NBER WORKING PAPERS SERIES

THE DYNAMICS OF PRODUCTIVITY IN THE
TELECOMMUNICATIONS EQUIPMENT INDUSTRY

G. Steven Olley

Ariel Pakes

Working Paper No. 3977

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
January 1992

Both authors are research associates of the Center for Economic Studies of the U.S. Bureau of
the Census, and much of the research reported on here was carried out at the CES. We are
grateful to the staff of that center, particularly Robert McGuckin, Tim Dunne, Bob Bechtold,
Jim Monahan, Cyr Linonis, Al Nucci and Mark Doms, for their comments and assistance.
Helpful comments were also provided by Don Andrews, Gary Chamberlain, Ernest Berndt,
Zvi Eckstein, Mel Fuss, Zvi Griliches, and Jerry Hausman. This paper is part of NBER's
research programs in Industrial Organizations and Productivity. Any opinions expressed are
those of the authors and not those of the National Bureau of Economic Research.



NBER Working Paper #3977
January 1992

THE DYNAMICS OF PRODUCTIVITY IN THE
TELECOMMUNICATIONS EQUIPMENT INDUSTRY

ABSTRACT

Technological change and deregulation have caused a major restructuring of the
telecommunications equipment industry over the last two decades. We estimate the parameters of a
production function for the equipment industry and then use those estimates to analyze the evolution
of plant level productivity over this period. The restructuring involved significant entry and exit and
large changes in the sizes of incumbents. Since firms’ choices on whether to liquidate and on the
quantities of inputs demanded should they continue depend on their productivity, we use an
equilibrium model to suggest an estimation algorithm that takes into account the relationship between
productivity on the one hand, and both input demand and survival on the other. A fully parametric
version of the estimation algorithm would be both comutationally burdensome and require a host of
auxiliary assumptions. So we develop a semiparametric technique which is both consistent with a
quite general version of the theoretical framework and easy to use.

The algorithm produces markedly different estimates of both production function parameters
and of productivity movements than traditional estimation procedures. - We find an increase in the rate
of industry productivity growth after deregulation. This in spite of the fact there was no increase in
the average of the plants’ rates of productivity growth, and there was actually a fall in our index of the
efficiency of the allocation of variable factors conditional on the existing distribution of fixed factors.
Deregulation was, however, followed by a reallocation of capital towards more productive
establishments (by a down sizing, often shutdown, of unproductive plants and by disproportionate
growth of productive establishments) which more than offset the other factors’ negative impacts on
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There has been a major restructuring of the U.S. telecommunications equipment
industry over the last two decades, and it can be explained, in large part, by a combination
of two related factors. One was technological change which led to the development of
many new products (eg. digital switching equipment and fiber optics). The other factor
was a gradual liberalization of the regulatory environment (in both the provision of
telecommunication services and in the use of telecommunications equipment) which
culminated in the divestiture of AT&T in January of 1984. Together these changes
provided many new firms, both foreign and domestic, an opportunity to enter the industry,
and caused dramatic changes in the profitability of incumbents. This paper estimates the
parameters of a production function for the equipment industry, and then uses those
estimates to analyze changes that occurred in the distribution of plant level performance
from 1974 to 1987, paying particular attention to the impact of the regulatory and
technological changes on aggregate productivity. In doing so we provide both a micro
framework for empirically analyzing the impact of policy (and/or environmental) changes
on productivity, and an estimator for production function parameters that is consistent
with a behavioral model which enables a more detailed analysis of changes in industry
structure and performance.

The empirical analysis is based on an extremely rich plant—level panel constructed
from data collected by the U.S. Bureau of the Census. It is clear from the data that during
the period under investigation the restructuring of the industry involved significant entry
and exit, and large changes in the size of continuing establishments. It is worth noting
that related empirical work indicates that it is not uncommon to find manufacturing
industries with entry, exit, and gross job flow rates similar to those found in our data (this
work dates back at least to Wedervang,1965; for more recent analyses see Baldwin and
Gorecki, 1988, Dunne, Roberts, and Samuelson 1988, and Davis and Haltwinger,1990) .

The restructuring does, however, highlight two estimation problems. If firms’



choices on whether or not to liquidate, and on the quantities of inputs demanded should
they continue, depend on productivity movements (and as we show below the data indicate
that they do), the algorithm designed to estimate the parameters of the production
function should take into account the relationship between productivity, on the one hand,
and both survival and input demands, on the other. To guide us in building such an
algorithm we introduce a dynamic model of firm behavior that allows for firm specific
sources of efficiency that evolve over time, and for entry and exit.

From the standpoint of estimation, the theoretical model provides us with a
strategy for controlling for both the self—selection induced by liquidation, and for the
simultaneity induced by the endogeneity of input choices (the latter being a problem that
dates back at least to the classic work of Marschak and Andrews,1944). Direct
implementation of the theoretical solution to these problems would be both
computationally burdensome, and require a host of auxiliary (largely functional form)
assumptions. So we develop a semiparametric estimation technique which is both
consistent with a quite general version of the theoretical framework, and easy to use.

The remainder of this introduction provides a short summary of our findings. First,
the theory implies that failure to control for the selection and simultaneity problems should
generate very particular biases in traditional estimates of production function parameters
(biases that can explain familiar anomalies in those estimates). The empirical results
verify these biases, and show that they can be very large. Indeed, in our particular case the
corrected estimate of the capital coefficient is more than double that obtained through
traditional estimation procedures, and the corrected estimate of the labor coefficient is over
thirty percent lower. The corrections also generate a noticeably different time path for
aggregate productivity. The theory implies positive biases in the traditional productivity
figures, and we find that, in our data, the average annual bias in these figures was over a
hundred per cent (and the bias varied significantly from sub period to sub period).

The corrected time path for productivity still shows a doubling in the rate of



aggregate industry productivity growth in the post 1984 period; from an average of .65%
per year from 1974 to 1984 inclusive, to 1.2% per year from 1984 to 1987. Part of the
advantage of the micro framework is that, by allowing us to disaggregate, it allows us to
search for the sources of this change in productivity growth.

We show first that the aggregate productivity increase does not seem to be a result
of a more efficient allocation of variable factors of production conditional on the existing
distribution of state variables among plants (the joint distribution of capital, productivity,
and age). We define our index of variable factor allocative efficiency as the ratio of the
minimum variable cost of producing the observed industry output conditional on the
existing distribution of state variables, to the actual variable cost of production. We find
that this index actually falls in the period after deregulation. Note, however, that since we
expect a near monopoly to allocate production among plants to minimize the total cost of
production, but do not expect such behavior from say, Nash competitors, we should not be
too surprised by this finding. On the other hand, it does imply that the increase in the
growth rate of industry efficiency that followed deregulation came from either a
reallocation of fixed inputs to more productive enterprises, or from an increase in the
average of the plant level rates of productivity growth.

To investigate these possibilities further we show that one can decompose the index
of aggregate productivity into a sum of two terms. The first is the (unweighted) average of
the productivities of the active plants, and the second is the plant level covariance of
output and productivity. The higher the covariance, the more efficient the allocation of
output conditional on the plant level distribution of productivities (i.e. allowing capital to
be mobile). There is no evidence that the average productivity of the plants in tlie sample
increased faster in the post 1984 period. The realized productivity gains seem to be
entirely a result of a reallocation of output to more productive plants. We already noted
that this was not a result of more variable factors being allocated to firms whose

capital-productivity combinations warranted it. Apparently the increased competition



brought on by deregulation forced a dramatic shift in the allocation of capital towards the
more productive plants. This tendency is verified by computing movements in the
correlation of capital and productivity over the period, and by analyzing the relationship
between shutdown frequencies, on the one hand, and capital, age, and productivity, on the
other. It was both a result of the down sizing (frequently the shutdown) of (often older)
unproductive plants, and the disproportionate growth of productive establishments (often
new entrants).

Note that the "industry’s" response to the changes in its environment was a
complicated dynamic process involving capital expansion in some plants, contraction in
others, and large amounts of entry and exit. A more detailed analysis of either how
different primitives affected this process, or of the processes’ implications on say, welfare,
or on gross job flows, would require both further details on the industry (details that are
currently buried in the nonparametric part of our specification), and an algorithm capable
of computing the implications of the equilibrium framework that underlies our estimation
technique (see Pakes and McGuire, 1991, for an example of such an algorithm).

What does seem to be clear, however, is that there were large differences among
plants in their efficiency in generating sales from capital and labor expenditures and that
these differences in their sales generating ability (which we label productivity) were an
important determinant of how the plants fared as a result of the regulatory and
technological changes of the period. Moreover it was largely the differences in how plants
of different productivities fared that determined the changes in aggregate industry
performance over this period. It follows that to analyze the processes that translated the
regulatory and technological changes into aggregate productivity growth we hz;d to work at
a fairly detailed level of micro analysis. That is the processes that the data singled out as
being important could not (for the most part) be analyzed with aggregate data, or even

with balanced panels (panels which do not include information on either entrants, or on

firms which eventually exit).



The first séction of the paper provides a brief history of the telecommunications
equipment industry and documents some of the relevant changes in regulatory structure.
It also presents‘ an overview of the data used in the analysis. Section 2 summarizes the
theoretical model used to guide estimation, while section 3 provides the estimation
algorithm and presents the parameter estimates. Section 4 uses our estimates to analyze
the evolution of industry level productivity and compares the results implied by our
procedures to those obtained from more traditional methods of analysis. We conclude with
two caveats on the interpretation of our results. Two appendices follow. The first discusses
the data, and the second provides the variance covariance matrix of our parameter

estimates.

