)

CCT 2 0.167 647 0.683 0.685 0.682 1.004 0.830 0.824
3 0.292 1133 0.199 0.746 0.736 1.010 0.863 0.839
4 0.342 1322 0.086 0.979 0.965 1.008 0.989 0.969
p̂ 0.516 0.681 0.675 1.005 0.821

Fraction of time p̂=(1,2,3,4): (0, .693, .306, .001)

CCT w/o reg. 2 0.173 670 0.719 0.672 0.669 1.001 0.822 0.819
3 0.390 1496 0.767 0.941 0.935 1.004 0.883 0.860
4 0.537 1998 0.213 1.261 1.242 1.008 1.125 1.096
p̂ 0.381 0.626 0.618 1.002 0.776

Fraction of time p̂=(1,2,3,4): (0, .306, .651, .043)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table 8: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Ludwig-
Miller DGP, Large Sample Size (n=30,000)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.029 1072 0.001 0.264 0.265 0.950 0.063 0.063
CCT 1 0.031 1158 0.001 0.253 0.254 0.946 0.062 0.063
CCT w/o reg. 1 0.031 1168 0.001 0.252 0.252 0.947 0.061 0.062

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio of 
MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.002 76 1.459 3.540 3.537 0.998 1.875 1.889

2 0.109 4102 0.871 0.582 0.582 1.000 0.766 0.764
3 0.273 10245 0.509 0.410 0.409 1.002 0.645 0.638
4 0.588 21534 -0.189 0.324 0.324 1.001 0.572 0.568
p̂ -0.149 0.347 0.346 0.997 0.579

Fraction of time p̂=(0,1,2,3,4): (0, 0, 0, .109, .891)

CCT 0 0.002 80 1.378 3.550 3.545 1.000 1.883 1.894
2 0.119 4450 0.876 0.593 0.593 1.001 0.771 0.768
3 0.274 10257 0.223 0.481 0.480 1.005 0.695 0.682
4 0.356 13288 -0.195 0.602 0.601 1.003 0.772 0.762
p̂ 0.220 0.483 0.482 1.004 0.694

Fraction of time p̂=(0,1,2,3,4): (0, 0, .008, .949, .043)

CCT w/o reg. 0 0.002 80 1.306 3.568 3.562 0.999 1.889 1.894
2 0.120 4515 0.861 0.588 0.588 1.000 0.768 0.768
3 0.296 11070 0.449 0.484 0.483 1.002 0.671 0.668
4 0.534 19349 0.361 0.698 0.696 1.001 0.845 0.843
p̂ 0.107 0.450 0.448 0.999 0.657

Fraction of time p̂=(0,1,2,3,4): (0, 0, .007, .75, .243)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Appendix (For Online Publication Only)

A Proofs of Propositions 1 and 2

Proof of Proposition 1: First we show that popt → pmax. For each p, Assumptions 2 and 3 ensure that

MSEτ̂p(h(p))
AMSEτ̂p(h(p))

= 1+o(1) (A1)

by Lemma A1 of Calonico, Cattaneo and Titiunik (2014b), where MSEτ̂p(h(p)) is defined as the MSE of

the estimator τ̂p with bandwidth h(p). As mentioned in section 2, Assumption 3 also implies that

AMSEτ̂p(h(p)) = Cp ·n−
2p+2
2p+3 ,

where Cp is a constant for each p and does not depend on n. It follows that for any p 6= pmax

MSEτ̂pmax
(h(pmax))

MSEτ̂p(h(p))
=

AMSEτ̂pmax
(h(pmax))

AMSEτ̂p(h(p))
+o(1)→ 0

as n → ∞. In other words, the MSE of using τ̂pmax is asymptotically smaller than using a lower-order

polynomial estimator, when the bandwidths of the estimators shrink at the optimal rate. Therefore, popt →

pmax.

