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I. Introduction

Cross-sectional asset pricing research has linked stocks’ expected returns to a large set of firm

characteristics. To summarize these cross-sectional pricing patterns in a reduced-form pricing

model, researchers often construct stochastic discount factor (SDF) proxies with multiple

characteristics-based factors. Individual assets’ weights in these factor portfolios are functions

of stock characteristics. Researchers use a variety of different heuristic approaches to specify

these weights. For example, Fama and French (1993) sort stocks by characteristics and then

form portfolios by applying quintile cutoffs (sorted factors); Kozak, Nagel, and Santosh (2020)

construct portfolios with weights proportional to stocks’ centered univariate cross-sectional

rank for each characteristic (univariate factors); Fama and French (2020) use the slopes

of monthly cross-sectional OLS regressions of returns on characteristics as factor portfolio

returns (OLS factors).1

There is, however, only one unique SDF—or, equivalently, one mean-variance efficient

portfolio return—that is spanned by returns of the individual assets (Hansen and Jagannathan

1991). Under which conditions do these different heuristic methods yield this SDF? Put

differently, under which conditions is the investment opportunity set not deteriorating if one

aggregates individual assets to these factor portfolios? Somewhat surprisingly, the answer to

this fundamental question is not available in the literature.

Clearly, some special conditions must be met because the weights of individual assets in

the mean-variance efficient portfolio weights depend on the return covariance matrix, but

none of these heuristic methods use any information from the covariance matrix in factor

construction. Our first objective in this paper is to work out what these conditions are.

We set estimation issues aside at first and work with population moments. We assume

1. More precisely, Fama and French (2020) use a hybrid approach where individual stocks are first sorted
into a relatively large number of characteristics-based portfolios and the value-weighted returns and average
characteristics of these portfolios are then the input for the cross-sectional OLS regressions. The MSCI
BARRA factor model, which goes back to Rosenberg (1974) and is widely applied in industry, is also based
on OLS factors.
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that conditional expected returns of N individual stocks are linear in J ≤ N firm charac-

teristics collected in the N × J characteristics matrix Xt. At this conceptual level, this

assumption is very general since the set of characteristics could also contain nonlinear func-

tions of some underlying basic characteristics. For instance, sorted factors can be subsumed

by univariate factors if characteristics are specified as step functions. This linearity assump-

tion only acquires substantive empirical content once a researcher has fixed a specific set of

characteristics that she works with.

As a starting point, we show that the SDF that prices all individual assets can be ex-

pressed as a multifactor SDF spanned by J factors that are the slopes of cross-sectional

GLS regressions of returns on lagged firm characteristics (GLS factors). The inverse of the

conditional covariance matrix of returns serves as the GLS weighting matrix. The matrix of

individual assets’ conditional betas on the GLS factors is then exactly equal to Xt.
2

In practice, construction of these GLS factors would be difficult because it requires esti-

mating and inverting a large conditional covariance matrix. For this reason, it is important

to know whether heuristic approaches that bypass this inversion problem can deliver factors

that span the SDF. Sorted factors, univariate factors, and OLS factors are all simply weight-

ing stocks by columns of Xt or a nonsingular linear transformation thereof. We show that

these factors span the SDF if and only if the conditional covariance matrix Σt of individual

asset returns takes the specific form

Σt = XtΨtX
′
t +U tΩtU

′
t, X ′

tU t = 0. (1)

This means that there must be a clean separation among the sources of systematic risk such

that loadings on up to J systematic factors are perfectly spanned by Xt while loadings on

the remaining ones are orthogonal to Xt. When (1) holds, individual assets’ betas on OLS

factors are exactly equal to Xt, i.e., covariances are equal to characteristics. Fama and

2. The GLS factors are similar to the characteristics-efficient portfolios of Daniel, Mota, Rottke, and Santos
(2020), but in our analysis we allow for time-varying conditional moments.
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French (2020) argue that the OLS factors can be used as asset pricing factors in time-series

regressions with conditional betas set equal to Xt, but our result shows that this is true if

and only if condition (1) is satisfied.