I.Qverview of the Industry.

We begin with a brief review of recent developments in the telecommunications
industry. This will both help to focus the subsequent modeling exercise, and enable us to
obtain a deeper understanding of the empirical results.

Beginning in the early 1970's, the telecommunications industry entered into a period
of rapid change. The changes were a result of a combination of significant technological
developments in telecommunications equipment and a gradual liberalization of the
regulatory environment governing the provision of telecommunications services. Together
these developments have led to a substantial restructuring of the competitivé environment
in the U.S. telecommunications equipment industry. For the purposes of this study, we
include in our definition of the industry practically all types of customer premise and
network telecommunications equipment, with the exception of the various typeé of
transmission media, including copper wire, coaxial cable, and glass fiber (for details, see the
appendix).

For most of the twentieth century, American Telephone and Telegraph (AT&T)

maintained an exclusive monopoly in the provision of telecommunications services and,



through their procurement practices, extended that dominant position into the equipment
industry.! This position was achieved initially by having control of the telephone patent,
but AT&T’s dominance in the equipment market was maintained by the requirement that
any equipment that was attached to the Bell system network had to be supplied by AT&T
itself. Prior to the AT&T divestiture, Western Electric, AT&T’s manufacturing
subsidiary, supplied approximately 90% of AT&T’s equipment purchases.?2 Given the fact
that AT&T was by far the largest purchaser of telecommunications equipment, entry into
the equipment market was effectively prohibited.

At the manufacturing level, barriers to entry seemed to be no greater than in other
electrical appliance industries.? The effective barrier to entry came from restrictions in the
market for users of the equipment. An end—user could not legally attach a telephone set,
or any other piece of terminal equipment, to the public network. This, together with the
fact that AT&T purchased equipment almost solely from Western Electric, meant that the
only method of entry into the private equipment market was to establish a telephone
company, a strategy that was generally prohibited by state regulatory authorities. Asa
result, Western Electric was relatively free from competitive pressures in the equipment
market.

In recent years, however, Western Electric’s dominance in the equipment market
has faded.¢ This is partially a result of the transition from electromechanical to fully

electronic technology in both the switching and transmission of signals, a shift that has

1See Brock (1981), p.234.
10ffice of Telecommunications (1986), p.23. Also see NTIA (1988) pp. 322-323.

3See Brock (1981), p.235, or Temin who writes "there does not seem now nor has there been
in the past an economic argument explaining why competition could not exist in the sale of
telecommunications equipment," Temin(1987), p. 335.

4This is evidenced by the fact that in 1982 the Census of Manufactures published for the
first time the four—firm concentration ratic for SIC 3661, Telephone and Telegraph
Apparatus. In previous years this number had been suppressed for disclosure purposes.

See also NTIA (1988) pp. 305—350, and Temin (1987) for discussion of developments in the
equipment industry.



opened up many new markets for telecommunications equipment (multiplexers, modems,
facsimile machines,...). At the same time, changes in the regulatory structure governing
the telecommunications industry has provided new firms the opportunity to enter the
equipment industry. We now turn to a brief review of the timing of these regulatory
changes.

One of the first important decisions in the trend to allow increased competition in
the telecommunications equipment industry was the ‘Carterfone’ decision of 1968. In that
case, the Carter Electronics Company won an antitrust suit against AT&T after ATLT
had prevented Carter from connecting a private two—way radio system to the network.
The Carterfone decision, and subsequent rulings by the Federal Communications
Commission (the FCC) in support of the decision, paved the way for the interconnection of
private equipment to the public network.

The conditions restricting entry into the telecommunications equipment market
were further eroded in 1975 when the FCC established a registration and certification
program to allow for the connection of private subscriber equipment to the network, in
effect extending the Carterfone decision to all equipment that met FCC standards. By
1978 the program included PBX's, key telephone sets, and telephones. Thus, the tie
between the telephone service providers and the equipment industry had finally been
broken.

The result of these changes was sustained entry into the U.S. telecommunications
equipment industry between 1967 and 1987.5 There was a surge in entry that began in the
late 1960’s and continued into the 1970’, as many small firms sought to take advantage of
the Carterfone decision and the markets that opened up as a result of the registralion and
certification program. Table 1 documents this fact (for more details on the construction of

the database used in this and subsequent tables see Appendix 1 and Olley, 1990). ‘Between

5For example, there were only four PBX manufacturers in 1969, but there were over thirty
of them by 1980 (National Academy of Engineering,1984, p. 86).



" Table 1

Characteristics of the Data

Year Plants | Firms | Shipments | Shipments | Employment
(billions | (billions
current $) 1982 $)
1963 133 104 2.587 5.865 136899
1967 164 131 3.618 8.179 162402
1972 302 240 6.222 11.173 192248
1977 405 333 11.138 13.468 192259
1982 473 375 20.319 20.319 222058
1987 584 481 25.500 22.413 184178




Table 2

Bell Company Purchases

Bell Company Equipment Procurement
(percent purchases from Western Electric)

Time 1982 1983 1984 1985 1986E
92.0 80.0 71.8 64.2 57.6
E . Estimated for 1986

Scurce: NTIA (1988) p. 336, and discussion pp. 335-37.
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1967 and 1972 both the number of plants and the number of firms in the industry almost
doubled and, as the table shows, there was also substantial entry between all subsequent
censuses.

Though by 1982 the regulatory environment had changed significantly, AT&T still
remained the largest service provider in the United States and, as a result, the largest
purchaser of telecommunications equij)ment. Consequently, as long as AT&T continued its
practice of buying most of its equipment from its manufacturing subsidiary, Western
Electric maintained a dominant position in the equipment industry, even in the face of the
changes in the regulatory environment. The 1982 Consent Decree changed this situation
dramatically. The agreement, which was signed in January 1982 and implemented in
January 1984, called for the divestiture of AT&T"s regional operating companies. The
seven regional Bell operating companies (RBOC) that were created from the Consent
Decree are all very large companies in their own right. For our study of the
telecommunications equipment industry it is important to note that as a result of the
divestiture the RBOC’s are free to purchase equipment from any supplier they choose, but
are prohibited from manufacturing equipment themselves. The effect of the Consent
Decree on the purchases of equipment by Bell system companies is illustrated rather
dramatically in Table 2.

Table 1 only tells part of the entry story. In addition to generating increased
competition from U.S. manufacturers, the regulatory changes also induced growing
competition from several large foreign producers. In both 1972 and 1977 imports accounted
for only 2% of new supply, and even by 1982 that share had only reached 4%. However the
share of imports to new supply rose steadily from 1982 onwards. By 1987 imp;rts make up

fully 14% of new supply.® Note also that the increase in the share of imports can account

6See U.S. Industrial Outlook, various years. The largest of the foreign suppliers include the
Canadian firms of Northern Telecom and Mitel, Siemens from West Germany, Ericsson
from Sweden, and the Japanese firms of NEC, ATI/Fujitsu, Iki, and HItachi.
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for a large part of the observed fall in domestic employment between 1982 and 1987
observed in Table 1. Of course the import figures understate the share of the
domestic market that the foreign suppliers were able to capture, since many of the foreign

owned suppliers have established manufacturing facilities in the U.S..

Table 3 proﬁdes an indication of the overall importance of the entry process (at
least in terms of domestic production). It lists: the absolute number of new plants and
new firms since 1972 (and since 1982) that are still active in 1987; the new plants and new
firms as a percent of the total number of plants and firms active in 1987; and the shares of
the new plants and the new firms in both the shipments and the employment of 1987.
Almost 90% of the firms, and 80% of the plants, active in 1987 had entered since 1972 and
the new entities accounted for over 30% of shipments and almost 40% of employment.
Indeed many of the new entrants entered after 1982 (though, as one should expect, the
later entrants tended to be smaller as of 1987).7

Table 4 provides an indication of the importance of the exit or liquidation process.
It provides: the fraction of plants (firms) that were active in 1972 (1982) that did not
survive until 1987; the share of these entities in 1972 shipments; and their share of 1972
employment. 60% (70%) of the plants (firms) that were active in 1972 did not survive
until 1987 and these plants (firms) accounted for 40.2% (13.8%) of 1972 employment and
39% (12.1%) of 1972 shipments. Indeed, over 40% of the plants that were active in 1982 did
not survive until 1987, and these plants produced about 25 % of 1982 output .¢

7About 400 of the 419 new entrants were "de novo" new entrants; that is they enter by
opening a new plant or transfering an existing plant into the industry. The de novo new
entrants were, however, smaller in 1987 accounting for only 18.4% of 1987 shipments and
23.5% of employment.

