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1 Introduction

This paper discusses inference about trends in economic time series. By “trend” we mean

the low-frequency variability evident in a time series after forming moving averages such as

low-pass (cf. Baxter and King (1999)) or Hodrick and Prescott (1997) filters. To measure

this low-frequency variability we rely on projections of the series onto a small number of

trigonometric functions (e.g., discrete Fourier, sine, or cosine transforms). The fact that a

small number of projection coefficients capture low-frequency variability reflects the scarcity

of low-frequency information in the data, leading to what is effectively a “small-sample”

econometric problem. As we show, it is still relatively straightforward to conduct statistical

inference using the small sample of low-frequency data summaries. Moreover, these low-

frequency methods are appropriate for both weakly and highly persistent processes. Before

getting into the details, it is useful to fix ideas by looking at some data.

Figure 1 plots the value of per-capita GDP growth rates (panel A) and price inflation

(panel B) for the United States using quarterly data from 1947 through 2014, and where both

are expressed in percentage points at an annual rate.1 The plots show the raw series and two

“trends”. The first trend was constructed using a band-pass moving average filter designed

to pass cyclical components with periods longer than 6 ≈ 11 years, and the second is the
full-sample projection of the series onto a constant and twelve cosine functions with periods

2 for  = 1     12, also designed to capture variability for periods longer than 11 years.2

A glance at the figure shows that the band-pass and projection trends essentially coincide

both for GDP, for which there is only moderate trend variability, and inflation, for which

there is substantial trend variability. This paper focuses on trends computed by projection

methods because, as we will see, they give rise to simple methods for statistical inference.

Figure 1 raises several empirical questions. For example, the trend in GDP growth has

1Three data series are used in this paper. All are quarterly series from 1947:Q1 to 2014:Q4

for the United States. Real per capita gross domestic product is available from FRED as series

A939RX0Q048SBEA. Inflation is measured using the price deflator for personal consumption expenditures

(FRED series DPCERD3Q086SBEA). Total factor productivity is from Fernald (2014) and is available at

http://www.frbsf.org/economic-research/economists/john-fernald/.
2The low-pass values were computed using an ideal low-pass filter truncated after 2 terms applied

to the padded series using forecasts/backcasts constructed from an (4) model. The cosine projections

are the fitted values from the regression of the series onto a constant term and
√
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Figure 1: Trends in U.S. Time Series

Panel (A)

Panel (B)
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Figure 2: Trends in GDP and TFP Growth Rates

been low for the last decade. Does this portend low average growth over the next decade? Or,

is there mean reversion in the trend so that the next decade is more likely to exhibit faster

than average growth? And, what is the value of the population mean growth rate of GDP?

The plot for inflation shows large persistent variation in its trends over the past sixty years.

Does this suggest that the inflation process is (1)? Or is this behavior consistent with an

(0) process? Alternatively, what about something “between” the (0) and (1) processes?

More generally, the average value of inflation varies considerably over non-overlapping 10- or

25-year time periods; average GDP growth rates show less, but still substantial variability.

How much variability should we expect to see in future 10- and 25-year samples? Section

3 takes up these questions, along with several other questions that can be answered using

univariate time series methods.

Figure 2 plots both total factor productivity (TFP) and GDP growth rates. The trend

components of the series move together, suggesting (for good reason) that long-run variation

in GDP and TFP growth rates are closely related. But, exactly how closely are they related?

And, by how much is the trend growth rate in GDP predicted to increase if the trend growth

rate of TFP increases by, say, 10 basis points? Section 4 takes up questions like these that

involve multiple (here two) time series.

The paper begins, in Section 2, with notation and (finite and large-sample) properties of
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discrete “cosine transforms,” the trigonometric projections used in our analysis.3 Sections

3 and 4 show how these cosine transforms can be used to answer trend-related inference

questions. “Low-frequency” variability conjures up spectral analysis, and Section 5 uses

frequency-domain concepts to explain several facets of the analysis. To keep the focus on

key ideas and concepts, the analysis in the body of the paper uses relatively simple stochastic

processes, and Section 6 briefly discusses some extensions and concludes.

2 Some properties of low-frequency weighted averages

Let  denote a scalar time series that is observed for  = 1      , and let Ψ() =√
2 cos(), so that Ψ ( ) has period 2. Let Ψ() = [Ψ1()Ψ2()    Ψ ()]

0, a

R valued function, and let Ψ = [Ψ((1 − 12) )Ψ((2 − 12) )    Ψ(( − 12) )]0
be the  ×  matrix obtained by evaluating Ψ(·) at  = ( − 1

2
) ,  = 1      . The

low-frequency projections shown in Figures 1 and 2 are the fitted values from the OLS re-

gression of [1 2      ] onto a constant and Ψ ; that is, b =  + Ψ(( − 12) )0 ,

where ̄ = −1
P

=1  and  are the OLS regression coefficients. Because the columns of

Ψ are orthogonal, sum to zero, and have length  (that is, −1Ψ0
Ψ =  and Ψ0

  = 0,

where  denotes a  × 1 vector of 1s), the OLS regression coefficients have a simple form

 = −1
X
=1

Ψ((− 12) )

The th regression coefficient,  , is called the 
th cosine transform of [1 2      ]

0.

2.1 Large-sample properties of 

Suppose that  can be represented as  = +, where  is the mean of  and  is a zero

mean stochastic process. Because the cosine weights sum to zero, the value of  has no effect

on  , so cosine weighted averages of  and of  coincide (
−1P

=1Ψ(( − 12) ) =
−1

P

=1Ψ((−12) )). Scaled versions of these weighted averages are normally distrib-
uted in large samples if  satisfies certain moment and persistence properties. In Section

5.3 we present a central limit theorem that relies on assumptions about the spectral density

of . Here we use a simpler argument from Müller and Watson (2008) that relies on the

3As discussed below, analogous properties hold for other transforms such as discrete Fourier transforms.

4



assumption that suitably scaled partial sums of  behave like a Gaussian process in large

samples.

Specifically, suppose that for some number , the linearly interpolated partial sum

process of  scaled by 
−,  () = −

Pb c
=1  + −( − bc)bc+1, converges to a

Gaussian process,  (·)⇒ (·) Using an identity for the cosine weights (R 
(−1) Ψ() =

−1 
−1Ψ(( − 12) ) with  = sin((2 ))(2 )), the following representation for

the th cosine transform follows directly

 1− = −
X
=1

Ψ((− 12) )

= 
1−

X
=1

Z 

(−1)
Ψ()b c+1 (1)

= 

X
=1

"


¡



¢
Ψ

¡



¢−

¡
−1


¢
Ψ

¡
−1


¢− Z 1

(−1)
() ()

#

=  [Ψ(1) (1)−
Z 1

0

() ()]

⇒ Ψ(1)(1)−
Z 1

0

()()

=

Z 1

0

Ψ()()

where the first two lines use the properties of Ψ, the third uses  () =  1−
R 
0
b c+1

and integration by parts with () = Ψ(), the fifth uses the continuous mapping

theorem and  → 1, and the final line uses the stochastic calculus version of integration by

parts. This representation holds jointly for the elements of  , so

 1− ⇒  =

Z 1

0

Ψ()() ∼ N (0Σ) (2)

The elements of the covariance matrix Σ follow directly from the covariance kernel of 

and the cosine weights (see Müller and Watson (2008)). The key idea of our approach to

low-frequency econometrics is to conduct inference based on the large sample approximation

(2),  1−
∼ N (0Σ)

Figure 3 plots the first 12 cosine transforms for GDP growth rates and inflation. Roughly

speaking, the cosine transforms for GDP growth rates look like a sample of i.i.d. random

variables, while the cosine transforms for inflation appear to be heteroskedastic, with larger
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Figure 3: Cosine Transforms of GDP Growth and Inflation

Panel (A): GDP Growth

Panel (B): Inflation
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variance for the first few cosine transforms. The value of the covariance matrix Σ in the

(0) and (1) models help explain these differences. In the (0) model −12
Pb· c

=1  ⇒
 (·) with  a standard Wiener process and 2  0 the long-run variance, Σ = 2,

so  is i.i.d.N (0 2). In the (1) model −32
Pb· c

=1  ⇒ 
R ·
0
 (), Σ = 2, where

 is a diagonal matrix with elements  = 1()2, so the ’s are independent but

heteroskedastic.4 In the following section we present tests for both the (0) and (1) null

hypotheses. Given these scatter plots, it is not too surprising that the (0) null is not

rejected for GDP growth, but the (1) null is rejected, and just the opposite result obtains

for inflation.