Next we show that p̂ P→ pmax. Under part b) of Assumption 2,

ÂMSEτ̂p(h(p))
AMSEτ̂p(h(p))

P→ 1

for each p ∈Ω. Therefore,
ÂMSEτ̂pmax

(h(pmax))

AMSEτ̂p(h(p))
P→ 0

for any p 6= pmax, which implies that p̂ P→ pmax. Since popt → pmax, p̂ P→ popt as n→ ∞.
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Proof of Proposition 2: We show that the probability Pr(p̂/popt 6= 1) is arbitrarily small as n→ ∞.

Pr
(

p̂
popt
6= 1
)

=Pr

 ÂMSEτ̂p̂(h(p̂))

ÂMSEτ̂popt
(h(popt))

< 1


6 ∑

p6=popt

Pr

 ÂMSEτ̂p(h(p))

ÂMSEτ̂popt
(h(popt))

< 1


= ∑

p6=popt

Pr

 ÂMSEτ̂p(h(p))
MSEτ̂p(h(p))

MSEτ̂p(h(p))
MSEτ̂popt

(h(popt))

MSEτ̂popt
(h(popt))

ÂMSEτ̂popt
(h(popt))

< 1

 (A2)

Now we will examine the three fractions inside the probability statement of (A2) one by one. For the first

fraction, Lemma A1 of Calonico, Cattaneo and Titiunik (2014b) and the consistency of B̂p and V̂p imply

that
ÂMSEτ̂p(h(p))
MSEτ̂p(h(p))

P→ 1 (A3)

for all p. The second fraction
MSEτ̂p(h(p))

MSEτ̂popt
(h(popt))

> 1

for all p by the definition and uniqueness of popt . For the third fraction, notice that

Pr

∣∣∣∣∣∣ MSEτ̂popt
(h(popt))

ÂMSEτ̂popt
(h(popt))

−1

∣∣∣∣∣∣> ε

6 ∑
p∈Ω

Pr

(∣∣∣∣∣ MSEτ̂p(h(p))

ÂMSEτ̂p(h(p))
−1

∣∣∣∣∣> ε

)
. (A4)

By Assumption 1 and condition (A3), the right hand side of can be made arbitrarily small by choosing a

large enough sample size. It follows that

ÂMSEτ̂popt
(h(popt))

MSEτ̂popt
(h(popt))

P→ 1.

Putting all three fractions together, we know that, for each p,

Pr

 ÂMSEτ̂p(h(p))
MSEτ̂p(h(p))

MSEτ̂p(h(p))
MSEτ̂popt

(h(popt))

MSEτ̂popt
(h(popt))

ÂMSEτ̂popt
(h(popt))

< 1


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can be made arbitrarily small by choosing a large enough sample size. It follows that Pr(p̂/popt 6= 1)→ 0

as n→ ∞ and that p̂/popt
P→ 1.

B Specifications of Data Generating Processes

B.1 Lee and Ludwig-Miller DGPs

To obtain the conditional expectation functions in the Lee and Ludwig-Miller DGPs, Imbens and Kalyanara-

man (2012) and Calonico, Cattaneo and Titiunik (2014b) first discard the outliers in the empirical data (i.e.

observations for which the absolute value of the running variable is very large) and then fit a separate quintic

function on each side of the cutoff to the remaining observations. The conditional expectation functions are

Lee: E[Y |X = x] =


0.48+1.27x+7.18x2 +20.21x3 +21.54x4 +7.33x5 if x < 0

0.52+0.84x−3.00x2 +7.99x3−9.01x4 +3.56x5 if x > 0
(A5)

Ludwig-Miller: E[Y |X = x] =


3.71+2.30x+3.28x2 +1.45x3 +0.23x4 +0.03x5 if x < 0

0.26+18.49x−54.81x2 +74.30x3−45.02x4 +9.83x5 if x > 0.
(A6)

Equations (A5) and (A6) are graphed in Appendix Figure A.1. As seen in the formulations above and

as presented graphically, the Ludwig-Miller DGP has very large slope and curvature above the cutoff as

compared to the Lee DGP.

The assignment variable X is specified as following the distribution 2B(2,4)− 1, where B(α,β ) de-

notes a beta distribution with shape parameters α and β . The outcome variable is given by Y = E[Y |X =

x]+ ε , where ε ∼ N(0,σ2
ε ) with σε = 0.1295.