8There is a question of the extent to which the changes that occured in the
telecommunication equipment industry during this period induced more entry and exit
(and in general more "churning") than one would typically find in a manufacturing
industry. Baldwin and Gorecld, 1989, provide entry and exit figures for four digit
Canadian manufacturing industries which are built from a plant level panel comparable to
ours. Their figures are for a ten (rather than for a fifteen) year period, but when we



Table 3: Entrants Active in 1987
Share of Share of Share of
Number | Number Active | Shipments | Employment
in 1987 in 1987 in 1987
(%) (%) (%)
Plants; New 463 79.0 32.8 36.0
Since 1972
Firms; New 419 87.0 30.0 41.4
Since 1972
Plants; New 306 52.0 12.0 13.5
Since 1982
Firms; New 299 60.1 19.4 27.5

Since 1982




Table

Encumbents Exiting By 1987

Number Share of Share of Share of
Number Shipments | Employment
Active in in Base in Base
Base Year Year (%) Year (%)
(%)
Plants active in 181 60.0 40.2 39.0
1972 but not in
1987
Firms active in 169 70.0 13.8 12.1
1972 but not in
1987
Plants active in 185 41.2 26.0 24.1
1982 but no in
1987
Firms active in 184 49.1 17.3 16.1

1982 but not in
1987
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Our goal is to analyze the changes in the efficiency of production and in the
distribution of productivity that accompanied the changes in the regulatory and
technological environment outlined in the beginning of this section. To do so we need
estimates of production function parameters. The tables in this section showed that the
changes in the environment were accompanied by a great deal of entry and exit, as well as
significant movement in the relative sizes of the continuing establishments. These changes
in size were, as one might expect, accompanied by changes in input demand, while, as we
show below, a major determinant of whether or not a plant exits is its productivity. Given
that a firm’s productivity is not directly observable, the fact that exit and input demand
decisions are based upon it, generates both a selection and a simultaneity problem in
obtaining production function estimates. To account for their impacts we need a model
which determines both when exit occurs and how input decisions are made; a model that is
rich enough to allow for firm specific, or idiosyncratic, sources of change and the

equilibrating forces of eniry and exit. We now turn to the task of ouilining such a model.

II. The Behavioral Framework.

In obtaining our estimates of production function parameters ‘we are confronted with
two interrelated problems. First, to the extent that differences in efficiency are known to
firms when they choose their inputs, and as we show below the efficiency of a given firm is
highly correlated over time, our attempts to estimate production function parameters will
be hindered by the classic simultaneity problem analyzed by Marschak and Andrews
(1944).

multiply the figures they obtain as averages over all four digit industries by 3/2 to make
them comparable to the figures in tables 3 and 4 we obtain numbers for the shares of
employment in new plants and firms, and the share of employment in plants and firms that
eventually exit, that are very close io ours. On the other hand, their figures for the
fraction of firms that are new, and the fraction of firms initially active that eventually exit,
are smaller than the analogous numbers in our tables. For a recent review of the empirical
literature on entry and exit see Geroski, 1991.
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Second as noted above the restructuring of the
telecommunications equipment industry during the period under study was accompanied
by a great deal of entry and exit. This generates the issue of how to handle attrition {rom,
and additions to, the data during the period under study. Traditional solutions to this
problem restrict the analysis to a "balanced" panel, studying only those firms that were
present over the entire sample period. However, if firm’s exit decisions are made, at least
in part, on the basis of their perceptions of their productivity in the future, and if th(lir
perceptions of their future productivity are partially determined by the realizations of their
current productivity, then by considering only those firms who survive the entire period we
will be considering a sample selected, in part, on the basis of the unobserved productivity
realizations. This in turn will generate a selection bias of a very particular form in both
the traditional estimates of production function parameters and in the subsequent analysis
of productivity.

To analyze either of these two problems, we need a more detailed dynamic model of
firm behavior that allows for firm—specific efficiency differences that exhibit idiosyncratic
changes over time?. To sort out the simultaneity problem, the model must specify the
information available when input decisions are made. To enable us to control for the
selection induced by liquidation decisions, the model must generate an exit rule.

There are several models that allow for idiosyncratic uncertainty and entry and exit
that are now available (see Ericson and Pakes, 1989, Hopenhayn and Rogerson, 1989,

Jovanovic 1982, and Lambson,forthcoming). The mode! used here combines certain

sStarting with Marschak and Andrews (1944), there is a long history of articles that
recognize that one cannot evaluate alternative estimates of production function parameters
without a structural model of firm behavior. Griliches, for example, writes "1t is harder to
make an adequate allowance for the simultaneity problem without constructing a complete
production and input decision behavior model" |Griliches ,1967, pp. 277-278]. Our
approach differs somewhat from the previous literature in that we use a model which is
explicitly dynamic and incorporates a notion of equilibrium among firms. This allows us to
account for both the changes in incumbent behavior over time anf for the entry and exit
observed in panel data sets.
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features of the Ericson—Pakes model and the Hopenhayn—Rogerson model. We now
provide a brief summary of the aspects of those models we need in order to derive the input
demand and the liquidation rules.

As in Ericson and Pakes (1989), we assume that current profits are a function of a
vector of firm—specific state variables and a counting measure which simply lists the vector
of state variables of all the firm’s active competitors (we shall refer to this counting
measure as the market structure). In our example, the vector of state variables consists of
a‘, the age of the firm, kt, the firm’s capital stock, and v, an index of the firm’s efficiency;
so a market structure consists of a list of these triples for all active firms.

At the beginning of every period an incumbent firm has three decisions to make.
The first is to decide whether to exit or continue in operation. If it exits, it receives a
sell-off value of ¢ dollars and never reappears again. If it continues in operation, it chooses
variable factors (labor) which, together with the beginning period values for its state
variables and, possibly, a realization of a productivity shock, determine current profits. In
addition, the firm chooses a level of investment, which, together with the current capital
value; determines the capital stock at the beginning of the next period.

We make the following assumption on the evolution of the state variables. The

accumulation equations for capital and age are given by

1)k, =(0-0k +i,

and
(2) a =a + 1,

tel

both of which hold with probability one. As in Hopenhayn and Rogerson (1990), the index

of productivity, v, is assumed to be known to the firm and to evolve over time according to
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an exogenous Markov process. That is the distribution of v, conditional on all

+

information known at t is determined by the family of distribution functions
(3) P, = {P(-|w), wen }.10

The firm is assumed to maximize the expected discounted value of future net cash
flows. Therefore, both the exit decision and the investment decision will depend on the
firm’s perceptions of the distribution of future market structures given current information.
The investment, entry, and exit decisions generated by these perceptions will, in turn,
generate an actual distribution for the counting measure providing the market structure in
future years. Below we simply assume the existence of a Markov Perfect Nash equilibrium
in investment strategies — an equilibrium where firms’ perceptions of the distribution of
future market structures are in fact consistent with the objective distribution of market
structures that the firms’ choices generate — and then use the investment and liquidation
rules that result from this equilibrium to help structure estimation.

In this setting, the Bellman equation for an incumbent firm can be written as,

(4) Vl(ut,a‘,kl) =max{4, s?pzo rt(ut,at,kt)—c(it) +ﬂE[VM(wM,ah1,km)] ’i I

where 1z(-) is the restricted profit function giving current period profits as a function of the
vector of state variables, c(it) is the cost of current investment it, f is the firm’s discount
factor, and ,: represents information available at time t. If ¢ is greater than the second

arguement after the max operator the firm exits.

1°The Ericson—Pakes (1989) model has the distribution of Wyq conditional on past history
dependent on the amount of investment in R&D, as well as on Wy Unfortunately we do

not have the detail on the R&D data that would make their model easy to estimate.
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Note that both the value function V(-), and the profit function 7(-), are indexed by
t. This is to save notation. Were we to write out either of these functions we would find
that they depend both on the market structure in the current period and on factor prices
(see Pakes and McGuire,1990). Though these are assumed not to vary among firms in a
given period, they are free to vary across periods, and this generates the need for the t
index on the profit and value functions (and on the policy functions that we now derive
from them).

The max operator indicates that a firm compares the sell-off value of its plant (¢)
to the expected discounted returns of staying in business until next period. If current
productivity is so low that expected profits in the future do not make continuing in
operation worthwhile, the firm closes down the plant. If this is not the case the firm
chooses an optimal investment level (constrained to be nonegative). The solution to thfs
control problem generates an exit rule and an investment demand function. If we define

* the indicator funciion Xy to equal zero if the firm exits, then the exit rule and the

investment demand equation are written, respectively, as

(3) *¢—

1 ifwo Yu(a k)
t TSttt
0 otherwise
and

(6) i= 1t(ut,at,kt).

Note that the functions _@t(-) and it(') are determined as part of the Markov

Perfect Nash equilibrium, and will generally depend on all the parameters determining

both the investment rule and the liquidation decision can depend on the regulatory period
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(see below).

III. Estimation

We assume that the industry produces a homogeneous product with Cobb—Douglas
technology, and that the factors underlying the profitability differences among firms are

neutral efficiency differences.!t Therefore the production function is written as
(7) yit = ﬂo + ﬂaait + ﬂkkit + ﬂl’iz + Nit + ﬂit'

where Yy is the log of output (value added) from plant i at time t, 3, is its age, kit is the
log of its capital input, lit is the log of its labor input, 4} is its productivity, and 1., is
either measurement error (which can be serially correlated) or a shock to productivity
which is independent over time. Here both v and 5 are unobserved. The distinction
between them is that  is a state variable in the firm’s decision problem, and hence 2
determinant of both liquidation and input demand decisions, while 9 is not.