While Σ has a simple form for the (0) and (1) models, it can be more complicated for

other stochastic processes, so it is useful to have a simple numerical method for obtaining

accurate approximations for Σ. As representation (2) suggests, Σ can be approximated by

the large- finite sample covariance matrix Var[ 1− ] =  2−2Ψ0
ΞΨ where Ξ is the

 ×  covariance matrix of [1 2      ]
0 under any (not too heavy-tailed) process for

 that induces the same Gaussian process limit of its partial sums. For example, if  is

(0), then Σ can be approximated using the large- finite-sample covariance matrix of the

cosine transform of an i.i.d. process with variance 2, Σ ≈ 2Ψ0
Ψ = 2. Indeed,

because Σ = 2 for the (0) model, this approximation is exact. When  is (1) Σ can be

approximated using the large- finite sample covariance matrix of the cosine transforms of

a random walk process, Σ ≈ 2Ψ0ΞΨ , where Ξ has ( )th element min( ). In Section

3, we consider the local-to-unity AR model and fractional () model, and the covariance

matrices for these processes can be approximated in analogous fashion.

While this discussion has focused on discrete cosine transforms, the representation in (1)

is seen to hold for any set of smooth set of weights, Ψ(). Because our interest is focused on

trends, it is important that the weighted averages extract low-frequency variability from the

data, and Figure 1 shows that the cosine transforms do just that (also see Section 5.1 below).

But, low-frequency Fourier or sine transforms are equally well-suited and can be used instead

of the cosine transforms after appropriate modification of the covariance matrix Σ.5

4The asymptotic covariance matrix Σ is diagonal in both the (0) and (1) models because the cosine

functions are the eigenfunctions of the covariance kernel of a demeaned Wiener process; cf. Phillips (1998).
5For example, while the cosine transforms of an (1) process have the diagonal covariance matrix discussed

in the last paragraph, the covariance matrix of Fourier transforms is somewhat more complicated (cf. Akdi

and Dickey (1998)).
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And finally, it is worth stressing that in the asymptotic analysis presented in this section

the dimension of  , which we have denoted by , is held fixed as  grows large. Such

asymptotics reflect the notion that there is only a relatively modest amount of information

about low-frequency phenomena in, say, 65-year realizations of macro time series. In practice,

this translates into using a relatively small number of low-frequency averages from a long time

series. Our empirical analysis uses  = 12 from  = 272 quarterly observations because, from

Figures 1 and 2, this produces a sensible notion of the “trend” in inflation and growth rates

in GDP and TFP, corresponding the periodicities longer than 11 years. The econometric

challenge then is to draw valid conclusions from these  observations. Further discussion of

the choice of  may be found in Section 5.

3 Inference examples: univariate time series

This section takes up five examples of statistical inference involving the low-frequency prop-

erties of a univariate stochastic process. In each case, the normal limit for  discussed in

the last section yields a simple, and standard, small-sample inference problem involving a

normal random vector.

3.1 I(0) inference

The first two examples assume the (0) model and concern inference about the long-run

variance (2) and mean () of . These problems are related as both involve 2, in the first

instance because it is the parameter of interest, and in the second because it characterizes

the variability of the sample mean. There is a large literature on consistent estimation

of 2, including the important contributions of Newey and West (1987) and others, and

earlier work on spectral estimation (see Priestley (1981) for a classic textbook treatment).

As is now widely understood, consistent long-run variance estimators can perform poorly

in finite samples even for only moderately persistent series. Motivated by these poor finite-

sample properties, a burgeoning literature studies inconsistent long-run variance estimators

(see Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002, 2005), Jansson

(2004), Phillips (2005), Sun, Phillips, and Jin (2008), Phillips, Sun and Jin (2006, 2007)

and Gonçalves and Vogelsang (2011), and Müller (2014) for a recent survey), and estimators

constructed from the cosine transforms as suggested by Müller (2004, 2007) provide a leading

8



Figure 4: Low-Frequency Log-Likelihood for the Long-Run Standard Deviation of GDP

Growth

Table 1: Descriptive statistics for GDP growth rates and Inflation: 1947:Q2 - 2014:Q4

GDP Inflation

Sample Mean ̄ 1.94 3.12

Sample long-run standard deviation ̂ 4.76 9.25

90% Confidence interval for  in (0) model [3.60;7.21] [6.99;14.02]

90% Confidence interval for  in (0) model [1.43;2.45] [2.12;4.12]

example.

Thus, consider using  to learn about the value of 
2. Because

√
 ⇒  ∼

N (0 2), asymptotically justified inference proceeds as in the familiar small sample i.i.d.
normal model. Letting SSX =  0

 ⇒ SSX =  0 denote the (scaled) sum of squares,

the large-sample log-likelihood is proportional to−1
2
[ln (2)+SSX 2] and the corresponding

maximum likelihood estimator (MLE) for 2 is ̂2 = SSX . Because ̂
2
 is computed

using only  observations (and in the asymptotics  is held fixed as  → ∞), ̂2 is not
consistent. Indeed, using  = 12,  contains limited information about 

2, so there is

considerable uncertainty about its value. Figure 4 shows the log-likelihood for  constructed

using  for real GDP growth rates. The MLE is ̂ = 48, but the plot shows that

values of  as small as 3.5 and as large as 6.5 have likelihood values within one log-point

9



of the maximum. Because  02 ∼ 2 confidence intervals for  are readily constructed

( (SSX 
2
1−2 ≤ 2 ≤ SSX 

2
2) → 1 − , with 2 the th quantile of the Chi-

squared distribution with  degrees of freedom), and the resulting confidence intervals for

the long-run standard deviation of GDP growth rates and inflation are shown in Table 1.

Next, consider inference about , the mean of . The same arguments used in Section

2 shows that
√
 [( − ) 0

 ]
0 ⇒ (0

0)0 ∼ N (0 2+1), so inference about  can be
obtained as in the standard small-sample normal problem. In particular,

√
 (−)̂ ⇒ 

(the Student- distribution with  degrees of freedom), so inference about  follows directly.

Table 1 shows 90% confidence intervals for the mean GDP growth rate and the mean inflation

rate constructed as ± 178̂
√
 , where 1.78 is the 95 percentile of the 12 distribution.

These confidence intervals for 2 and  are predicated on the assumption that  ∼ (0)

and, particularly for inflation, this assumption is suspect. The next inference examples

concern the persistence of the  process.

3.2 Inference about persistence parameters

As discussed in Section 2, the normal limit for  holds under conditions more general

than the (0) model, and the parameters characterizing the persistence of  determine

the covariance matrix Σ. Thus, inference about these parameters can be conducted using

methods for inference about the covariance matrix of a multivariate normal random variable.

This section discusses three classes of examples. First a few preliminaries.

Some parametric models of persistence. Section 2 discussed the covariance matrix Σ

for (0) and (1) processes. Here we describe three other widely used parametric models

for persistence in economic time series. The first is a sum of (0) and (1) processes: with

appropriate scaling for the components this is a version of Harvey’s (1989) ’local-level-model’

(LLM)  = 1 + ( )
P

=1 2 where (1 2) is bivariate (0) with long-run covariance

matrix 22. Another is the ’local-to-unity AR’ model (LTUM) in which  = −1 + ,

with AR coefficient  = 1 −  and  an (0) process, as introduced by Cavanagh

(1985), Chan and Wei (1987) and Phillips (1987). A third is the ’fractional’ model (FRM)

(1 − ) =  where  is (0) with −12    3
2
(cf. Baillie (1996) and Robinson (2003)

for surveys). Each of these processes exhibits different degrees of persistence that depend on

the value of the model’s parameter value. For example, (0) behavior follows when  = 0 in

LLM,  = 0 in FRM, and  very large in LTUM. The processes exhibit (1) persistence when

10



 = 0 (LTUM),  = 1 (FRM), and  very large (LLM). Alternative parameter values yield

persistence between (0) and (1), and the FRM with   0 or   1 allows for persistence

beyond these extremes. Excluding their (0) and (1) parameterizations, the models yield

subtly different low-frequency behavior as evidenced by their (pseudo-) spectra discussed in

Section 5.2. For now we simply note that this behavior results in different values of the

covariance matrix Σ.6

Scale invariance/equivariance. In many inference problems, interest is focused on the

persistence of the process (say , , or ) and not on the scale of the process (). This

motivates basing inference on statistics that are invariant to scale transformations, which

in our setting corresponds to basing inference on 
 = 

p
 0

 .
7 The continuous

mapping theorem implies that 
 ⇒  = 

√
 0, and the density (|Σ) of  is

explicitly computed in King (1980) and proportional to (|Σ) ∝ |Σ|−12(0Σ−1)−2.
Armed with these preliminaries we are now ready to tackle inference about persistence

parameters. We will construct hypothesis tests, and in some cases invert these tests to

construct confidence sets. We focus on three classes of efficient tests: (i) point-optimal, (ii)

weighted average power (WAP) optimal and (iii) approximately optimal tests constructed

using numerical approximations to least favorable distributions. Each is discussed in the

context of a specific testing problem.