Condition (1) is more likely to hold approximately when Xt includes a large, compre-

hensive set of characteristics. In this case, important sources of stock return covariance can

be absorbed in the first term of Σt in (1), which leaves U t and violations of X ′
tU t = 0

quantitatively unimportant. Additional characteristics can help even if they are unrelated to

expected returns as long as they help to capture major sources of stock return covariances.

But if the number of characteristics is small—as in popular low-dimensional factor models

with only four or five characteristics-based factors—there is little reason to think that this

small number of characteristics should be sufficient to span loadings on all major sources of

covariance.

Importantly, the mean-variance inefficiency of heuristic factor models that we study does

not come from omitting characteristics. If condition (1) does not hold, heuristic factors

are inefficient relative to GLS factors even though they use the same characteristics. The

inefficiency of heuristic factors comes from contamination with unpriced risks that are not

compensated with higher mean returns. This is different from, e.g. Giglio and Xiu (2021),

who study biases in factor risk premia estimates due to omitted priced factors which are

likely associated with omitted characteristics.

Existing empirical results in the literature show that commonly-used heuristic factors are

contaminated with unpriced risks, which suggests that low-dimensional models based on these

factors do not satisfy condition (1).3 Motivated by these findings, researchers have developed

heuristic methods to remove unpriced components from heuristic factors. Daniel, Mota,

Rottke, and Santos (2020) (DMRS) construct hedge portfolios that have positive loadings

3. For example, Gerakos and Linnainmaa (2018) find that the HML value factor is contaminated with
unpriced components; Back, Kapadia, and Ostdiek (2015) find that OLS factors have alpha with respect to
the standard sorted factors of Hou, Xue, and Zhang (2015) and Fama and French (2015); Grinblatt and Saxena
(2018) find that sorted factors do not price the basis portfolios from which they were constructed; Chib, Lin,
Pukthuanthong, and Zeng (2021) find that the method of factor construction affects asset pricing performance.
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on the original factors but zero exposure to the underlying characteristics that determine

expected returns. Residualizing the original factors with respect to the hedge portfolio returns

removes unpriced risks. However, it is not clear under which conditions this heuristic hedging

approach actually yields a better approximation of the SDF. Our second objective therefore

is to understand the conditions under which this hedging approach can be used to recover

factors that span the SDF.

We show that the hedged factors span the SDF if the covariance matrix has the structure

in (1), but with the requirement X ′
tU t replaced with the requirement that there exists a

decomposition such that

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, X ′

tEt = 0, (2)

where V t is an N × J matrix. This is a weaker condition than X ′
tU t because here columns

of Xt can be correlated with columns of U t, as long as this correlation comes only through

the J columns of V t. Again, this condition is more likely to hold when researchers consider

a large, comprehensive set of characteristics.

While DMRS consider only one round of hedging, there is no reason to stop after one

round. We show that iteration on this approach, by hedging once more the already-hedged

factor portfolios can yield further improvements and further weakens the requirements on the

covariance matrix. One can think of this iterated hedging approach as incorporating more

and more information from the covariance matrix into the factors which brings them closer

to GLS factors.

The approaches we discussed so far construct J factors to capture the pricing informa-

tion of J characteristics. Dimension-reduction methods aim to span the SDF with a smaller

number of K < J factors while again avoiding the need to invert an estimate of Σt. Different

approaches for dimension reduction exist in the literature, but it is not clear what the nec-

essary conditions are for the factors constructed with these methods to span the SDF. Our

third objective is therefore to establish these conditions.
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We show that if and only if the conditional covariance matrix has a structure like in (1),

but with Xt replaced by lower-dimensional K ≤ J linear combinations of characteristics

collected in XtQt, then portfolios with weights equal to XtQt, or a non-singular linear

transformation thereof, span the SDF. We further show that under these conditions, two

prominent methods of dimension reduction, the instrumented principal components method

(IPCA) of Kelly, Pruitt, and Su (2019) and the projected PCA method (PPCA) of Kim,

Korajczyk, and Neuhierl (2021) are closely related. IPCA can then be implemented using

simple PCA on OLS factors while PPCA can be implemented via simple PCA on univariate

factors constructed using orthonormalized characteristics.