Consider first the biases in the O.L.S. estimates of (7) caused by the problems of
endogeneity of the input demands and by the self—selection induced by exit behavior. The
endogeneity issue arises because current input choices are determined (in part) by the
firm’s beliefs about likely values of w, when those inputs will be used. As a result, if there

is serial correlation in v, inputs in period t will be positively correlated with it, and an

ke

1'Though we maintain the assumption of Cobb—Douglas technology throughout this paper, it
is easy to generalize the estimation algorithm developed below to allow for more general
production technologies; translog with neutral efficiency differences across firms would, for
example, do equally well. The only real limitation of the estimation algorithm is that it
requires a technology that generates the invertibility condition used to go from equation

(6) to (7) below (at least for some known subset of the data). This condition will be
satisfied in the current framework provided the marginal productivity of capital is strictly
increasing in w; see Pakes, 1891, Section 1V, for a2 more detailed exposition.
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OLS procedure that fails to take account of the unobserved productivity differences will
tend to provide upwardly biased estimates of input coefficients (moreover, we expect the
more variable inputs to be more highly correlated with the current values of wy; see
Marschak and Andrews, 1944, and Griliches, 1957, for early, and more detailed,
expositions).

Now consider the problem of self—selection induced by plant closings. Assuming,
temporarily, that there are no variable factors (the estimation algorithm has a preliminary
step which estimates their coefficients), the conditional expectation of ¥y (conditional on
current inputs, survival, and information available at t—1), includes the term

Elv [k =1].

T Tt I .0
Now recall that x;=1if and only if “'t>£'-’t(kt’at)‘ Further it is straightforward to show
that the value function (equation 4) is increasing in k (and, if older firms are less
productive conditional on the current value of their capital stock, decreasing in a). This
implies that -"-'t(') is decreasing in k (increasing in a). Firms with larger capital stocks can
expect larger future returns for any given level of current productivity, and hence will
continue in operation at lower v realizations. Thus, conditional on v and observed
inputs, the self—selection caused by exit behavior will cause the expectation of v to be
decreasing in k (increasing in a), inducing a negative bias in the capital coefficient (and a
positive bias in the age coefficient).12

Labor is assumed to be the only variable factor (so its choice can be affected by the

¢

12The crucial part of the logic underlying the sign of these biases is that the difference
between the value of continuing in operation and the sell off value of the firm be increasing
in wand k, and decreasing in a. Provided this condition is met, it does not matter whether
the sell off value is independent of k and a (which, for simplicity, was the specification we
used in our description of the behavioral model). For similar reasons the semiparametric
techniques used in the estimation algorithm do not require the sell off value of the firm to
be independent of k and a.
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current value of wz). The other two inputs, kz and a,are fixed factors and are only
affected by the distribution of v, conditional on information at time t—1 and past values of
v. In particular, recall that the solution to the firm’s optimization problem, (4), resulted in

the investment equation
(6) i = 1t(wt,at,kt) .

That is investment at time t is a function of the values of the three firm specific state
variables and market structure at time t.

Assume that, provided it > 0, (6) is strictly increasing in v, conditional on any value
for the couple (2,k). Then (6) is invertible on the set of values for (it’at’kt) for which i;>0,

and for that set we can write

Since equation (8) allows us to express the unobservable productivity variable, v,a82
function of observables, it will eﬁable us to solve the simultaneity problem. The
invertibility condition that lies behind it states that, conditional on a particular value for
the capital stock, firms with higher v will invest more. Regularity conditions which insure
that this is true for the current example are given in Pakes (1991, section IV).

Now substitute (8) into (7) to obtain
() Y= ﬂflic + ¢s(li:’ait’kiz) + Ty
where,

(10) ¢t(lit’ait’kit) = '60 + ﬂaait + ﬂkkit + ht(lic’ait’kic)'
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Below we use equation (9) and a nonparametric (series) estimator of the function ¢,(-) to
estimate f r Note, however, that the production function coefficients of capital and ag'e, ﬂa
and ﬂk, are not identified from this equation since the equation does not allow us to
separate out the effect of capital and age on the investment decision from their effect on
output.

To identify the age and capital coefficients we have to use the panel structure of the
data and the model’s implications regarding the relationship between the observed
productivities of a given firm over time. Recall that we only observe the subsequent year’s
data for those plants that survive, so in order to proceed we need the probability of

survival. That probability is given by

(1) Prixg =1 g (1240 A

| w

1y i) G (g 2egg) o)

= P:{U (kt

731 ’atq),wt} F ‘9;

+
where we have dropped the dependence of the variables on the individual subscript (i) for
notational convenience. Together, the accumulation and the investment equations imply
that botha,  , and k,  , can be expressed as functions of the triple (”t’kt’at) and
"’t=ht(it’at’kt)' So the probability in (11) can be expressed as-a time dependent function
of it, 2, and kr.' Below we provide nonparametric estimators of this survival probgbility.
We complete the system to be estimated by considering the expectation oi: Yig1 ™
i) llt +1 conditional on inputs at time t+1 and survival. This equation, when combined ‘with
the estimates of § T ¢t’ and £, from (10) and (11) will allow us to identify ﬂa and f, . We

have



(12) By 1= Fhyr gkt =1

=B+ By + Bk + Blog g lopr =1

P(dv |uv)
=8 +fa +fk + | u AL
0 2 teg k teg w t’lTP(dU lo)
teg w tey t
“tet

= ﬂaatu + ﬂkktq + g( ‘?;,’wt)

where

P(dv |w)

8(91”)5ﬂ0+I v tet
vt w WTPldw Ju)
W teg

Ttey

tey

and the last equality assumes that the function giving the probability of survival, .5‘: =

P{v (k ,a ),w},isinvertible for almost every v, allowing us to writev () asa
L Tteg tag tep b t e

function of .9: and ut.

Now note that (12) and (11) together imply that

(13)  Vyp1 = Bhy1 =By T ARy T (593 Bik) + {0y

where,

- E|

Ct+1 = Y1 Ytr1 l“’t"ft+1= 1].

Equation (13) helps clarify two points; why we need the the first stage of the

estimation algorithm, and why we need an estimate of # (in addition to & to make the

21
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selection correction. First note that the difference between Yy and its expectation

+
conditional on past history (including "’t) and survival, that is £;+1’ is mean independent
of both k, +1 and a, +1 (since both these variables are known functions of variables

available at the beginning of the period), but not of [, _ ; (since labor can adjust to

o
realizations in current productivity). Use of the estimate of 4 I from the first stage allows
us to remove this simultaneity problem in the choice of the labor by taking that variable
over to the left hand side of the estimating equation. Second note that the exit probability
depends on both v, and on ﬂt-}-l( -} (which varies across firms). As a result firms with the

same exit probabilities can have different expectations of A conditional on survival.

+1

We turn now to a brief description of the details needed to actually implement the
estimation of the system given by (10),(12), and (13). The reader who is not interested in
these details can turn directly to our discussion of table 6 (the bottom of page 25) where
our empirical results are described.

Equation (10) is an example of one of the eatliest semiparametric regression models.
It has been analyzed using both kernel (Robinson, 1988) and series (Andrews 1990a and
Newey 1991b) estimators of ¢t() and, subject to regularity conditions, the resulting
estimators of f I have the same limiting distribution. For simplicity, we use a polynomial
series estimator for ¢t0‘ That is we project y, on [, and a polynomial in the triple
(i t’at’kt)' The empirical results presented here used a fourth order polynomial (with a full
set of interactions) to approximate the ¢t(-) equation, but there was almost no change in
either the estimates of the coefficients of interest, or in the minimand, when we went from
a third to a fourth order approximation. Also, since the investment function, and hence
d)t(), should differ with changes in market structure (see 6 above), we estimated dii'fferent
polynomials for each of four regulatory periods (1974/77, 1978/80, 1981/83, and 1984/86;
see the discussion in section I).

Next we consider the estimation of the selection equation in (12), the equation

giving the probability of survival as a function of (itat’kt)' Here we use both a series and a
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kernel estimator of the function determining the survival probability and then compare the
results. The series approximation was constructed by using a polynomial series in (i t’at’kt)
as regressors in a probit estimation algorithm (the formula the computer uses to compute
the normal distribution is a series approximation to the true distribution; so this gives us a
series composed with a series as our approximating function). Again we used a

fourth order polynomial in (it’at’kt) with a full set of interactions, and again there was no
change in the fit in going from the third to the fourth order. The kernel results thaf we
present here use the bias reducing normal based kernels in Bierens (1987), though the
parameter estimates were almost identical when we used a standard normal kernel.13
Again, since the model implies that both the stopping rule and the investment equation
change with market structure, and changes in either of these functions will change the form
of the survival probability, we ran both the kernel and the series estimator twice; once
allowing for different selection equations in each of the four different regulatory periods,
and once not.

Table 5 provides the correlation coefficients between(x, +1) the indicator variable
for survival in period t+1 conditional on survival in period t, and the different estimates of
the selection probabilities. Two points come out clearly from the table. First, the kernel
estimator provides predictions (PHATI and PHAT2) which fit better than the series
estimator (PHAT3 and PHAT4). Second, the fits are quite a bit better when we allow for
different stopping rules and different investment functions in the four different regulatory
regimes (compare PHAT2 to PHAT]I, or in the series case, PHAT4 to PHAT3).
Consequently we use PHAT?2, the kernel estimates that allow for differences in the

selection function in the different regulatory periods, in the analysis that follows.