Point-optimal tests. Let  denote the value of a persistence parameter (say , , or  in

the models described above), so that Σ = Σ (), and the scale of Σ does not matter because

of the form of the density for . Several problems of interest follow the classic Neyman-

Pearson setup with a simple null and simple alternative, 0 :  = 0 versus  :  = ,

so the likelihood ratio statistic yields the most powerful test. Given the form of the density

6The scaling factor for  is 
12 for LLM, −12 for LTUM, and is  12− for FRM. The covariance

matrix Σ for each of these models is given in Müller and Watson (2008), and can be approximated using the

appropriate choice of Ξ for the finite-sample methods in Section 2: the covariance matrix for the LTUM

can be approximated using the autocovariances of a stationary AR(1) process with coefficient (1−  );

and the covariance matrix for the LLM is the sum of the  (0) covariance matrix and 2 times the  (1)

covariance matrix. The covariance matrix for FRM with −12    12 can be approximated using the

autocovariances for (1− ) =  where  is white noise with variance 
2 and the autocovariances for 

are given, for example, in Baillie (1996); for 12    32, Σ can be approximated using the autocovariances

of
P

=0 , where (1−)−1 = . Müller and Watson (2008) show that the resulting limiting covariance

matrix Σ is continuous at  = 12 in the FRM.
7Note that the  1− scale factor cancels in 

 , so the value of  no longer matters for the analysis.
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Table 2: Persistence tests for GDP growth rates and inflation

GDP Inflation

-values

LFST 0.53 0.03

LFUR 0.00 0.18

Confidence intervals for  in () model

67% level [-0.24;0.27] [0.48;1.01]

90% level [-0.49;0.44] [0.32;1.21]

Notes: LFST and LFUR are point-optimal tests for the I(0) and I(1) models, respectively. Confi-

dence intervals for  in the I() model were constructed by inverting WAP-optimal tests for . See

the text for details.

, this means rejecting the null for large values of the ratio of generalized sums of squares:

( 0
Σ(0)

−1 )(
0
Σ()

−1 ). Such tests are “point-optimal” in the sense of having best

power against the  =  alternative.
8 Two examples are low-frequency ’unit-root’ (LFUR)

and ’stationarity’ (LFST) tests, which respectively test the (1) and (0) null hypotheses,

as previously derived in Müller and Watson (2008). We discuss them in turn.

Dufour and King (1991), Elliott, Rothenberg, and Stock (1996) and Elliott (1999) derive

efficient Neyman-Pearson tests in the AR(1) Gaussian model with AR coefficient  = 1 and

 =  under the alternative, and the latter two references extend these tests to more general

settings using asymptotic approximations for LTUM where the unit root null corresponds

to 0 = 0 and the alternative to  = . While a uniformly most powerful test does not

exist, Elliott, Rothenberg, and Stock (1996) show that the point optimal test associated

with a particular value of  exhibits near optimality for a wide range of values of  under

the alternative. The low frequency version of the point-optimal unit root test rejects for

large values of

LFUR =
 0

Σ(0)
−1

 0
Σ()

−1

(3)

where Σ (0) is the covariance matrix under the null (the (1) model with 0 = 0) and Σ ()

is the covariance matrix using . Table 2 shows the -value of this LFUR test for GDP

growth rates and inflation using Elliott’s (1999) choice of  = 10. The (1) model is not

8Müller (2011) shows that these point optimal tests, viewed as a function of  , are asymptotically point

optimal in the class of all scale invariant tests that control size for all processes satisfying (2).
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rejected for inflation (-value = 0.18), but is rejected for GDP growth rates (-value = 0.00).

Nyblom (1989) and Kwiatkowski, Phillips, Schmidt, and Shin (1992) develop tests for

the null of an (0) model versus an alternative in which the process exhibits (1) behavior

by nesting the processes in the LLM.9 Under the null  = 0, and under the alternative   0.

As in the unit root problem, a uniformly most powerful test does not exist, but a Neyman-

Pearson point-optimal test using  =  follows directly. Given the special structure of the

(0) and (1) Σ matrices, the point-optimal test has a particularly simple form:

LFST =

P

=1
2
P

=1
2
 (1 + ()2)−1

(4)

Müller and Watson (2013) tabulate critical value for this test using  = 10, and show that

the test has power close to optimal power for a wide range of values of  Table 2 shows

the -values of this test for GDP growth rates (-value = 0.53) and for inflation (-value =

0.03).

Weighted average power (WAP) tests. LFST and LFUR test the  () model for  = 0

and  = 1, but what about other values of ? And, how can the tests be inverted to form

a confidence set for the true value of ? One approach is to use point-optimal tests for the

null and alternative 0 :  = 0 versus  :  =  for various value of 0; the collection of

values of 0 that are not rejected form a confidence set. But an immediate problem arises:

what value of  should be used? A desirable test should have good power for a wide range

of values of , both larger and smaller than 0, so that point-optimal tests (which specify a

single value of ) are not appealing. A useful framework in these situations is to consider

tests with best “weighted average power” (WAP), where the weights put mass on different

values of . As explained in Andrews and Ploberger (1994), for example, optimal WAP

tests are easy to construct. The logic is as follows: Consider an alternative in which 

is a random variable with distribution function . This is a simple alternative :


has mixture density
R
(Σ ())(), and the optimal test of 0 versus  is the

Neyman-Pearson likelihood ratio test. Rearranging the power expression for this test shows

that it has greatest WAP for  :  =  using  as the weight function.
10

Figure 5 shows the large-sample log likelihood for  using 
 for real GDP growth rates

and inflation. The MLE of  is near zero (̂ = −006) for GDP, but much larger (̂ = 080)
9See Stock (1994) for a survey and additional references.
10As pointed out by Pratt (1961), the resulting confidence set CS() ⊂ R for  has minimal expected

weighted average length [
R
1[ ∈ CS()]()] among all confidence sets of the prespecified level.
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Figure 5: Low-Frequency Log-Likelihood in Fractional Model

Panel (A): GDP Growth

Panel (B): Inflation
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for inflation. But the plots indicate substantial uncertainty about the value of . Using a

weighting function  that is uniform on −05    15, we constructed WAP tests for fine

grid of values of 0. Inverting these tests yields a confidence set for , and these are shown in

Table 2. For GDP, the 67% confidence sets for  ranges from -0.24 to 0.27, and for inflation

it ranges from 0.48 to 1.01. 90% confidence sets are, of course, wider.

Least Favorable Distributions. Our final example considers the following question: How

much should we expect the sample average value of  (GDP growth rates or inflation) to

vary over long periods of time, say a decade or a quarter of century? To be specific, let

1: denote the sample mean constructed using observations 1 through  and consider the

variance 2∆() = Var[+1:2 − 1:], for large values of . The parameter ∆ () is the

standard deviation of the change in the sample mean over adjacent non-overlapping sample

periods of length .11 In the large sample framework, let  =  and consider asymptotic

approximations constructed with  held fixed as  → ∞. To conduct inference about

2∆( ) using  , we must determine how 2∆( ) relates to the value of Σ, the limiting

covariance matrix for  (appropriately scaled). This is straightforward: first an extension

of the central limit result discussed in Section 2 yields

 1−
Ã

̄+1:2 − ̄1:



!
⇒
Ã





!
∼ N

Ã
0

Ã
Σ  Σ 

Σ Σ

!!


Second, because Var[(+1:2 − 1:)∆( )] = 1, ∆( ) ⇒ N (0Γ) where Γ =

ΣΣ  . A test of 0 : ∆( ) = ∆0( ) against  : ∆( ) 6= ∆0( ) may thus

be based on the statistic  = ∆0( ). Under 0,  ⇒ N (0Γ), and under 1,

 ⇒ N (0 ( ∆( )

∆0( )
)2Γ), so the problem again reduces to an inference problem about the

covariance matrix of a multivariate normal.

The alternative can be reduced to a single alternative  by maximizing a weighted

average power criterion, as above. The problem is still more challenging than the previous

example, however, because the (large sample) null distribution of  ⇒ N (0Γ) depends
on nuisance parameters that describe the persistence of the  process. In the FRM, for

example, Γ = Γ () with  ∈  for some range of values . In the jargon of hypothesis

testing, the null hypothesis is composite because it contains a set of probability distributions

for  indexed by the value of . The challenge is to find a powerful test of 0 that controls

11Note that ∆̄ is well defined even for some infinite variance processes, such as the FRM with 12 

  32.
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size under all values of  ∈ .