B.2 Card-Lee-Pei-Weber DGPs

The process of specifying the Card-Lee-Pei-Weber DGPs are described in section 4.4.3 of Card et al. (2017).

Below we state the parameters in the bottom- and top-kink DGPs respectively.
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B.2.1 Bottom-kink DGP

The first-stage and reduced-form conditional expectation functions for the bottom-kink DGP are specified

as

First-stage: E[B|X = x] =


β0 +β

+
1 x+β

+
2 x2 +β

+
3 x3 +β

+
4 x4 +β

+
5 x5 if x < 0

β0 +β
−
1 x+β

−
2 x2 +β

−
3 x3 +β

−
4 x4 +β

−
5 x5 if x > 0

(A7)

Reduced-form: E[Y |X = x] =


γ0 + γ

+
1 x+ γ

+
2 x2 + γ

+
3 x3 + γ

+
4 x4 + γ

+
5 x5 if x < 0

γ0 + γ
−
1 x+ γ

−
2 x2 + γ

−
3 x3 + γ

−
4 x4 + γ

−
5 x5 if x > 0

(A8)

where

• β0 = 3.17

• β
+
1 = 3.14×10−5; β

−
1 = 8.40×10−6

• β
+
2 = 5.30×10−9; β

−
2 =−1.21×10−8

• β
+
3 =−3.82×10−12; β

−
3 =−1.01×10−11

• β
+
4 = 9.54×10−16; β

−
4 =−7.56×10−16

• β
+
5 =−8.00×10−20; β

−
5 = 7.89×10−19

• γ0 = 4.51

• γ
+
1 =−1.76×10−5 ; γ

−
1 =−4.75×10−5

• γ
+
2 = 7.00×10−9 ; γ

−
2 = 1.64×10−7

• γ
+
3 =−5.00×10−12 ; γ

−
3 = 3.04×10−10

• γ
+
4 = 1.00×10−15 ; γ

−
4 = 1.82×10−13

• γ
+
5 =−2.00×10−19 ; γ

−
5 = 3.53×10−17

• The conditional variances of B given X just above and below the cutoff are 2.05× 10−4 and 2.07×

10−4, respectively.

• The conditional variances of Y given X just above and below the cutoff are 1.51 and 1.49, respectively.
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• The density fX evaluated at 0 is: 1.53×10−4.

B.2.2 Top-kink DGP

The first-stage and reduced-form conditional expectation functions for the top-kink DGP are specified as

quintic functions on both sides of the cutoff as in equations (A7) and (A8). The coefficients are:

• β0 = 3.65

• β
+
1 =−3.70×10−6; β

−
1 = 1.03×10−5

• β
+
2 = 1.25×10−8; β

−
2 =−3.18×10−9

• β
+
3 =−6.17×10−12; β

−
3 =−5.72×10−13

• β
+
4 = 1.16×10−15; β

−
4 =−4.83×10−17

• β
+
5 =−7.43×10−20; β

−
5 =−1.42×10−21

• γ0 = 4.65

• γ
+
1 =−1.29×10−5; γ

−
1 = 1.51×10−5

• γ
+
2 = 2.35×10−8; γ

−
2 =−5.69×10−9

• γ
+
3 =−1.42×10−11; γ

−
3 =−1.07×10−12

• γ
+
4 = 3.04×10−15; γ

−
4 =−8.49×10−17

• γ
+
5 =−2.06×10−19; γ

−
5 =−2.65×10−21

• The conditional variances of B given X just above and below the cutoff are 1.20× 10−3 and 9.60×

10−4, respectively.

• The conditional variances of Y given X just above and below the cutoff are 1.62 and 1.63, respectively.