1¥Whenever we use the bias reducing kernels in Bierens, 1987, we use a dia onal  with the
inverse of the variance of the regressors as the diagonal elements, choose 2 bandwidth by
cross validation, and use a degree of bias reduction of four. Standard normal kernels used a
diagonal covariance matrix with the inverse of the variance of the regressors as the
diagonal elements, and a bandwidth of one.



Table 5

Correlation coefficients between various predicted
survival probabilities and yx,,,

%ron PHAT1 PHAT2 PHAT3 PHAT4
Xy.s 1.00 .285 | .350 .102 .218
PHAT1 .285 1.00 .671 .398 .324
PHAT2 .350 .671 1.00 .215 .583
PHAT3 .102 .398 .215 1.00 .483
PHAT4 .218 .324 .583 .483 1.00

Notes:

(1) %, is a 0,1 random variable that is 0 when a
plant closes.

(2) PHAT1 and PHAT2 are the kernel
estimates. PHAT1 is estimated using the entire data
set together, and PHAT2 is estimated separately for
the four time periods 1974-1977, 1978-1980, 1981~
1983, and 1984-1986.

(3) PHAT3 and PHAT4 are the series estimates.
PHAT3 has no time dummies, and PHAT4 is estimated
with time period dummies corresponding to the time
periods in note (2), and these dummies are interacted

with i, k., and a,.
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The third (and final) step of the estimation procedure takes the estimates of 4;, cbt
and & from the first two steps, substitutes them into equation (13) for the true By ¢,, and
%, and then obtains estimates of §,, By, and the g(+) function by minimizing the sum of
squared residuals in the resulting equation. Here we also try both a series and 2 kernel
estimator of the unknown g(.?,", ht) function. Recall that it is ¢t that we estimate, and h
= ¢,~B 3k, 80 that the values of the regressors that determine g() depend upon the
values of the parameters of interest.

For the series estimator we used a fourth order polynomial expansion in (ht’ 5%)
(and again there was almost no difference in either the sum of squares, or in the coefficients
of interest, when we went from the third to the fourth order approximation). Thus the

series estimate is obtained by running nonlinear least squares on the equation

4--m 'm o)
yt+1'bft+1‘°+ﬁat+1+ﬂkkt+1+zj-—0 m—Oﬂ[ mPJ]h 9 + &

with
by = ¢ B2, — Bk,

¢ and b, are taken from the estimates of equation (10), and @ is taken from the kernel
estimates of equation (12).

The kernel results were obtained by forming kernel estimates of the regression of

Vo1~ P~ Fadie1 Ak
on the regressors

# and by = ¢~ B3, —fik,

for different values of (ﬂg,ﬂk), and then using a nonlinear search routine to find that value

of this parameter vector that minimized the sum of square residuals from this regression.
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Again the results presented here use the bias reducing kernels in Bierens (1987) (though
we have also used a standard normal kernel with little difference in the resulting coefficient
estimates). t4

Finally the results indicated that a linear trend (representing disembodied technical
change) was significant, so we included a time trend in the production function in (10), and
carried it through the entire estimation procedure.

A note on the properties of these estimators is in order before proceeding. Pakes
and Olley (1991) provide a set of conditions on h,(-), P,(-), g(-), and the distribution of
the data, that insure that when we use the kernel estimator of g(+) in equation (13) we
obtain consistent and asymptotically normal estimators of the capital age and time
coefficients (it adapts and extends previous results by Newey 1991b, and Andrews 1990b to
cover problems which require estimates of nonparametric functions which are indexed by
either other nonparametric functions, or by the parameters of interest). Appendix 2 of this
paper uses the results in Pakes and Olley (1991) to obtain a formula for a consistent
estimator of the covariance matrix of our parameters. We do not currently know of a
theorem that insures consistency and asymptotic normality when the series estimator is
used for g(-) in equation (13). On the other hand, we would find it surprising if the series
estimator did not have the same properties as the kernel estimator, and it is much easier to
compute.

The results of the alternative three step estimation procedures, together with some
other estimates of the production function coefficients, are provided in table 6. Columns 1
and 2 obtain their estimates from the subset of the data that contains only those plants

£
that were active throughout the entire sample period. That is, these columns use the

14The estimation procedure here was computationally more burdensome as the kernel had to
be re—evaluated each time we needed to evaluate the objective function at a different
parameter vector. As a result we chose the bandwidth by cross validation at the estimate
of the parameter vector obtained from the series estimation procedure, and held the
bandwidth fixed at that value thereafter.
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traditional "balanced" panel. Column 1 provides the O.L.5. estimates from the balanced
panel, while column 2 provides the within estimates (the estimates from a fixed effects
model which uses deviations from plant specific means as data in a least squares estimation
procedure). Columns 3 to 10 use the "full" sample; this sample keeps plants that
eventually drop out for all periods in which they are active, and introduces new entrants as
they appear. Column 3 provides the O.L.S. estimates from the full sample, column 4
provides the within estimates, and column § adds investment to the right hand side
variables and reruns the O.L.S. procedure. Columns 6 and 7 make partial corrections to
the O.L.S. procedure (the first for selection, and the second for the serially correlated
unobserved state variable; see below). Columns 8 to 10 provide different versions of our
three step estimation procedure.

The first point to note from the table is that the full sample contains over two and a
half times the number of observations in the balanced panel. That is, the selection criteria
that is implicit in using a balanced panel throws out 60 to 70 percent of the observations in
the full sample. The fact that these fractions are so large, together with the theoretical
discussion which implied that the selection process should generate very particular biases in
the estimates of the production function coefficients, will help clarify some of the
anomalies generated by the balanced panel.

The estimates in columns (1) and (2) are what we have come to expect from
production function estimates from balanced panels. The labor coefficient is higher than
what we expect for the elasticity of output with respect to labor (certainly higher than the
share of labor in total cost which is about .65 in this data), while the capital coefficient is
lower than what we would expect (it almost disappears in estimates which use ‘the "within"

dimension, see column 2). 15

15We will ot focus on either the age or the time coefficients in what follows since, though
their values are generally consistent with our expectations, they are never estimated with
much precision.
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Recall that we had two reasons for worrying about biases in these estimates. First
endogeneity of the input choices should lead to a positive correlation between the inputs
and the unobserved productivity term (a problem which is likely to be more severe the
more variable the input and hence the easier it is to adjust the input to current realizations
of productivity). This is the traditional reason for believing there is a positive bias in the
ordinary least squares estimate of the labor coefficient. The within estimator will only
account for the bias to the extent that the plant’s productivity term is constant over time
(and recall that this is an industry that underwent a major restructuring during the period
under study). Second, even considering the 1972 cross section as the universe for the
subsequent analysis, by taking the balanced panel we are keeping only those firms who did
well enough to survive the entire period (recall that Table 4 indicated that this was under a
half of the plants that were active in 1972). Since firms with larger capital stocks will
survive on the basis of lower productivity realizations, selecting on survival generates a
negative correlation between the disturbance term in the selected sample and capital.

By going to the full sample we expect to eliminate much of the selection problem,
but not necessarily the problems generated by the endogeneity of input choices. Columns 3
and 4 provide the O.L.S. and within estimates on the full sample. The simple act of adding
back in the plants that were active during only part of the sample period almost doubles
the capital coefficient and pushes the labor coefficient down by about 20% (and this is true
whether we compare the total or the within columns). Of course, both the column 3 and 4
coefficients should still be biased by both selection and endogeneity. In particular since the
within column uses only changes over time and has to discard those plant—year changes in
productivity that induce the plant to close down, one might expect it still to con?tajn a
large negative bias in the capital coefficient generated by selection; whereas the total
column makes no attempt at all to control for firm specific differences in productivity, so
we might expect it still to contain a large positive bias in the labor coefficient.

More formally, to account for the positive bias in the labor coefficient in column 3,
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we need to substitute a polynomial expansion in the triple (it'at’kt) for wy in equation 10
and to reestimate that equation. Column 5 adds only investment to the list of regressors in
column 3. If the polynomial needed for vy were both linear and did not require interactions
with time for the different regulatory periods, the estimate of the labor coefficient in
column 5 would be consistent. The capital and age coefficients, however, would confound
the effect of capital and age on output with their effects on investment and hence have no
direct interpretation. There are two points to note from the estimates in column 5. First
the investment coefficient is highly significant, indicating that there is indeed likely to be a
simultanety bias in the estimates of column 3. Second, a5 predicted by the theory, the
labor coefficient goes down again, this time by another 10%.

The labor coefficient from equation (10), the equation that used a fourth order
polynomial expansion in (it,at ’kt) whose coefficients were allowed to vary over the four
regulatory periods to account for v,, was .615 (.027) (not very different from the coefficient
from column 5, and between 10 and 15% lower than the O.L.5. coefficient on the full
sample). Columns 6 to 10 use this coefficient, the implied estimate of ¢y and the estimate
of & from the selection equation [(11)], to obtain estimates of the capital, age, and time
coefficients.

Column 6 regresses y, +1- 615 lt 41 OB 288, capital, and a polynomial in the
estimate of the selection probability. If there were no serial correlation in v, implying no
endogeneity problem in this equation, use of the polynomial in the estimated selection
probability should correct for the selectivity bias and generate consistent estimates of the
coefficients of interest. On the other hand, if v is serially correlated, then we would expect

k to be positively correlated with v, producing a positive bias in the capital coefficient

t+1
in this column. So we would expect this column to provide us with an estimate of an upper
bound to the capital coefficient.