One general solution to this type of problem uses the same simplification that was used

to solve the weighted average power problem: introduce a weighting function, say Λ () for

the values of  ∈  and use the mixture density 0Λ :  ∼
R


(Γ ())Λ () as the

density under the null. This yields a simple null hypothesis (that is, a single probability

density for the data), so the best test is again given by the likelihood ratio. However, while

the resulting test will control the probability of a false null rejection on average over the

values of  with  drawn from Λ, it won’t necessarily control the rejection probability for all

values of  allowed under 0; that is, the test may not have the correct size. But, because

any test that controls the null rejection probability for all values of  automatically controls

the rejection frequency on average over , any test with size  under 0 is also a feasible

size  under under 0Λ, so it must have power less than or equal to power-maximizing test

for 0Λ. Thus, if a distribution Λ can be found that does control size for all , the resulting

likelihood ratio test for 0Λ is guaranteed to be the optimal test for 0. Such a Λ is called a

“least favorable distribution” (LFD). In some problems, least favorable distributions can be

found by clever reasoning (see Lehmann and Romano (2005) for examples), but this is the

exception rather than the rule. Numerical methods can alternatively be used to approximate

the LFD (see Elliott, Müller, and Watson (2015) for discussion and examples), and we will

utilize that approach here.

With this background out of the way, we can now return to the problem of determining

the value of 2∆(). We do this allowing for () persistence, and allow  to take on

any value between -0.4 to 1.4. The weighting in the WAP criterion is uniform on , and,

conditional on , sets the alternative covariance matrix equal to Γ = Γ ()  where 

is uniformly distributed on (−5 5).12 Figure 6 summarizes the resulting (pointwise in )

90% confidence sets for ∆ () for  ranging from 15 to 70 years. For averages of GDP

growth rates computed over 20-years, the 90% confidence confidence interval for ∆ ranges

from approximately 0.5 to 1.3 percentage points, and the range shifts down somewhat (to

0.25 to 1.2 percentage points) for averages computed over 60 years. The lower range of

the confidence set essentially coincides with the corresponding (0) confidence set (which

only reflects uncertainty about the value of the long-run variance of GDP growth), but the

upper range is substantially larger than its (0) counterpart, reflecting the allowance for

more persistence than (0) model. The confidence intervals for inflation indicate both large

12The numerical work uses fine discrete grids for the  and the approximate LFD.
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Figure 6: 90% Confidence Sets for Standard Deviation of +1:2 − 1: as a function of 

Panel (A): GDP Growth

Panel (B): Inflation
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and uncertain values for ∆, reflecting the larger persistence in the series. The uncertainty

about persistence in inflation leads to very wide confidence intervals for averages computed

over long samples.

4 Inference examples: multiple time series

In this section we use the same structure and tools discussed in the last section to study

some inference problems involving multiple time series. Thus, now let  denote an  × 1
vector of time series and  denote the × 1 vector composed of the th cosine transform
for each of the  variables. Let  denote a  ×  matrix with th row given by  0

 . In

the multivariate model, the assumption of Section 2 about the large sample behavior of

the partial sum process becomes Υ

Pb· c
=1  ⇒ (·), where  is now an  × 1 Gaussian

process and Υ is an  ×  scaling matrix.13 Using the argument from Section 2, this

implies Υ ⇒  with vec() ∼ N (0Σ). In this section we discuss inference problems
in the context of this limiting distribution. We first consider the multivariate (0) model

and inference about its key parameters. We then relate these parameters to population

properties of the trend projections, and return to the empirical question of the relationship

between the trend in GDP and TFP growth rates discussed in the introduction. We end

this section with a discussion of inference in cointegrated models; these are characterized by

linear combinations of the data that are (0) and other linear combinations that are (1).

4.1 Inference in the (0) Model

In the multivariate (0)model  = +, we setΥ = −12 and assume −12
Pb· c

=1  ⇒
Ω12 (·), where Ω is the × long-run covariance matrix of  and is a ×1 multivariate
standard Wiener process. The covariance matrix of vec () then becomes Σ = Ω ⊗ , so

that  ∼ N (0Ω), where  0
 is the 

th row of .

Inference about Ω With
√
 approximately N (0Ω), standard methods for i.i.d.

multivariate normal samples (see, for instance, Anderson (1984)) can be used to obtain infer-

ence. In particular, the limiting distribution of the multivariate sum of squares is Wishart:

13The scaling matrix Υ replaces the scale factor  1− of Section 2 to allow the partial sum of lin-

ear combination of  to converge at different rates, which occurs, for example, if the elements of  are

cointegrated.
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SSX =  0
 ⇒ SSX =  0 ∼(Ω ), and Ω̂ = SSX  is the (low-frequency) MLE

of ΩThis can be used directly for inference about the × parameterΩOften it will be more
interesting to conduct inference about the scalar correlation parameters  = Ω

p
ΩΩ.

By the continuous mapping theorem, ̂ = Ω̂

q
Ω̂Ω̂ ⇒ SSX 

p
SSX SSX. This

limiting distribution is known and is a function only of  and  (see Anderson’s (1984)

Theorem 4.2.2), allowing the ready construction of confidence intervals for  based on ̂.

For example, for the GDP and TFP growth rates, we obtain an equal-tailed 90% confidence

interval for the low-frequency correlation of [028; 086]

Now partition  into a scalar  and a  × 1 vector ,  = ( 0)0 (so that  = − 1),
with corresponding cosine transforms  = ( 

0
)

0 and

√


Ã




!
⇒
Ã





!
∼ N

Ã
0

Ã
Ω Ω

Ω Ω

!!
.

A function of Ω of potential interest is the  × 1 vector  = Ω−1 Ω. Since conditional

on  = (1     ),  =  −  0 is N (0 2) with 2 = Ω − ΩΩ
−1
 Ω,  is the

population regression coefficient in a regression of  on ,  = 1     . Substantively, 
0


provides the best predictor of  given , so it gauges how low-frequency variability in 

predicts corresponding low-frequency variability of . The population 2 of this regression

(that is, the square of the multiple correlation coefficient) is 2 = 1−2Ω and it measures

the fraction of the low-frequency variability in  that can be explained by the low-frequency

variability in .
14

As long as   , inference about these regression parameters follow immediately from

standard small sample results for a linear regression with i.i.d. normal errors:

̂ =

Ã
X

=1


0


!−1Ã X
=1



!
⇒ ̂ =

Ã
X

=1


0


!−1Ã X
=1



!

RSS = 

X
=1

( −  0 ̂ )
2 ⇒ RSS =

X
=1

( −  0̂)
2

with RSS 2 ∼ 2−, the standard error of the regression is ̂
2
 = RSS ( − ) ⇒ ̂2 =

RSS ( − ), the total sum of squares is TSS = 
P

=1 
2
 ⇒ TSS =

P

=1 
2
 and

14Regressions like these using discrete Fourier transforms are familiar the literature on band-spectral

regression (e.g., Engle (1974)). Much of the analysis presented here can be viewed as version of these

methods for a narrow frequency band in the 1 neighborhood of zero.
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Figure 7: Joint confidence Sets for Mean GDP and TFP Growth

the regression 2 is 2 = 1 − RSS TSS ⇒ 2 = 1 − RSS TSS. By standard ar-
guments (e.g. Anderson (1984) section 4.4.3), the distribution of 2 depends only on 2

and , so that a confidence set for 2 is readily computed from 2. Furthermore, with

̂ = ̂2 (
−1

P

=1 
0
)

−1 ⇒ ̂ = ̂2(−1
P

=1 
0
)
−1, inference about  can be

performed by the usual  -statistic  = (̂ − )0̂−1 (̂ − )̂2 ⇒ − (with 

the central  -distribution with  and  degrees of freedom in the numerator and denom-

inator, respectively). For scalar elements of , , usual t-statistic inference is applicable:√
(̂ − )

p
̂ ⇒√(̂ − )

p
̂ ∼Student-−.

Inference about  Let ̄ = (̄1     ̄)
0 be the  × 1 vector of sample means. In exact

analogy to the derivations of Section 3.1, we now have

√
 vec

Ã
(− )0



!
⇒ N (0Ω⊗ +1)

so that in large samples,
√
 ((̄ − ) 1  2      )

0 ∼ N (0Ω). Thus, as previ-
ously suggested by Müller (2004), Hotelling’s (1931)- 2 statistic  ( − )0Ω̂−1 ( − ) ⇒



+1−+1− provides a basis for inference about . Figure 7 shows 67% and 90% confi-

dence ellipses for the average growth rates of TFP and GDP based on the  2-statistic.

Interpreting elements of Ω in terms of time-domain projections: Figure 2 plotted low-

frequency trends for GDP and TFP growth rates, and the two series appear to be highly

correlated. Figure 8 plots the cosine transforms of the two series which are also highly

20



Figure 8: GDP and TFP Growth Cosine Transforms

correlated. These are closely related. Denoting the two series by  (GDP) and  (TFP), the

projections are ̂ = ̄+ 0
Ψ((−12) and ̂ = ̄+ 0Ψ((−12) so −1

P

=1(̂−̄)(̂−
̄) =  0

 . Thus, the variability and covariability of the projection sample paths, (b b),
are determined by the cosine transforms (   ) and the sample means (̄ ̄). Consider the

projection sample path of , centered at  and expressed as a fraction  of the sample, ̂b c−
. Then, from Section 2, 

12(̂b· c−)⇒ (·) = 0+ 0Ψ(·), and similarly for . Thus,
the large-sample variability and covariability of the projections correspond to the variability

and covariability of ̃ = (0
0)0 and ̃ = (0 

0)0. For example, [
R 1
0
 ()

2] =

[tr(̃ ̃ 0)] = (+1)Ω [
R 1
0
 ()

2] = (+1)Ω, and [
R 1
0
 ()  () ] = (+1)Ω.