• The density fX evaluated at 0 is: 2.35×10−5.
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C AMSE Calculation and Estimation

C.1 Theoretical AMSE Calculation

After the full specification of a data generating process, we can calculate AMSEτ̂p(h) by applying Lemma 1

of Calonico, Cattaneo and Titiunik (2014b) in a sharp design and Lemma 2 in a fuzzy design. The lemmas

provide the expressions for the constants in the squared-bias and variance terms, B2
p and Vp, that make up

AMSEτ̂p(h) according to equation (3). Specifically, B2
p depends on the (p+ 1)th derivatives on both sides

of the cutoff, and Vp depends on the conditional variances on both sides of the cutoff as well as the density

of the running variable at the cutoff. With B2
p and Vp computed, we can calculate the infeasible optimal

bandwidth hopt for a given sample size, which is simply a function of B2
p and Vp. Finally, plugging hopt back

into AMSEτ̂p(h) yields the AMSE for that given sample size, and Figure 1 is the graphical representation of

this mapping across different sample sizes (the Mathematica program used to generate the figure is available

at https://sites.google.com/site/peizhuan/programs/).

C.2 AMSE Estimation

To estimate AMSEτ̂p , we rely on the proposed procedure in Calonico, Cattaneo and Titiunik (2014a,b).

Our program rdmse_cct2014 takes user-specified bandwidths as inputs and estimates B̂2
p and V̂p for the

conventional estimator in the same way as Calonico, Cattaneo and Titiunik (2014b). We also provide another

program rdmse, which speeds up the computation in rdmse_cct2014 by modifying variance estimations.

As with Calonico, Cattaneo and Titiunik (2014a), rdmse implements a nearest-neighbor estimator as per

Abadie and Imbens (2006) and sets the number of neighbors to three. However, in the event of a tie,

while Calonico, Cattaneo and Titiunik (2014a) selects all of the closest neighbors, we randomly select three

neighbors. We adopt the same modification in Card et al. (2015a).

Additionally, rdmse estimates the AMSE of the bias-corrected RD or RK estimator τ̂bc
p :

ÂMSEτ̂bc
p
(h,b) =

(
B̃bc

p (h,b)
)2

+ Ṽbc
p (h,b),

where b is the pilot bandwidth used in Calonico, Cattaneo and Titiunik (2014b) to estimate the bias of

τ̂p. According to Theorems A.1 and A.2 of Calonico, Cattaneo and Titiunik (2014b), the bias of τ̂bc
p has

two terms: the first term is the higher-order approximation error post bias-correction, and the second term

6



captures the bias in estimating the bias of τ̂p. These two terms involve the (p+ 2)th derivatives of the

conditional expectation function on both sides of the cutoff, which are estimated via local polynomial re-

gressions in the CCT bandwidth selection procedure for the sharp design, and in the “fuzzy CCT” bandwidth

selection procedure of Card et al. (2015a). We follow the same algorithm to arrive at B̃bc
p . Ṽbc

p is simply

the estimated variance of τ̂bc
p , and its computation is covered in detail in Calonico, Cattaneo and Titiunik

(2014b). In Table A.6, we provide details on the AMSE calculations in our software implementation by

presenting the correspondence between the expressions in this paper and those in Calonico, Cattaneo and

Titiunik (2014a,b).

Finally, as mentioned in Appendix A, our AMSE estimator is consistent for the true MSE in a sharp

design. Consistency in the fuzzy design and for ÂMSEτ̂bc
p
(h,b) can be similarly established.
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Figure A.1: Conditional Expectation Functions in RDD DGPs
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Figure A.2: Conditional Expectation Functions in RKD DGPs
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Table A.1: Main Specification of RD Papers Published in Leading Journals

Main Specification Number of Papers 1999-2010 2011-2017

Local constant 11 8 3

Local linear 45 9 36

Local quadratic 6 1 5

Local cubic 5 4 1

Local quartic 2 2 0

Local 7th-order 1 1 0

Local 8th-order 1 0 1

Local but did not mention preferred polynomial 5 0 5

Total local 76 25 51

Global linear 4 1 3

Global quadratic 4 0 4

Global cubic 11 5 6

Global quartic 4 2 2

Global 5th-order 1 0 1

Global 8th-order 1 0 1

Global but did not mention preferred polynomial 1 0 1

Total global 26 8 18

Did not mention preferred specification 8 2 6

Total 110 35 75

Note: Our survey includes empirical RD papers published between 1999 and 2017
in the following leading journals: American Economic Review, American Economic
Journals, Econometrica, Journal of Political Economy, Journal of Business and Eco-
nomic Statistics, Quarterly Journal of Economics, Review of Economic Studies, and
Review of Economics and Statistics in our survey.