Column 7 regresses y, , 1 — .615 1t 4108 age, capital, and a polynomial in ht’ the

estimate of A that we obtain from the first equation. If firms could not exit, so that there
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were 10 selectivity problem, then use of the polynomial in flt would correct for the
endogeneity problem and produce consistent estimates of the coefficients of interest. Given
that even transitions on the full panel are selected for survival (though this is only survival
over a two, and not a thirteen, year period), and that theory tells us that the selection
process should generate a negative bias in the capital coefficient, we expect this column to
provide an estimate of a lower bound for the capital coefficient.

The estimates of the upper and lower bounds were, respectively, .37 (.02) and .29
(.03) (the standard errors of the coefficients in these columns were obtained from a
bootstrap procedure). The implied interval rules out both balanced panel estimates and
the within estimates from the full sample, but still leaves a fairly large range of possible
values for the true capital coefficient. Note also that the fact that the value of the
minimand in column 7 is much lower than that in column 6 attests to the likely empirical
importance of the serially correlated unobserved state variable that flt proxies for.

Column 8 provides a halfway mark between the generality of our full model and 2
parametric alternative. The consistency of the estimates in this column require that P v be

given by the parametric family
V=P Yt €110 where £ )~ ¥(0,0)

and K() signifies a normal distribution. Briefly, it uses the probit estimates of the selection
equation to obtain a nonparametric estimate of the truncation point in that equation and
then notes that, given the normality assumptions, the expectation of LA conditional on
past history and survival will depend only on v, (estimated by ﬂt) and Mill’s ratii)
evaluated at the truncation point. Columns 9 and 10 provide the series and the kernel
estimates of the version of our model which does not restrict P v

The first point to note is that all three of these procedures produce estimates of

capital coefficients that are between the upper and lower "bounds" for this coefficient given
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in columns 6 and 7. There is some evidence that the constraint imposed by normality
produces both a lower capital coefficient and a significantly worse fit than the more general
model, so we shall disregard column 8 in what follows. The other two estimates are not
much different from one another; and this is true whether we use as our difference metric
their estimated standard errors or their empirical implications as discussed in the next
section (we have actually done the empirical analysis using both the column 9 and the
column 10 estimates with no significant difference in results).!¢ On the other hand both
columns are quite different from the results of the more traditional estimation procedures

discussed earlier.

IV. The Implications of Our Estimators on Productivity

This section of the paper uses our production function estimates to construct measures of
plant level productivity in the telecommunications equipment industry and then analyzes
changes in the distribution of this productivity measure between 1974 and 1987. Our plant

level productivity measure is calculated as

Py = it — Dgliy — Pikyy — Dadip

16We have done alot more analysis of these coefficients than is reported above, and this note
reviews the other results. The system was estimated using several different estimators for
the nonparametric components, and adding a trimming step to account for observations in
low density regions. None of the alternate estimators enerated much of a change in the
coefficient estimates (the capital, age, and time coefficients varied between .31 and .35,
—.01 and .01, and .01 and .04 respectively). There was one run, however, in which the
estimated standard errors doubled as a result of an outlier that was trimmed in the
trimming procedure. In addition we ran systems in which multiplant firms had different
investment and stopping rules (we also tried differentiating by the number of plants), and
investigated differences in estimates over different subperiods of the panel. The only
significant (from a statistical point of view) change occured when we split the sample into
three equally sized time intervals, and reestimated the model on the first and last of these.
The results provided evidence of an increase in the capital intensity of the industry over
time, as the O.L.S.capital coefficient from the full subsamples went from .27(.03) to
.34(.03), and the estimates from the bias reducing kernel version of our procedure went
from .32(.08) to .40(.05). Again these differences are simply not large enough to make any
substantial difference to the economic implications discussed in the next section.
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where the b’s are taken from column 10 in table 6.

We begin with aggregate industry productivity. Table 7 compares two measures of
aggregate industry productivity growth between 1975 and 1987. We calculate our
aggregate measure (P1 in the first column) as the share~weighted average of our plant level
productivity measure, using the plant level shares in the full sample as weights. P2 in
column 2 provides the productivity growth rates derived in an analogous way but using the
production function coefficient estimates and the shares of output from the balanced panel
(from column 1 in Table 6). Column 3 sums the difference between P1 and P2 from the
beginning of the sample period, while column 4 provides the BLS’s measure of growth in
aggregate manufacturing productivity (P3). Figure 1 normalizes productivity to equal 1 in
1974, and then plots the levels of our measure, and of the measure obtained from the
balanced panel, over the period. The difference between the two curves in this figure is
column 3 of table 7.

We begin with a comparison of Pi to P2. Column 3 makes it clear that P1 drops
below P2 immediately and remains below it throughout the sample period. Indeed tue
average annual growth rate of P2 (1.68%) over the period as a whole is over double the
growth rate of P1(.78%). Recalling that the balanced panel excludes those plants which
exit during the sample period, a selection which our theory tells us should delete precisely
those plants with low productivity growth, the fact that P1 is lower than P2 should not be
surprising. The other difference between the two samples is that the balanced panel
excludes new entrants. Empirically new entrants tended to be smaller plants with lower
productivity than the average productivity of continuing establishments (but hig}ler
productivities than those plants who exit). So the difference in the treatment of ;ew
entrants between the two panels reinforces the difference between the productivity
measures that is induced by the difference in the treatment of those who exit.

Note that this reasoning leads us to expect particularly large differences between the

productivity measures in periods when there is disproportionate amounts of entry and exit.



Industry Productivity Growth Rates

Table 7

Pl P2 T(P1,-P2,) P3
1 2 3 4
Year

1975 -.127 -.113 -.014 -.014
1976 -.017 -.030 -.001 .052
1977 .070 .073 -.004 .032
1978 .084 .089 -.009 .016
1979 .012 .005 -.002 -.007
1980 .060 .090 -.032 -.023
1981 -.001 .003 -.036 .011
1982 .002 .017 -.051 -.005
1983 -.059 -.051 -.059 .059
1984 .044 .032 -.041 .068
1985 .047 .084 -.094 .G38
1986 -.021 -.024 -.091 .027
1987 .009 .043 -.125 .034

Pl - output weighted average from entire data set using

our corrected estimates
P2 - output weighted average for balanced panel using
balanced panel estimates
P3 - all of manufacturing (source: Bureau of Labour
Statistics)

See text for additional detail
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Column 3 shows that the difference between P1 and P2 takes a jump upward in about
1980, just after the certification and registration program, and then another discrete jump
in 1985, just after divestiture. These were precisely the years where there was likely to be
disproportionate amounts of entry and exit (see tables 3 and 4 above, and table 11 below).
Indeed the average annual difference between P1 and P2 in the period after divestiture was
2.2% (3.4% versus 1.2%), almost two and a half times the average annual difference
between P1 and P2 over the entire sample period. The lesson here is that aggregate
productivity calculations based on balanced panels can generate large positive biases during
periods when an industry is undergoing a significant amount of restructuring.

The extent to which the movements in P1 can be accounted for by the historical
changes in the structure of the telecommunications equipment industry is quite striking.
Notice first the surges in productivity that follow both the registration and certification
program in 1977 and 1978, and the divestiture in 1984. Also the growth rate in
productivity is practically zero in 1982 and negative from 1982 to 1983. Given that the
Consent Decree announcing divestiture was signed in January 1982, this period was
undoubtedly a time of reorganization and restructuring for the industry as a whole. The
negative growth in productivity probably reflects the cost of reorganization among
incumbents and the time it takes new entrants to settle into production.

Column 4 provides annual growth rates in productivity for all of manufacturing.
Note that the two periods of high growth rates in the telecommunication equipment
industry, 1976—77 and 198485, are not reflected in the data on aggregate manufacturing.
The two periods of telecommunications productivity growth are a result of factors that are
specific to that industry (eg.,regulatory changes) and are not related to trendé in overall
manufacturing. This comes through even more clearly in Table 8, where we provide the
correlation coefficients between the three growth rate series in Table 7. The growth rate of
productivity in the telecommunication equipment industry has an r2 of almost zero with

the growth rate for manufacturing as a whole.



Table 8

r’'s for the Growth Rates reported in

Table 7
Pl P2 P3
Pl 1.00 .916 . 008
P2 .916 1.00 .001
P3 .008 .001 1.00
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We now delve deeper into the determinants of industry productivity. We first ask
about the efficiency of the output allocation among plants in the industry. One can ask
this question either conditional on the extant distribution of fixed factors (age, capital, and
productivity) or unconditionally. We begin by considering the efficiency of the allocation
conditional on the distribution of fixed factors. To analyze this issue, we introduce a
variable cost efficiency index. The index is defined as the ratio of the minimum variable
cost of producing industry output, given the current distribution of fixed factors (capital,
age, and productivity), to the actual variable cost of producing industry output. Firms are
assumed to minimize variable cost given their fixed factors, so their actual variable cost of

production is calculated as

(15) C(Y,K,a,p,w) = minwL st Y LﬂlKﬂjkeﬁaaiepi,
P W S S § L i i i i
i
where p; is productivity as defined at the beginning of this section. The minimum total

variable cost of producing industry output is calculated as the solution to

N N

min W
(16) Y, ....Y¥y JZJC(Yi'Ki’ai’pi’wi) s.t. 424 Y =Y.
i=1 i=1

The static efficiency index is calculated as the ratio of (16) to the sum of (15) across plants.
The results from this calculation are presented in Table 9 where we have averaged the
annual static cost efficiency index over several sub—periods.