Thus,  = Ω
p
ΩΩ is alternatively interpreted as the population correlation be-

tween the low-frequency trends () and (), averaged over the sample fraction . Corre-

spondingly, the regression coefficient  = Ω−1 Ω is the population regression coefficient of a

continuous time regression of  (·) on  (·). The conditionally mean zero error function in
this regression, (·) =  (·)− (·), is the part of the variation of (·) that is independent
of  (·). Also, the sample correlation coefficient ̂ = Ω̂

q
Ω̂Ω̂ is recognized as the

sample correlation between the projections ̂ and ̂,  = 1      , and the sample regression

coefficient ̂ can alternatively be computed by a linear regression of ̂ on ̂ and a constant

.

Table 3 shows the results from the OLS regression of the cosine transforms of the growth
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Table 3: OLS regression of cosine transform of GDP growth rates on TFP growth rates

Statistic

Sample size () 12

̂ 0.88

(̂) 0.28

-statistic 3.16

90% confidence interval for  [0.38;1.39]

Standard error (̂) 0.22

2 0.48

90% confidence interval for 2 [0.09;0.75]

Notes: The 90% confidence interval for  is computed using the Student- distribution with 11

degrees of freedom. The 90% confidence interval for 2 is based on the 90% confidence interval for

, which in turn is computed from the exact distribution of the sample correlation coefficient ̂ as

explained in the text.

Figure 9: GDP Growth Trend and Predicted Trend from Regression on TFP Growth

22



rate of GDP onto the growth rate of TFP. The OLS estimate of  is 088, suggesting that a

trend increase in the TFP growth rate of 1% leads to a 0.88% increase in the trend growth

rate of GDP. However, this estimate is based on only 12 observations, and the 90% confidence

interval for  ranges from 0.38 to 1.39.15 The regression 2 is roughly 50%, and the 90%

confidence interval for the correlation of the GDP and TFP trends ranges from 0.31 to 0.86,

suggesting that variations in TFP are important, but not the sole factor, behind variation

in trend per-capita GDP growth rates. Figure 9 plots the historical trend growth of GDP,

̂, along with the predicted values ̂ + ̂̂ from the low-frequency linear regression. TFP

explained slightly more than half of the above average trend GDP growth in the 1960s and

nearly all of the below and then above average growth in 1990s, but explains little of low

growth in the late 1950s. More recently, the plot indicates that TFP growth played only a

small role in the slower than average growth in GDP over the past decade.

4.2 Cointegration

In the general cointegration model there are  variables with different linear combinations of

the variables being integrated of different orders. The notation for the general model can be

taxing, but many insights can be gleaned from a bivariate model with  = [ ]
0, where 

and  are scalar,  ∼ (1) and  =  −  ∼ (0). Denoting the corresponding elements

of  as  = [ ]
0, the partial sum process of  satisfiesÃ

−12
Pb· c

=1 ( − )

−32
Pb·c

=1 

!
⇒
Ã

11(·)
2
R b·c
0
(121 () + (1− 2)122 ())

!
where 1 and 2 are independent Wiener processes and the parameter  denotes the long-

run correlation between the (0) and (1) components. Thus, letting  =  −  ,

[ 12  
−12 ] ⇒ [ ] with [ 0  0]0 ∼ N (0Σ). Because  ∼ (0) and  ∼ (1),

the covariance matrix Σ has the partitioned form: Σ  = 21, Σ = 22, and Σ  =

12
12, where  is the (1) covariance matrix defined in Section 2.

There are a variety of inference questions that arise in the cointegration model, and several

of these are straightforward to address using the low-frequency transforms of the data.16 For

15To put these values in perspective, recall that the standard neoclassical model, which exhibits balanced

growth, implies that a permanent one percentage point increase in TFP leads to a  = (1− )−1 percentage

point long-run increase in GDP, where  denotes the elasticity of output with respect to capital. Thus

 = 15 if  = 23.
16Also see Bierens (1997) for a related approach.
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example, one question asks whether the cointegrating coefficient takes on a specific value,

that is whether  = 0. Müller and Watson (2013) take up this question using the low-

frequency framework. The idea is straightforward. Write  − 0 =  − ( − 0) .

If  = 0, then the term involving  is absent, but otherwise this component is present.

Thus, [ 12( − 0 ) 
−12 ] ⇒ [ + 0] where 0 =  (0 − ). The covariance

matrix of [( + 0)
0  0]0 is readily computed and depends on 0. Thus, a hypothesis

about the value of the cointegrating coefficient, say  = 0 or equivalently  = 0, can

be tested as a restriction on the covariance matrix. After imposing invariance restrictions,

Müller and Watson (2013) show that the scales 1 and 2 can be set to unity, so that  is

the only remaining parameter, and develop an optimal test for  = 0 using a numerical

approximation to the LFD as discussed in the last section. Thus, as in the other inference

examples in the low frequency setting, optimal inference about cointegrating coefficients

becomes a standard problem involving the covariance matrix of normal random vector.

Perhaps a more interesting question involves the cointegration model’s assumption that

 follows an (1) process. What if  followed another persistent process, perhaps one of the

parametric processes described in the last section? In the context of “efficient” regression

inferences about , Elliott (1998) showed that the (1) assumption was crucial in the sense

that large size distortions could arise if  followed a LTUM instead of an exact (1) process.

The low-frequency analysis outlined in the last paragraph is not immune from Elliott’s

critique: it uses the full covariance matrix for [( + 0)
0  0]0, and therefore utilizes the

(1) property of  (through the (1) covariance matrix  that appears in Σ and Σ ).

Müller and Watson (2013) study optimal tests for  = 0 under alternative assumptions

about the trend process. In particular, they show that if the  process is unrestricted, then

the (essentially) most powerful test simply involves testing whether  − 0 is (0) using

the LFST test in (4), a solution to the Elliott critique originally proposed by Wright (2000),

although not in the low-frequency setting.17

17The Müller and Watson (2013) result on the near-optimality of the LFST test holds in the cointegration

model with a single cointegrating vector. If there are multiple cointegrating vectors then it is possible to

obtain more powerful tests even absent assumptions on the process for the common stochastic trends.
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Figure 10: Periodogram of GDP Growth Rates

5 Relationship to Spectral Analysis

This section relates our method to spectral analysis. A first subsection discusses why one

cannot simply use traditional spectral analysis inference tools to answer questions about

low-frequency variability. A second subsection derives the limiting covariance matrix of the

cosine transforms in terms of the spectral density of the underlying time series. A calculation

shows that the covariance matrix is fully determined by the shape of the spectral density

close to the origin, a function we call the “local-to-zero spectrum.”18 In the third subsection,

we present a central limit theorem for low frequency transforms under general forms of the

local-to-zero spectrum.

5.1 Scarcity of low-frequency information and its extraction using

cosine transforms

Scarcity of low-frequency information. In traditional spectral analysis (see, for instance,

Priestley (1981) or Brockwell and Davis (1991)), the periodogram is the starting point to

learn about the spectral properties of a time series. Figure 10 plots the periodogram for

quarterly GDP growth rates. The shaded portion of the figure shows the frequencies corre-

sponding to periods of 11 years or longer. A mere six periodogram ordinates fall into this

18This subsection largely follows the development in Müller and Watson (2015).
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Figure 11: 2 Plot of Generic Trigonometric Series on Cosine Transforms

average over phase shift maximum over phase shift minimum over phase shift

multip les of  multip les of  multip les of 

low-frequency region, and this count would remain unaltered if GDP growth was instead

sampled at the monthly or even weekly frequency. Intuitively, 67 years of data contain only

limited information about components with periods of 11 years or longer.

Traditional inference about the shape and value of the spectral density is based on averag-

ing periodogram ordinates. The asymptotics are driven by an assumption that the spectrum

is locally flat (that is, the spectrum is fixed and continuous), so that as the sample size grows,

eventually there will be more and more relevant periodogram ordinates to estimate the value

of the spectral density at any given point. Under such asymptotics, Laws of Large Numbers

and Central Limit Theorems are applicable and enable asymptotically normal inference.

But with the relevant number of periodogram ordinates as small as six, such asymptotics

do not provide good approximations. What is more, in any non-(0) model, the spectrum

has non-negligible curvature even within a (−1) band around zero, and this band contains

a fixed number of periodogram ordinates. For these reasons, the traditional inference tools

of spectral analysis are not directly applicable.