Finally, we turn to empirical implementation. Our theoretical results are all stated in

terms of population moments. However, we find that our theoretical results also characterize

well the properties of factor models with empirically estimated moments.

In the first part of our empirical analysis, we primarily focus on the properties of OLS fac-

tor models constructed using the stock characteristics from Kozak (2019) and Kozak, Nagel,

and Santosh (2020). Consistent with our theoretical results, OLS factors generally do not

span the SDF that prices individual stocks. We infer this from the fact that hedging the

OLS factors’ unpriced risk exposures, or constructing approximate GLS factors, produces

statistically significant improvements of the maximum squared Sharpe ratio attainable in-

and out-of-sample. Iterating the hedging procedures produces further gains in the maximum

squared Sharpe ratio. Furthermore, while these gains are large for small-scale factor models

that use only a few characteristics, they vanish when we use a large number of characteristics

to construct the OLS factors. This is in line with our conclusion from the theoretical analysis

that condition (1) is more likely to hold, and therefore OLS factors more likely to span the

SDF that prices individual stocks, when the econometrician employs a large number of char-

acteristics. Interestingly, improvements from hedging are bigger for univariate factors than

for OLS factors, which suggests that univariate factors are more contaminated by unpriced

risks.
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In the second part of our empirical analysis we implement and test several methods of

dimensionality reduction based on Kozak, Nagel, and Santosh (2020), Kelly, Pruitt, and Su

(2019), and Kim, Korajczyk, and Neuhierl (2021). We find that latent factor models perform

quite differently depending on how their factors are constructed. As in the case without

dimension reduction, applying the OLS transformation to characteristics yields more efficient

factors that are less contaminated with unpriced risks.

II. Conditions for characteristics-based portfolios to

span the mean-variance frontier

We consider a cross-section of N assets with an N × 1 vector of excess returns zt+1. Each

asset features J characteristics that are observable to the econometrician, collected in the

(time-varying) N × J matrix Xt where J ≤ N , rank(Xt) = J , and the first column of Xt

is a vector of ones. In a number of places in our analysis we will use the residual maker

matrix Rt = I−Xt (X
′
tXt)

−1
X ′

t that generates the residuals in a projection on Xt. Unless

otherwise noted, we use the notation µy,t = Et[yt+1], Σy,t = vart(yt+1) for the conditional

moments of a random vector yt+1, Σxy,t as notation for the conditional covariance matrix of

two random vectors xt+1 and yt+1, and IK for a K ×K identity matrix.

In what follows, all time-t conditional moments are conditioned on Xt. We denote

Σt = var(zt+1|Xt), µt = E[zt+1|Xt], (3)

and we assume that Σt is positive definite. That these conditional moments are conditioned

on the characteristics observable to the econometrician is important. The set of characteris-

tics observable to investors could be larger or smaller than what is contained in Xt, without

consequences for our results, as long as the law of one price holds conditional on Xt.
4 There-

4. As an example that would violate this requirement, the law of one price would fail if the econometrician
included elements of zt+1 in Xt. Conditional on this look-ahead information, arbitrage opportunities would
seemingly exist.
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fore, it is possible that conditional on investors’ information set, moments of excess returns

could vary more or less than conditional on the econometrician’s information. Only sources

of variation linked to Xt matter in our analysis.

We assume throughout that the law of one price holds and hence an SDF exists. Condi-

tional on the econometrician’s information, the maximum squared conditional Sharpe ratio

that can be obtained from the N individual assets then is finite and given by µ′
tΣ

−1
t µt. The

SDF that uses this maximum squared conditional Sharpe ratio portfolio as risk factor,

Mt+1 = 1− δ′t (zt+1 − µt) , δt = Σ−1
t µt, (4)

prices the N assets conditionally, i.e., E[Mt+1zt+1|Xt] = 0. This is the unique SDF (with

mean of unity) in the span of excess returns. We refer to it from now on simply as the SDF.