Table 9 actually goes one step further than this. It decomposes the static variable
cost efficiency index into a product of two terms; a term providing a measure of the
efficiency of the allocation of output among plants within a firm (the intra firm index), and
a term providing a measure of the efficiency of the allocation of output between firms (the

inter firm index). Specifically the intra firm index is the ratio of the variable cost of



Table 9

Static Cost Efficiency

(minimum cost of production divided

by actual cost of production)

Years Total Interfirm Intrafirm
1974-1977 <77 .85 .91
1978-1983 .67 .74 .91
19384~15986 .71 .80 .89

Mean .72 .80 .90

(o recled Veesiom e fax
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production one would obtain if one allocated the actual firms’ outputs efficiently among
their own plants to the actual cost of production (obtained from 15). The inter firm
component is the ratio of the minimum cost of production obtained from (16) to the cost of
production obtained by efficiently allocating the existing firm distribution of output among
the plants in the alternative firms (to the numerator of the intra firm index). Thus the
product of the inter firm and the intra firm indices must equal the total index.

The total column of Table 9 shows that, not surprisingly, the static efficiency index
declined in the 1978—83 period, the period when the industry was undergoing the
restructuring induced by the Consent Decree. It did increase again aftér deregulation, but
not to the level it had achieved in the pre 1978 period. All the movements in the static
efficiency index are caused by movements in the inter firm component of the index, the
intra firm component was essentially constant at the high level of .9 throughout the period.

The more competitive structure that emerged after deregulation seems to have
generated an inter firm allocation of output that is less efficient, conditional on both the
total output produced by the industry and on the existing joint distribution of fixed
variables, than the output allocation prior to deregulation. The lesson here is that more
concentrated industry structures may well allocate output among existing plants in a more
cost effective manner. The benefits from competition come from either less restrictive
output practices, a reallocation of fixed factors towards more productive enterprises, or
increases in average productivity growth. We now turn to an investigation of the latter

two possibilities.

Recall that while the static variable cost efficiency index seems to have sfallen after
deregulation, the aggregate industry productivity figures increased following both periods
of regulatory change. To see what is behind this set of results it is helpful to decompose
the productivity figures in a slightly different way. Recall that our measure of industry

productivity is a weighted average of plant level productivity, with shares of industry
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output used as weights, i.e.

\;1
Py = 4ad 5P, (17)

where P, is industry productivity at time t, P, is plant level productivity, and 5., is plant
1 1
i’s share of output at time t. Now decompose P, into a sum of two terms as follows

N
wt

P = 2 (8 + 453) (B, + Bpyy)
is=
N
e
= Ntstpz + AZ
is

5
. As“Apit (18)

!

where

85, =8, 8 and &p, =P, —D,
and Bt and 's't represent the unweighted mean productivity and the unweighted mean share,
respectively.

Table 10 presents data on the three terms from equation (18). Column 1 is the left
hand side of the equation; industry productivity constructed as a weighted average of

plant—level productivities. Column 2 provides the unweighted average of plant level



Table 10

1 2 3 4
Variable P, P, Tap;,as;, | corr(p; .K;)
Year
1974 1.00 .91 .09 -.059
1975 .87 .81 .07 -.092
1976 .86 .78 .08 -.106
1977 .92 .86 .06 -.070
1978 1.00 .91 .09 -.036
1979 1.01 .96 .05 -.030
1980 1.07 .96 .11 -.008
1981 1.07 .90 .17 .037
1982 1.07 .93 .14 .010
1983 1.00 .92 .09 -.056
1984 1.05 .97 .08 -.072
1985 1.10 .89 .21 .036
1986 1.08 .90 .17 .050
1987 1.08 .86 .23 .120
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productivity, i.e. f)t. Column 3 provides the second term on the right hand side of (18), the
sample covariance between productivity and output. The larger this covariance, the higher
the share of output that goes to more productive firms and the larger is industry
productivity. Finally, the fourth column of Table 10 gives the correlation coefficient
between plant—level capital and plant—level productivity.

The table helps separate out the factors underlying the increase in productivity in
column 1. Bt has not changed all that much since 1979, but there has been a reallocation of
output from less to more productive plants. It is this reallocation of output, and not any
increase in average productivity, that is driving the increase in productivity at the industry
level. From the analysis of the static efficiency index above, we know that this reallocation
of output to more productive plants is not a result of a more efficient allocation of variable
factors of production conditional on the existing distribution of fixed factors. So it should
be a result of a reallocation of capital towards the more productive plants. A complete
analysis of precisely how this happened and of the effects of various policy and
environmental changes on that process would require us to fill in the details of the dynamic
general equilibrium model that lay behind the adjustment process that occurred in this
industry — a task beyond the scope of this paper. We can, however, provide some reduced
form evidence on the importance and implications of the capital reallocation process.

Column 4 of Table 10 provides the correlation between capital and productivity. It
has increased dramatically since the Consent Decree, and it increased substantially
following the earlier regulatory changes also. In fact the only two years in which there was
a perceptible drop in the capital—productivity correlation were 1983/84, the years when the
adjustment to deregulation must have been greatest. :

One can also see the impact of the reallocation of capital towards more productive
firms in the analysis of exit behavior. The stopping rule that comes out of the dynamic
behavioral model (equation 5) implies that whether or not a firm shuts down is a function

of its productivity, capital stock, and age. The nonparametric estimation procedure uses
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this fact to derive the survival probabilities, but treats these probabilities as nuisance
parameters, never examining them for their independent economic interest. Table 11
provides a simple probit analysis of survival probabilities with our estimates of
productivity, capital, and age, as well as time dummies, as right hand side variables. The
probits have the exit probability negatively related to both the firm’s capital stock, and to
the firm’s productivity (though, s in the production function, age is insignificant and
sometimes of the wrong sign), with productivity being the most significant of the two
variables. Also, there seems to be a clear effect of deregulation on the probability of exit.
Cornditional on any triple for the state variables, that probability seems to have gone up
after 1980. So one mechanism for the reallocation of capital that facilitated the increase in
aggregate productivity that accompanied deregulation seems to have been an increase in
the rate of shutdown of unproductive plants.

Our results indicate that the changes that occurred in the telecommunications
industry in this period improved the performance of the telecommunications equipment
industry by inducing a reallocation of capital from less to more productive plants. Note
that since this reallocation process seems to be greatly facilitated by entry and exit, an
important part of it would not be picked up from the analysis of balanced panels (much
less from aggregate data). Nevertheless, it is this reallocation of capital, rather than some
increase in either the efficiency of the allocation of variable inputs, or in average
productivity, that seems to be behind the increase in productivity that followed the

deregulation of the telecommunications equipment industry.

V1. Concluding Caveats.

We conclude with two related caveats. First we would like to emphasize that it is
still too early to assess the full impact of deregulation on productivity in the
telecommunications equipment industry. Our analysis suggests that the change in

regulatory structure was followed by an increase in industry productivity generated by a



Table 11
Probit Models of Exit Probabilities’

1 2 3
Intercept -1.22 (.14) -.613 (.260) ~.556 (.266)
Productivity -.252 (.063) -.234 (.064) -.24 (.065)
Age +.007 (.006) -.008 (.006)
Capital -.081 (.031) -.095 (.032)
D2 -.353 (.198)
D3 .114 (.144)
D4 .469 (.138)

40bs 1900 1900 1900

"The dummy variables are defined as follows:
Base period is 1974-1977,

D2 = 1 for years 1978 to 1980, 0 otherwise
D3 = 1 for years 1981 to 1983, 0 otherwise
D4 = 1 for years 1984 to 1986, 0 otherwise.
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reallocation of capital and a shift in production towards more productive plants. However
the long term question of the effect of the divestiture on productivity will also have to
come to terms with its effect on R&D activity. Partly as a result of the tremendous
success of research efforts at Bell Labs, the telecommunications network in the United
States is the most sophisticated network in the world. Our estimates indicate that there
has not been an increase in average productivity since divestiture. However any change in
productivity that resulted from a change in the structure of R&D in the industry after
deregulation would probably not manifest itself in the data until after 1987. On this point
we should note that when we take the RBOC’s together with AT&T there joint R&D
expenditures and employment after divestiture are not lower than the predivestiture levels
of AT&T (Noll,1987). On the other hand it is still too early to know how the change in
the structure of the industry has affected the productivity of those R&D expenditures.

The second point is related, though more theoretical. What seems to be clear from
the data is that certain enterprises generate more sales for given amounts of capital and
labor expenditures than others, and that differences in this sales generating ability (which
we call productivity) among plants are highly correlated over time. This implies that there
is an unobserved, serially correlated, state variable that is a determinant of both survival
probabilities and input choices.

The way the model of sections II and III deals with this unobserved, serially
correlated, state variable is to assume that there is-2 one to one relationship between it and
investment conditional on the observed state variables of the problem (at least on the
subset of the data with i >0) A more general model than the one outlined here, say one

that allowed for a separate effect of the outcome of an R&D process on profits, and hence
on the investment decision, would be unlikely to generate such an invertibility condition
without incorporating information on additional observables. We stopped where we did
because of a combination of data availability and the fact that the framework presented

here seemed rich enough to capture the nature of the restructuring that occurred in the
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telecommunications equipment industry during the period of our study. We do not doubt,
however, that extensions to (or modifications of) our techniques may be necessary in order
to come to grips with either different questions or different data sets.