Extracting low-frequency information using cosine transforms. Do a small number of

cosine transforms do a good job at extracting the low-frequency information that is contained

in the sample data? One useful way to answer this question is to consider the a perfectly

periodic time series of frequency ,  = sin(+ ) with phase shift  ∈ [0 ]. Ideally, the
low-frequency cosine transforms  would capture the entire variation of  for 0 ≤  ≤ ̄

for small values of ̄ and none of the variation if   ̄. In large samples, with ̄ = ̄ for

fixed ̄, the corresponding 2 of a regression of  on Ψ is well approximated by the 
2 of

a continuous time regression of sin(+) on the ×1 cosine functions Ψ() and a constant
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for  ∈ [0 1]. Figure 11 plots this continuous time 2 as a function of  for ̄ = 12. While
the 2 plot does not follow the ideal step function form, it still provides evidence that the

low-frequency cosine transforms do a reasonably good job at extracting the low-frequency

information of interest.19

5.2 Local-to-Zero Spectra

Because Σ is the limiting covariance matrix of the cosine transforms, which in turn are

weighted averages of the underlying series , the elements of Σ depend on the autocovari-

ances of the -process. These, in turn, are linked to spectrum of the process, and this makes

it possible to express Σ as a function of the spectrum. Because the cosine transforms extract

low-frequency information in , it should not be surprising that it is the spectrum close to

zero that determines Σ. The remainder of this subsection makes this explicit by showing

that Σ can expressed as a function of the spectrum evaluated at frequencies in a (−1)

neighborhood of frequency zero, a function we call the local-to-zero spectrum.

Local-to-zero spectrum for a stationary process. Suppose that  is a stationary process

with spectral density  ().
20 Suppose that in the (−1) neighborhood of the origin, the

suitably scaled spectral density converges (in an 1 sense)

 1−2 ( )→ () (5)

For example, the FRM is traditionally defined by the assumption that  () is proportional

to ||−2 for small , so that (5) holds with  = 1
2
− . More generally, the function () is

the large sample limit of the shape of the original spectrum  close to the origin, and we

correspondingly refer to it as the “local-to-zero” spectrum.

Now consider a weighted average of ,

 =

Z 1

0

()b c+1 = −1
X
=1

̃

for some Riemann integrable function  and ̃ = 
R 
(−1) (). In light of (1), the

cosine transforms are an example of  . Recalling that the 
th autocovariance of  is given

19Low-frequency Fourier transforms perform similarly well for extracting low-frequency variations. See

Müller and Watson (2008) for the corresponding 2 plot.
20The  subscript on  accomodates “double-array” processes such as the LTUM in which the AR(1)

coefficient depends on  . To ease notation, we omit the corresponding  subscript on  =  in this

subsection.
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by
R 
−  ()

−i, where i =
√−1, we obtain for the covariance between two such weighted

averages, 1 and 2 :

 2(1−)[1
2
 ] = −2

"Ã
X
=1

̃1

!Ã
X
=1

̃2

!#

= −2
X
=1

X
=1

̃1̃
2
[]

= −2
X
=1

X
=1

̃1̃
2


Z 

−
 ()

−i(−)

= −2
Z 

−
 ()

Ã
X
=1

̃1
i

!Ã
X
=1

̃2
−i
!


=  1−2
Z 

−
 ( )

Ã
−1

X
=1

̃1
i

!Ã
−1

X
=1

̃2
−i

!


→
Z ∞

−∞
()

µZ 1

0

1()i

¶µZ 1

0

2()−i

¶
 (6)

Thus the limiting covariance matrix Σ depends on  only through  (albeit for −∞   

∞, a point we return to below).
Local-to-zero pseudo-spectrum. This calculation requires the spectral density of  to

exist. For some models, such as the (1) model, only the spectral density of ∆ is well

defined, so a generalization of (6) to this more general case is required. This is possible when

the -weights add to zero, that is when
R 1
0
() = 0 (otherwise, if ̄ doesn’t have a finite

second moment, then neither does  ).

Let ∆ () denote the spectral density of∆, and assume it has a local-to-zero spectrum

defined as

 3−2∆ ( )→ ∆() (7)

With ̃ = 
R 
(−1) () and ̃ = −1

P−1
=1 ̃, summation by parts yields

−1
P

=1 ̃ = −
P

=1 ̃∆, since ̃+1 = 0. Thus

 2(1−)[1
2
 ] =  2(1−)

"Ã
X
=1

̃1
∆

!Ã
X
=1

̃2
∆

!#

=  3−2
Z 

−
∆ ( )

Ã
−1

X
=1

̃1


i

!Ã
−1

X
=1

̃2


−i
!

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→
Z ∞

−∞
∆()

µZ 1

0

1()i

¶µZ 1

0

2()−i

¶
 = 12

where() =
R 
0
(). Furthermore, by integration by parts and(1) = 0,

R 1
0
()i =

− R 1
0
()

i

i
, so that

12 =

Z ∞

−∞

∆()

2

µZ 1

0

1()i

¶µZ 1

0

2()−i

¶
. (8)

Thus, when
R 1
0
1() =

R 1
0
2() = 0, equation (8) generalizes (6): If the spectral density

of  is well defined, then  ()|1 − −i|2 = ∆(), and (5) and (7) are equivalent, since

 2|1− −i |2 → 2, so that ∆() = ()2. On the other hand, if the spectral density of

 does not exist, then  () = ∆()|1− −i|2 suitably defines a “pseudo spectrum” of
 with local-to-zero limit () = ∆()

2, so (8) still applies.

Σ as a weighted average of (). Several features of Σ follow from the representation

(8). Since  is an even function and 1 and 2 are real valued, 12 can be rewritten as

12 = 2
R∞
0

()12(), where 12() = Re[
³R 1

0
1()i

´³R 1
0
2()−i

´
]. Elements

of Σ are thus equal to a weighted average of the local-to-zero spectrum . With 1() =√
2 cos() and 2() =

√
2 cos(), a calculation shows that 12() = () = 0 for

1 ≤   ≤  and  +  odd, so that [] = 0 for all odd  + , independent of the

local-to-zero spectrum . With 0 the suitably scaled limit of the sample mean ̄ (so that

() = 1), this holds for all   = 0 1 2   .

Figure 12 plots (·) for selected values of  and  The figure displays the weights

 corresponding to the covariance matrix of the vector (012 3 10 1112)
0,

organized into a symmetric matrix of 9 panels corresponding to 0, (12 3)
0 and

(10 1112)
0. The weights for the variances  are shown in bold and the weights for

the covariances ,  6=  are shown as thin curves. A calculation shows that covariance

weights ,  6= , integrate to zero, which implies that for a flat local-to-zero spectrum ,

Σ is diagonal. As can be seen from the panels on the diagonal, the variance of  is mostly

determined by the values of  in the interval  ± 2. Further, as long as  is somewhat
smooth, the correlation between  and  is very close to zero for | − | large. For ,

  0, the weights  put zero mass on  = 0; it is this feature that makes it possible for

Σ to be well defined even if () is not integrable, as is the case if  is only a “pseudo-

spectrum”. In contrast, because
R 1
0
() 6= 0 for 0, there is positive weight placed on

 = 0, so the variance of 0 will not exist for processes such as the (1) model.
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Figure 12: Weights on Local-to-Zero Spectrum for Covariance Matrix of

(0123 101112)
0
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Figure 13: Local-to-Zero Log-Spectra of some Benchmark Models of Low-Frequency Vari-

ability

31



Since the local-to-zero spectrum determines Σ,  is the key property of the underlying

process  for the purposes of “low frequency econometrics.” It is instructive to revisit the

three benchmark models LTUM, LLM and FRM introduced in Section 3.2 from this per-

spective. As already noted above, the FRM model has a (pseudo-) spectrum proportional

to ||−2 for  close to zero, so that () ∝ ||−2, −12    32. In particular  is

constant for the (0) model and it is proportional to −2 for the (1) model. This implies

that the local-to-zero spectrum of the LLM satisfies () ∝ 2+−2. Finally, in the LTUM,

a straightforward calculation shows that () ∝ 1(2+2). (Note that ( )→ (∞∞) and
( )→ (0 0) recover the (0) and (1) model, respectively). Figure 13 plots the logarithm

of the local-to-zero spectra of the three benchmark models for selected values of ,  and 

Choice of . The -axes in Figures 11-13 are usefully thought of zooming in on the shaded

area in the periodogram plot of Figure 10: In terms of the original time series, local-to-zero

frequencies of, say, ||  12 correspond to cycles of periodicity 6. Thus, with 66 years

worth of data (of any sampling frequency), the shape of the spectrum for frequencies below

11 year cycles more or less determines the properties of the cosine transforms for  = 12. In

the context of a specific model of low-frequency variability, such as the (0) or (1) model,

or parametric families such as the FRM, LLM or LTUM, the choice of  then governs the

frequencies for which the model’s implications are exploited for inference. The choice of

 is thus a trade-off between robustness and efficiency: a large  enables more powerful

inference, as more cosine transforms are used to learn about model parameters of interest,

but a large  also increases the danger of relying on a misspecified model for this inference,

as the low frequency model must accurately describe the spectrum over a wider frequency

band. Roughly speaking, the low-frequency model is fit to the  observations  , which

suggests that in general, the degree of misspecification is a function of , without any obvious

relationship to the underlying sample size or time span. The choice of  then amounts to a

regularity assumption about the properties of the underlying data (relative to the model of

low-frequency variability) that makes inference possible.21 For instance, conducting inference

about  in the context of the (0) model with  = 12 and 66 years of data implicitly assumes

that the spectrum is approximately flat over all frequencies corresponding to cycles of 11

21Without additional strong cross-frequencies restrictions, it is not possible to systematically select the

appropriate  from data: If one insists on correct inference whenever the crucial central limit theorem (2)

holds for some conservatively small 0, then no data dependent rule for selecting   0 can improve on

inference that simply uses  = 0. See Müller (2011), especially page 414, for a formal discussion.
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years or more.