9



Table A.2: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Lee DGP,
Small Sample Size (n=500)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.130 81 0.019 3.570 3.922 0.927 0.230 0.256
CCT 1 0.159 99 0.021 3.496 3.952 0.902 0.211 0.248
CCT w/o reg. 1 0.387 218 0.029 2.460 3.300 0.803 0.155 0.224

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.059 35 1.814 0.917 1.130 0.949 0.940 1.092

2 0.260 162 0.811 1.128 1.086 1.007 1.064 1.035
3 0.470 291 0.762 1.138 1.088 1.006 1.066 1.041
4 0.838 472 0.844 1.104 1.069 1.007 1.053 1.031
p̂ 1.163 1.129 1.149 0.949 0.945

Fraction of time p̂=(0,1,2,3,4): (.468, .397, .04, .048, .047)

CCT 0 0.059 37 2.382 0.686 1.263 0.803 0.816 1.140
2 0.226 141 0.469 1.513 1.364 1.028 1.256 1.181
3 0.275 172 0.107 2.213 1.959 1.027 1.528 1.436
4 0.313 195 0.004 3.134 2.772 1.022 1.810 1.709
p̂ 2.054 0.797 1.193 0.829 0.827

Fraction of time p̂=(0,1,2,3,4): (.717, .28, .003, 0, 0)

CCT w/o reg. 0 0.085 51 2.146 1.003 1.920 0.743 0.974 1.542
2 0.424 252 0.733 1.667 1.380 1.077 1.336 1.201
3 0.464 280 0.469 2.418 1.858 1.117 1.665 1.414
4 0.491 297 0.064 3.303 2.464 1.139 2.015 1.614
p̂ 1.598 1.053 1.435 0.868 0.902

Fraction of time p̂=(0,1,2,3,4): (.387, .566, .046, .002, 0)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1

(a): Simulation Statistics for the Local Linear Estimator (p=1)
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Table A.3: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Ludwig-
Miller DGP, Small Sample Size (n=500)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.065 41 0.037 7.863 9.215 0.922 0.366 0.412
CCT 1 0.076 47 0.049 7.449 9.821 0.881 0.329 0.422
CCT w/o reg. 1 0.079 49 0.053 7.333 10.099 0.869 0.320 0.424

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 2 0.196 123 0.594 0.695 0.645 1.016 0.827 0.777

3 0.431 268 0.384 0.565 0.504 1.023 0.742 0.682
4 0.854 477 0.150 0.497 0.427 1.028 0.702 0.628
p̂ 0.241 0.555 0.482 1.019 0.716

Fraction of time p̂=(1,2,3,4): (.001, .003, .486, .511)

CCT 2 0.206 129 0.488 0.792 0.658 1.047 0.890 0.772
3 0.280 175 0.074 1.014 0.770 1.066 1.040 0.855
4 0.319 199 0.016 1.431 1.086 1.066 1.254 1.028
p̂ 0.462 0.825 0.677 1.041 0.887

Fraction of time p̂=(1,2,3,4): (.022, .876, .101, .001)

CCT w/o reg. 2 0.240 150 0.660 0.814 0.711 1.020 0.841 0.821
3 0.448 272 0.245 0.804 0.600 1.050 0.854 0.755
4 0.504 303 0.019 1.062 0.771 1.070 1.030 0.845
p̂ 0.479 0.796 0.641 1.024 0.811