The conceptual point we would like to emphasize is not that our solution ought
always to be used. Rather it is that the solution that is used to study changes in the
performance of an industry should take into account the fact that different enterprises are
differentially efficient in producing sales, and that though these efficiency differences do
vary over time, they are highly serially correlated. A result of this serial correlation is that
the efficiency differences themselves become determinants of the rates of expansion (or
contraction) of plants. This makes them an integral part of the process by which markets
adjust to changes in their environment. In our case it was differences in the extent to
which this adjustment took place pre and post deregulation that was the major

determinant of the pre and post deregulation differences in industry performance.



40

Appendix 1. The Data.

The data used in this study is an extract drawn from the Longitudinal Research
Database (LRD) maintained at the Center for Economic Studies at the Bureau of the
Census. The LRD contains all the data for manufacturing establishments collected by the
Census of Manufactures in 1963, 1967, 1972, 1977, and 1982, and by the Annual Survey of
Manufactures for non—Census years from 1973 to 1986. The data is collected at thé
establishment level and includes detailed information on the inputs and output that
characterize the production process. A more detailed description of the data and of how
we constructed the variables used in this analysis can be found in Olley(1991).

Telecommunications networks are composed of three broad categories of equipment.
Terminal equipment is equipment that terminates a telephone wire at a customer’s
premises and includes such products as telephone sets, key telephone sets, facsimile
machines, and modems. Transmission equipment, which carries the signal between
terminal stations and switching centers, includes coaxial cable, microwave radio
equipment, optical fiber, and communications satellites. Finally, switching equipment,
which is the heart of the network, links the terminals of the telecommunications system.
The main types of switching equipment are private branch exchanges (PBX) and central
office switching centers. This study focuses on all three types of equipment with the
exception of transmission cable. Thus, we do not include plants that produce the various
types of transmission media such as copper wire, coaxial cable, or glass fibers.

In terms of the classification system used by the U.S. Bureau of the Census, the
telecommunications equipment industry is made up primarily of those plants tfiat are
classified in SIC industry 3661, Telephone and Telegraph Apparatus. The three 5 digit
product classes within SIC 3661 are 36611, switching and switchboard equipment, 36613,
carrier line equipment, and 36614, other telephone and telegraph wire apparatus. This last

5—digit product class includes such products as telephone sets, key telephone sets, and
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telephone answering devices. In addition, a subset of the plants from SIC 3663, Radio and
Television Communications Equipment are included in the analysis.

The subset of plants added from industry 3663 are plants that produce products
within the 5—digit product class 36631, communications systems and equipment, except
broadcast. The Bureau of the Census classifies fiber optics communication equipment,
microwave communication equipment, facsimile communication equipment, and carrier line
equipment, n.e.c. (not elsewhere classified) in the product class 36631, but we wished to
include plants that produce these products in the analysis of the telecommunications
equipment industry. However, the product class 36631 also includes military space
satellites, amateur radio communications equipment, and other products that we felt
should be excluded from the data set. Therefore, we had to take care to eliminate from the
data set those plants that primarily produce products outside our definition of the industry.

Though our choice of product classes is as close as possible to the definition of the
product market as we could get, it should be pointed out that, since we have pulled
together data for plants in different four—digit SIC industries, comparison with published
aggregates is limited.

We now describe the variables used in the analysis. Unless otherwise specified, all
variables are measured at the plant level and are taken from the Longitudinal Research
Data Base maintained at the Center for Economic Studies at the Bureau of the Census.

Value added is defined to be total shipments, adjusted for changes in inventories,
minus the cost of materials. Real value added is constructed by deflating output by a
4—digit industry output deflator and deflating the cost of materials by a 4—digit materials
deflator. The deflators are taken from the PCS database as extended by Wa.yne%Gray
(1989). The labor variable is an hours variable constructed by taking the total
compensation for labor, including all supplemental labor costs, and dividing the total by
the production worker wage rate at the given plant.

The capital measure used in the regression analysis is constructed using a perpetual
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inventory method, Kt+1 = (1-5) K, + I. Since the capital data in the LRD is detailed
enough to allow one to distinguish between buildings and equipment, all calculations of the
capital stock are done separately for buildings and equipment. Real capital is obtained by
deflating investment by 2 4—digit industry new investment deflator taken from the
extended PCS data set. As suggested by Hulten and Wykopff(1981) buildings are
depreciated at a rate of .0361, and equipment at a rate of .1179.

In order to construct the capital series using the perpetual inventory method, we
had to address two other issues. We needed an initial capital stock, and we wanted to
utilize the LRD data on rentals and used equipment expenditures. The method of dealing
with the initial condition problem differed with the information available on the plant. If
the plant was first observed in an ASM year we treated the plant as a new entry, and
assumed the entire book value of capital was put in place in the previous year. If a plant is
first observed in a census year, it could have opened any time between the previoﬁs Census
and the first observed census. As a result we calculated two estimates of capital; the first
assumes that the plant is new in the observed census year, and the second assumes that the
entire book value was put in place in the previous census year. The initial capital stock
used in the analysis was a simple average of these two estimates. For plants first observed
in the first year of the LRD (1963) we took the book value in that year as correct.

If a plant was renting capital, the rental value is capitalized and added to current
year capital stock. The rental data is capitalized using rental rates for all of manufacturing
supplied by the Bureau of Labor Statistics. Interestingly, rentals seem to be more
important for the smaller plants than they are for the large plants. Many of the small
plants do not have any buildings on their books and are renting their factory. %Many of the
plants also report purchases of used equipment. In the calculation of the capital stock,
used equipment is deflated using the new investment deflator and added to current capital.
Finally, partly because of the sampling design, there were often missing years on firms. We

imputed the missing investment data by averaging the actual investment in the year just



before the missing data with the investment in the year immediately following the gap.

This allowed us to keep the historical information on the firm’s capital.

43
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Appendix 2. The Variance Covariance Matrix of the Parameter Estimates.

This appendix provides a consistent estimator for the variance covariance matrix of
the estimator of the production function coefficients. It is based on the results in Pakes
and Olley (1991), which, in turn, extends previous work by Newey (1991), and
Andrews(1991b). For more detail the reader should consult those articles.

Let z be the vector of observables on a plant in the current and the following period
(with the understanding that second period values are zero if the plant liquidated in the
second year), x'=[k,a,t], and ﬂ’=[ﬁk,ﬂa,ﬂt]. Then, denoting second period values of a
variable by a + subscript, for any estimate of g=g( #,¢—x'8), P=P(i,a,k), and ¢=4(i,a,k),

define the vector of functions
(1) m(zb.6,826) = x Iy Bl ~x B-g( Sp-H){—x +[06( R¢-xb)/ 94)x} .
For a particular value of (§ 28 £¢), say (b B ‘%’¢n)’ the estimation algorithm
choose its estimate of f§, say b, by minimizing || n—IEim(zi,b,b 18 A .?n,¢n-—xb) I, where
JIx||=x'x. Now if
(2)  D(a.bf,8 29) = {-x ,+105( Ré—xB)/04]x} {~x_ +[0g( S4-x0)/og}x}
then it can be shown that at the true value of all of the parameters,
D(z)ﬂ,ﬁpg’ gé) = E[am(zsﬂ:ﬂpg:‘2¢)/aﬂ l d% ’It+1=l]'

Finally let

(3) 1 (@.6.8,8 26) = m(z..5,8.29)
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+ x {~x_ +{0g( S¢-xB)/04)x}y , B, —x 'b-5( R4-—xF)]
+ x {~x_ +(0g( S¢-xB)/ o¢}x}{6g( 2¢-x8)[0 2][x .~ 7]
+ X {x . +[0g( H4—xB)/ 041x} g A4—x0)/ d4)[y~p-4)

+ €[y-f -4 1{FE[l]i2,k]},

. 2
where i§’=x+!+[y—ﬂll—¢]/E{l—E[l|1,a,k]} .
The actual variance covariance matrix of the parameter estimates is obtained by

*
letting f = f -—Ef*, and setting

(4) V(ﬂ)ﬂpg) 2¢) = E[f(z;ﬂ,ﬂpg:-2¢) f(zxﬂ,ﬂp8;~2¢)’]»
and

(5) D(ﬂ,ﬂpg,'?;é) = E[D(ztﬂ)ﬁpg)‘2¢)]
and then computing
(6) (pDypvD(DD)”,

where all functions are evaluated at the true value of the parameters (8,5 18 2¢). A
consistent estimate of the variance covariance matrix is obtained by substituting

(b,b I’gn"%’%) for (ﬂ,ﬂz,g, 24) in equations (1) to (3), computing the sample analogues to
the expectations in (3), (4), and (5), and substituting these into (6).

Note that if we were to ignore the last four terms in (3) (set them equal to zero),
then this variance covariance matrix would be identical to the variance covariaitce matrix
we would obtain if we knew (f l,g,9,¢), substituted there true values into the definition of
m() in (1), and set the resulting equation equal to zero. The last four terms in (3) provide
adjustments for the fact that we use estimators of g, £, ¢ , and B ? rather than there true

values. o.
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