Multivariate local-to-zero spectra. As a final generalization of the connection between the

second moments of weighted averages and the spectrum of the underlying series, consider

now the case where  is a ×1 vector. Its spectral density then is a × Hermitian matrix

valued function  (). Assume that for some  ×  matrix Υ , Υ ( )Υ
0
 → ().

Let  = 0Υ

P

=1 ̃

 for  = 1 2. Then proceeding as for (6) yields

[1
2
 ]→

Z ∞

−∞
10()2

µZ 1

0

1()i

¶µZ 1

0

2()−i

¶
,

and if  3Υ∆ ( )Υ
0
 → ∆() and

R 1
0
1() =

R 1
0
2() = 0, then also

[1
2
 ]→

Z ∞

−∞

10∆()2

2

µZ 1

0

1()i

¶µZ 1

0

2()−i

¶


5.3 A Central Limit Theorem

The inference results presented in Sections 3 and 4 all depend crucially on the large sample

Gaussianity of the suitably scaled cosine transform  , and not just on the value of the

limiting covariance matrix Σ In Section 2, we provided an argument for this asymptotic

normality based on existing results about the large sample behavior of the partial sum

process for some benchmark models. The last subsection identified the local-to-zero spectrum

 as the key feature of  that determines the asymptotic covariance matrix. We now

present a corresponding central limit theorem that takes the local-to-zero behavior of the

spectral density function as its starting point and is applicable to general weighted averages

 12
R 1
0
()b c+1. Müller and Watson (2015) derive a corresponding CLT for weighted

averages with weights that add to zero,
R 1
0
() = 0, which allows for more persistent

processes  (as discussed in the last subsection).

Theorem 1 Let  =
P∞

=−∞ −. Suppose that

(i) {F} is a martingale difference sequence with (2 ) = 1, sup(||2+)  ∞ for

some   0, and

(2 − 1|F−) ≤  (9)

for some sequence  → 0.

(ii) For every   0 the exists an integer   0 such that

lim sup→∞ −1
P∞

=+1

¡
 sup||≥ ||

¢2
 .

33



(iii)
P∞

=−∞ 2  ∞ (but not necessarily uniformly in  ). The spectral density of 

thus exists; denote it by  : [− ] 7→ R.

(iii.a) Assume that there exists a function  : R 7→ R such that  7→ () is integrable,

and for all fixed , Z 

0

| (

)− ()|→ 0. (10)

(iii.b) For every diverging sequence  →∞

−1
Z 

 

 ()
−2 =

Z 



 ( )
−2→ 0 (11)

(iii.c)

−12
Z 

1

 ()
12−1 = −12

Z 

1

 ( )
12−1→ 0 (12)

(iv) The function  : [0 1] 7→ R is of bounded variation.

Then

 12
Z 1

0

()b c+1⇒ N (0
Z ∞

−∞
()

¯̄̄̄Z 1

0

−i()

¯̄̄̄2
) (13)

The proof of Theorem 1 is in Appendix A.

The scaling of  in the theorem is such that  ( ) converges to the local-to-zero

without any additional scaling by a power of  (so relative to the discussion in Section 5.2,

 in Theorem 1 is multiplied by  12−).

To better understand the role of assumptions (ii) and (iii), consider some leading ex-

amples. Suppose first that  is causal and weakly dependent with exponentially decay-

ing , || ≤ 0
−1 for some 0 1  0, as would arise in causal and invertible

ARMA models of any fixed and finite order. Then −1
P∞

=+1

¡
 sup||≥ ||

¢2 → 0

for any   0, () is constant and equal to the long-run variance of  divided by

2, and (11) and (12) hold, since  is bounded,
R∞


−2 → 0 for any  → ∞ and

−12
R 
1

−1 = −12 ln( )→ 0.

Second, suppose  is fractionally integrated with parameter  ∈ (−12 12). With
 scaled by 

−,  ≈ 0
−−1, so that −1

P∞
=+1

¡
 sup||≥ ||

¢2 → R∞


2−2,

which can be made arbitrarily small by choosing  large. Further, for  close to zero,

 () ≈ 2
0( )

−2, so that () = (2)−12
0
−2. Under suitable assumptions about about

higher frequency properties of , (11) and (12) hold, since −1
R 
 

( )−2−2 =R 


−2−2 → 0 and −12
R 
1
( )−−1 = −12

R 
1

−−1 = −12−1(1 −
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( )−) → 0. For instance, even integrable poles in  at frequencies other than zero

can be accommodated.

Third, suppose  is an AR(1) process with local-to-unity coefficient  = 1 −
 and innovation variance equal to −1. Then  = −1 ,  ≥ 0. Thus

−1
P∞

=+1

¡
 sup||≥ ||

¢2 → R∞


−2, which can be made arbitrarily small by choos-

ing  large. Further,  () = (2)−1−2|1 − 
−i|2, which is seen to satisfy (10) with

() = (2)−1(2 + 2)−1. Conditions (11) and (12) also hold in this example, since

 () ≤ (2)−1.
Corresponding central limit theorems for a vector of weighted averages of one or multiple

time series follow readily from Theorem 1 by invoking the Cramer-Wold device.

6 Concluding remarks

Inference about low-frequency phenomena is challenging because of the scarcity of corre-

sponding sampling information. We suggest extracting this information by computing 

trigonometrically weighted averages of the time series of interest. We then apply an as-

ymptotic framework that explicitly accounts for the scarcity by keeping the number  fixed,

so that in the limit, the inference problem becomes a small sample problem involving 

Gaussian variables. In many instances, this small sample problem is readily solved by classic

results about inference in small Gaussian samples. In other cases, one can apply analytical

or numerical approaches to derive powerful inference from first principles.

The results presented here did not allow for a deterministic time trend in the  process.

One approach to dealing with deterministic trends is to use inference methods that are

unaffected by their presence. Alternatively, for example in the context of measuring the

covariability of multiple time series, one might model the presence of common time trends.

In either case, it is straightforward to isolate the deterministic trend component by using a

suitable set of  weight functions, where one is equal to the (demeaned) trend (and whose

value is potentially ignored in the subsequent analysis), and the other  − 1 trigonometric
weights are orthogonal to both a constant and a time trend. One such set of weights is

derived in Müller and Watson (2008).

The results presented here were also based on the large sample Gaussianity of the 

weighted averages due to a central limit theorem. The key mechanisms of the approach,

however, can be used to deduce a non-Gaussian limit distribution after suitably adjusting
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the solution of the now non-Gaussian limit problem. For example, consider a stochastic

volatility model for the scalar series , where the volatility process is, say, local-to-unity.

Conditional on the volatility path, the cosine transforms have a Gaussian limit, with a

covariance matrix that depends on the realization of the volatility path. The unconditional

distribution thus becomes a mixture of normals, and the corresponding small sample problem

becomes inference about the parameters of this normal mixture.

More generally, we believe our general approach to low-frequency econometrics to be

useful for issues beyond those discussed here. For instance, in Müller and Watson (2015),

we use this framework to derive predictive sets for very long-run predictions that are valid

for a wide range of persistent processes. We are currently working on inference about the

degree of covariability of potentially non-(0) series. And it would also be of great interest

to connect the low-frequency econometrics approach more directly with structural economic

models, such as asset pricing models that stress long-run uncertainty.

A Proof of Theorem 1

The proof of Theorem 1 is based on the following Lemmas.

Lemma 1 Under assumption (iv) of Theorem 1, there exists   ∞ such that

sup0≤≤ |
P

=1 
−i̃| ≤ −1.

Proof. Let  =
P

=1 
i = i(1− i)−1(i − 1). By summation by parts,

X
=1

−i̃ =  ̃ −
X
=1

−1(̃ − ̃−1)

=
i

1− i

Ã
(i − 1)̃ −

X
=1

(i(−1) − 1)(̃ − ̃−1)

!

with 0 = ̃0 = 0. For 0 ≤  ≤ , |i(1 − i)−1| = (2 sin(2))−1 ≤ 2. Furthermore,

lim sup→∞
P

=1 |̃ − ̃−1| ∞, since  is of bounded variation.