Our analysis focuses on characteristics-based factors. These factors are generally con-

structed with an N × J portfolio weight matrix W t, where the weights are functions of the

characteristics Xt, and possibly also of Σt. Using these weights, one can form J factor

portfolios as

f t+1 = W ′
tzt+1, (5)

with µf,t = W ′
tµt and Σf,t = W ′

tΣtW t. We assume that weights are such that Σf,t is

positive definite.

Our aim is to understand under which conditions different specifications of the weightsW t

produce factors that span the conditional mean-variance frontier. Spanning the conditional

mean-variance frontier is equivalent to the factors’ maximum squared conditional Sharpe

ratio,

µ′
f,tΣ

−1
f,tµf,t = µ′

tW t(W
′
tΣtW t)

−1W ′
tµt, (6)

attaining the maximum squared conditional Sharpe Ratio obtainable from the individual

assets. Our results below rely on the following lemma that provides conditions under which

this is true.
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Lemma 1 The maximum squared conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1 is

equal to the maximum squared conditional Sharpe Ratio of the individual assets, i.e.,

µ′
tΣ

−1
t µt = µ′

tW t

(
W ′

tΣtW t

)−1
W ′

tµt (7)

if and only if

µt = ΣtW tbt (8)

for some J × 1 vector bt.

Proof. Following the proof of Lu and Schmidt (2012) Theorem 3 (A, B), express the

difference of the left- and right-hand-sides of (7) as ∆ = µ′
tΣ

− 1
2

t MΣ
− 1

2
t µt, where M = I−P

and P are residual and projection matrices, respectively, for a projection onto the columns

of Σ
1
2
t W t. ∆ = 0 if and only if Σ

− 1
2

t µt is in the column space of Σ
1
2
t W t, that is, Σ

− 1
2

t µt =

Σ
1
2
t W tbt for some bt, which is equivalent to (8).

Condition (8) has an intuitive asset pricing interpretation. It states that asset risk premia,

µt, must come from covariances of asset returns with the factors, ΣtW t. Alternatively, if one

pre-multiplies the equation with Σ−1
t , then it states that SDF risk prices or mean-variance

efficient (MVE) portfolio weights, Σ−1
t µt, must be spanned by factor weights W t.

If the factors span the conditional mean-variance frontier, then they span the SDF that

prices the individual assets:

Corollary 1 Lemma 1 implies that if and only if equation (8) holds, an SDF can be repre-

sented in terms of the J factors:

Mt+1 = 1− b′t
(
f t+1 − µf,t

)
. (9)

This SDF perfectly prices the excess returns zt+1, that is, E [Mt+1zt+1|Xt] = 0. This SDF

representation is equivalent to a conditional beta-pricing representation

µt = βtµf,t, (10)
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where βt = Σzf,tΣ
−1
f,t .

Equipped with this result, we can now explore under which assumptions about µt and

Σt various heuristic methods of factor construction that have appeared in the literature yield

factors that span the SDF.

Our baseline assumption about expected returns is motivated by a large body of work

that has documented cross-sectional relationships between expected return and firm charac-

teristics:

Assumption 1 (Linearity of expected returns in characteristics)

µt = Xtϕ (11)

for some J × 1 vector ϕ.

At a conceptual level, the assumption that µt is linear in Xt is without loss of generality

as Xt could also include nonlinear functions of characteristics. Similarly, portfolio sorting

approaches that allow expected returns to differ across but not within bins defined by charac-

teristics can be accommodated in Assumption 1 by letting Xt be a matrix of bin membership

indicators. That ϕ is a constant parameter vector is not restrictive either, because one could

include nonlinear interactions of cross-sectional firm characteristics with time-series predic-

tors to capture any time-variation in expected returns. In practice, though, once a researcher

has chosen a specific set of characteristics to include in Xt, Assumption 1 becomes a sub-

stantive assumption that restricts µt. Later in the paper, we discuss alternative assumptions,

including a potential modeling of MVE portfolio weights, Σ−1
t µt, as linear in Xt.

Comparing Assumption 1 and equation (8), we see that ΣtW t collapses to Xt only in

special cases when certain conditions are satisfied for W t, or certain restrictions on Σt hold.