Fraction of time p̂=(1,2,3,4): (.007, .434, .501, .058)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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Table A.4: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Lee DGP,
Small Sample Size (n=500)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.130 81 0.012 4.607 4.752 0.935 0.262 0.280
CCT 1 0.160 100 0.015 4.671 4.892 0.920 0.245 0.273
CCT w/o reg. 1 0.387 219 0.026 4.376 5.067 0.869 0.240 0.305

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 0 0.059 23 1.123 0.987 0.995 0.962 0.980 1.036

2 0.260 162 0.795 1.010 0.998 1.000 1.006 0.994
3 0.470 291 0.646 0.982 0.964 1.000 0.990 0.981
4 0.838 472 0.062 1.207 1.170 1.000 1.089 1.083
p̂ 0.922 1.017 1.012 0.966 0.949

Fraction of time p̂=(0,1,2,3,4): (.496, .218, .125, .157, .005)

CCT 0 0.059 37 1.865 0.625 0.754 0.976 0.824 0.886
2 0.226 141 0.263 1.398 1.338 1.013 1.215 1.181
3 0.276 172 -0.026 1.967 1.878 1.014 1.451 1.409
4 0.314 195 -0.076 2.694 2.573 1.011 1.704 1.653
p̂ 1.859 0.637 0.765 0.974 0.821

Fraction of time p̂=(0,1,2,3,4): (.932, .067, .001, 0, 0)

CCT w/o reg. 0 0.085 52 1.326 0.651 0.802 0.962 0.734 0.794
2 0.424 252 0.320 1.544 1.347 1.053 1.276 1.151
3 0.466 281 0.074 2.434 2.102 1.071 1.644 1.407
4 0.495 299 0.020 5.586 4.824 1.073 2.033 1.721
p̂ 1.313 0.588 0.743 0.953 0.718

Fraction of time p̂=(0,1,2,3,4): (.877, .118, .005, 0, 0)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1

(a): Simulation Statistics for the Local Linear Estimator (p=1)
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Table A.5: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Ludwig-
Miller DGP, Small Sample Size (n=500)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bandwidth p Avg. h Avg. n Bias
Variance 

x1000
MSE 

×1000
Coverage 

Rate
Avg. CI 
Length

Avg. Size-
adj. CI length

Theo. Optimal 1 0.065 41 0.010 8.475 8.565 0.941 0.381 0.398
CCT 1 0.076 47 0.012 7.854 7.990 0.933 0.353 0.379
CCT w/o reg. 1 0.079 49 0.013 7.629 7.799 0.932 0.345 0.370

Bandwidth p Avg. h Avg. n
Ratio of 
Biases

Ratio of 
Variances

Ratio 
of 

MSE's

Ratio of 
Coverage 

Rates

Ratio of 
Avg. CI 
Lengths

Ratio of Avg. 
Size-adj. CI 

lengths
Theo. Optimal 2 0.196 123 0.705 0.688 0.686 1.006 0.821 0.804

3 0.431 268 0.363 0.563 0.558 1.007 0.738 0.717
4 0.854 477 0.081 0.656 0.649 1.008 0.808 0.783
p̂ 0.375 0.597 0.592 1.002 0.745

Fraction of time p̂=(1,2,3,4): (.006, .113, .834, .047)

CCT 2 0.206 128 0.353 0.837 0.825 1.013 0.918 0.876
3 0.281 175 0.019 1.135 1.116 1.011 1.081 1.037
4 0.319 199 0.088 1.629 1.601 1.008 1.293 1.252
p̂ 0.436 0.855 0.843 1.004 0.908

Fraction of time p̂=(1,2,3,4): (.168, .796, .035, .001)

CCT w/o reg. 2 0.240 149 0.610 0.895 0.884 1.006 0.882 0.859
3 0.448 273 0.450 1.387 1.361 1.013 1.181 1.130
4 0.508 305 0.111 2.544 2.488 1.012 1.569 1.503
p̂ 0.399 0.789 0.775 1.000 0.855

Fraction of time p̂=(1,2,3,4): (.068, .737, .189, .007)

(a): Simulation Statistics for the Local Linear Estimator (p=1)

(b): Simulation Statistics for Other Polynomial Orders as Compared to p=1
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