Lemma 2 2 = Var[
−12P

=1 ̃]→ 2 =
R∞
−∞ ()

¯̄̄R 1
0
−i()

¯̄̄2
.

Proof. Let  be the autocovariances of . We find

Var[−12
X
=1

̃] = −1
X

=1

 ( − )̃̃
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= −1
X

=1

µZ 

−
i(−) ()

¶
̃̃

= −1
Z 

−
 ()

¯̄̄̄
¯
X
=1

i̃

¯̄̄̄
¯
2



Now for any fixed , we will show

−1
Z 

−

 ()

¯̄̄̄
¯
X
=1

i̃

¯̄̄̄
¯
2

 =

Z 

−
 (




)

¯̄̄̄
¯−1

X
=1

i ̃

¯̄̄̄
¯
2



→
Z 

−
()2

¯̄̄̄Z 1

0

i()

¯̄̄̄2
 (14)

First note that for any two complex numbers  , | − | ≥ ||| − |||, so that |||2 − ||2| =
|(||+ ||)(||− ||)| ≤ (||+ ||)|− |. Thus,¯̄̄̄
¯̄¯̄̄̄Z 1

0

i()

¯̄̄̄2
−
¯̄̄̄
¯−1

X
=1

i ̃

¯̄̄̄
¯
2
¯̄̄̄
¯̄ ≤

2 sup

|()| ·

¯̄̄̄
¯−1

X
=1

i ̃ −
Z 1

0

i()

¯̄̄̄
¯

and ¯̄̄̄
¯−1

X
=1

i ̃ −
Z 1

0

i()

¯̄̄̄
¯

=

Z 1

0

|i()− ib c ()|

≤ sup

|()|

Z 1

0

|1− i(b c−)|

For any real , |1− i|  ||, so that sup||≤ |1− i(b c−)| ≤  → 0, and sup |()| ∞
(bounded variation implies boundedness). Thus,

sup
||≤

¯̄̄̄
¯̄
¯̄̄̄
¯−1

X
=1

i ̃

¯̄̄̄
¯
2

−
¯̄̄̄Z 1

0

i()

¯̄̄̄2 ¯̄̄̄¯̄→ 0

and (14) follows from assumption (iii.a) by straightforward arguments.

Thus, for any fixed ,

( ) = −1
Z 

−

 ()

¯̄̄̄
¯
X
=1

i̃

¯̄̄̄
¯
2

−
Z 

−
()

¯̄̄̄Z 1

0

i()

¯̄̄̄2
 → 0
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Now for each  , define  as the largest integer  ≤  for which sup 0≥ |( 0)| ≤ 1 (and

zero if no such  exists). Note that ( ) → 0 for all fixed  implies that  → ∞, and by
construction, also 

( )→ 0. The result now follows from

−1
Z 

 

 ()

¯̄̄̄
¯
X
=1

i̃

¯̄̄̄
¯
2

 ≤ 2−1
Z 

 

 ()
−2→ 0

by assumptions (iii.b) and Lemma 1.

Lemma 3 −12 sup |
P

=1 ̃−|→ 0.

Proof. Recall that for any two real, square integrable sequences {}∞=−∞ and {}∞=−∞,P∞
=−∞  =

1
2

R 
− ̂()̂

∗(), where ̂() =
P∞

=−∞ 
−i and ̂∗() =

P∞
=−∞ 

i .

Thus
X
=1

̃− =
−X
=1−

̃+ =
1

2

Z 

−
i̂ ()̂

∗
 ()

where ̂ () =
P∞

=−∞ 
−i and ̂ () =

P
=1 

−i ̃ , so that i̂ () =P
=1 

−i(−)̃ =
P−

=1− 
−i ̃+ , and ̂∗ is the complex conjugate of ̂  Now since

 () =
1
2
|̂ ()|2, we find

2|
X
=1

̃−| = |
Z 

−
i̂ ()̂

∗
 ()| ≤

√
2

Z 

−
|̂ ()| ()12

Also, using |̂ ()| ≤
P

=1 |̃ |, we haveZ 1

0

|̂ ()| ()12 ≤ −1
X
=1

|̃ | ·
Z 1

0

 ( )
12

≤ −1
X
=1

|̃ | ·
µZ 1

0

 ( )

¶12

→
Z 1

0

|()| ·
µZ 1

0

()

¶12
∞

where the convergence follows from assumption (iii.a) and straightforward arguments. Furthermore,

by Lemma 1, Z 

1

|̂ ()| ()12 ≤ 

Z 

1

 ()
12−1.

The result follows by assumption (iii.c).
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Lemma 4 For every   0 there exists a   0 such that

lim sup
→∞

Var[−12
X
=1

̃ − −12
X

=−

⎛⎝ X
=1

̃−

⎞⎠ ]  .

For this  , 2 = Var[−12
P

=−

³P
=1 ̃−

´
] satisfies lim sup→∞ |2 −2|  .

Proof. We have

−12
X
=1

̃ =

∞X
=−∞

⎛⎝ X
=1

̃−

⎞⎠ 

so that, with ̄ = sup
0≤1 |()| ∞ (bounded variation implies boundedness),

Var[−12
X
=1

̃ − −12
X

=−

⎛⎝ X
=1

̃−

⎞⎠ ]

= −1
−−1X
=−∞

⎛⎝ X
=1

̃−

⎞⎠2 + −1
∞X

=+1

⎛⎝ X
=1

̃−

⎞⎠2

≤ ̄2−1
∞X

=+1

⎛⎝ X
=1

(|−|+ |+|)
⎞⎠2

≤ 4̄2−1
∞X

=+1

Ã
 sup
||≥−

||
!2

= 4̄2−1
∞X

=(−1)+1

Ã
 sup
||≥

||
!2

which can be made arbitrarily small by choosing  large enough via assumption (ii).

The second claim follows directly from Lemma 2.

Lemma 5 For any large enough integer   0, −1
−12P

=−

³P
=1 ̃−

´
 ⇒

N (0 1).
Proof. By the second claim in Lemma 4 and Lemma 2,  = (1) and −1 = (1). By

Theorem 24.3 in Davidson (1994), it thus suffices to show (a) −12 sup1≤≤ |
P

=1 ̃−|
→

0 and (b) −1
P

=−

³P
=1 ̃−

´2
(2 − 1)

→ 0.

(a) is implied by the Lyapunov condition via Davidson’s (1994) Theorems 23.16 and 23.11.

Thus, it suffices to show that

X
=−

[|−12
⎛⎝ X

=1

̃−

⎞⎠ |2+]→ 0
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Now

X
=−



⎡⎢⎣
¯̄̄̄
¯̄−12

⎛⎝ X
=1

̃−

⎞⎠ 

¯̄̄̄
¯̄
2+
⎤⎥⎦

≤ −1−2
X

=−

¯̄̄̄
¯̄ X
=1

̃−

¯̄̄̄
¯̄
2+

(||2+)

≤ (sup

(||2+)) · −2 sup



¯̄̄̄
¯̄ X
=1

̃−

¯̄̄̄
¯̄


· −1
X

=−

¯̄̄̄
¯̄ X
=1

̃−

¯̄̄̄
¯̄
2

= (sup

(||2+)) ·

⎛⎝−12 sup


¯̄̄̄
¯̄ X
=1

̃−

¯̄̄̄
¯̄
⎞⎠

· 2 → 0

where the convergence follows from Lemma 3.

For (b), we apply Theorem 19.11 of Davidson (1994) with Davidson’s  and  chosen as


 = (

2
 − 1) and  = −1

³P
=1 ̃−

´2
. Then 



 = 2 − 1 is uniformly

integrable, since sup(||2+) ∞. Further,

X
=−

 = −1
X

=−

⎛⎝ X
=1

̃−

⎞⎠2 = 2 = (1)

and

X
=−

()
2 = −2

X
=−

⎛⎝ X
=1

̃−

⎞⎠4

≤ sup
−≤≤

¯̄̄̄
¯̄−12 X

=1

̃−

¯̄̄̄
¯̄
2

· −1
X

=−

⎛⎝ X
=1

̃−

⎞⎠2

= sup
−≤≤

¯̄̄̄
¯̄−12 X

=1

̃−

¯̄̄̄
¯̄
2

· 2 → 0

where the convergence follows from Lemma 3.

Proof of Theorem 1:

By Lemmas 2, 4 and 5, for large enough  ,

−1−12
X
=1

̃ =



 +





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where  ⇒ N (0 1) lim sup→∞(2 )   and lim sup→∞ |2 − 2|  . Thus, by Slutzky’s

Theorem, as  → 0 the desired convergence in distribution follows. But  was arbitrary, which

proves the Theorem.
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