We now explore these conditions.
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II.A. The unique SDF in the span of excess returns: GLS factors and transformations

thereof

As a benchmark for understanding when and why heuristic factor models span or do not span

the SDF, we first show that the SDF in (9) has a J-factor representation under Assumption

1:

Proposition 1 Assumption 1 is equivalent to the statement that an SDF given by (9) with

characteristics-based factors

f t+1 = S′
tX

′
tΣ

−1
t zt+1, (12)

and prices of risk

bt = S−1
t ϕ, (13)

where St is any nonsingular J × J transformation matrix, perfectly prices the excess returns

zt+1, that is, E [Mt+1zt+1|Xt] = 0.

Proof. Rewrite (11) as µt = ΣtΣ
−1
t XtStS

−1
t ϕ = ΣtW tbt, where W t = Σ−1

t XtSt. Lemma
1 now applies.

Thus, when there is a linear relationship between J characteristics and conditional ex-

pected return, the SDF is spanned by J characteristics-based factors that exactly explains

these conditional expected returns with zero pricing errors. Proposition 1 therefore high-

lights that there is no economic difference between a model that specifies expected returns

directly as linear function of characteristics as in Assumption 1 and a characteristics-based

factor pricing model. One can always be mapped perfectly into the other one, with equivalent

pricing implications. Therefore, a horse race between direct linear prediction of zt+1 by Xt

and a factor pricing model, e.g., as in as in Daniel and Titman (1997) and Davis, Fama, and

French (2000) as well as many other papers, does not have economic content. If factors are

constructed as in Proposition 1, there is no difference in expected returns implied by direct

linear prediction and the factor model. If factors are constructed in a heuristic way that
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does not exactly follow the prescription of Proposition 1, then there can be a difference, but

this just reflects the misspecification of the heuristic factors. The difference does not have

economic content (it does not discriminate between “rational” and “behavioral” asset pricing

theories, for example).

Empirical asset pricing researchers often like to work with beta-pricing specifications

and, in particular, with beta-pricing specifications that can be conditioned down to deliver

predictions for unconditional expected returns without elaborate estimation of time-varying

conditional moments. The following example present such a case.

Example 1 Suppose St =
(
X ′

tΣ
−1
t Xt

)−1
. We then obtain an SDF with factors given by

GLS cross-sectional regression slopes, f t+1 =
(
X ′

tΣ
−1
t Xt

)−1
X ′

tΣ
−1
t zt+1. Factor risk prices

are time varying, bt =
(
X ′

tΣ
−1
t Xt

)
ϕ. Factor means are constant, µf,t = ϕ. Factor betas

are equal to characteristics, βt = Xt.

The GLS slope factors in this example are the GLS counterpart to the OLS cross-sectional

slope factors in Fama (1976) and Fama and French (2020). The factors in Example 1 are

also similar to the “characteristic-efficient portfolios” in Daniel, Mota, Rottke, and Santos

(2020), albeit here with time-varying Xt and conditional moments of excess returns. We will

show later in Section IV that keeping track of time-variation in Xt and conditional moments

is important in empirical implementation of these factor models.

Which transformation matrix St to pick is a matter of convenience. The next example is

one in which factor covariances instead of factor betas are equal to Xt:

Example 2 Suppose St = I. We then obtain “MVE factors”, f t+1 = X ′
tΣ

−1
t zt+1. Factor

risk prices are constant, bt = ϕ. Factor means are time-varying, µf,t =
(
X ′

tΣ
−1
t Xt

)
ϕ.

Covariances of returns and factors are equal to characteristics, Σzf,t = Xt.

Practical implementation of the SDF in Proposition 1 is of course difficult since it involves

the inversion of a large N ×N conditional covariance matrix. Heuristic approaches to factor
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construction exist that avoid this inversion problem. We now want to find conditions that

need to hold for these heuristic approaches to succeed in spanning the SDF.

II.B. Heuristic factor construction: OLS factors and transformations thereof

Many heuristic methods construct factors by taking long positions in stocks with high values

of a characteristic and short positions in stocks with low values of a characteristic, with the

portfolio weight matrix and factors then taking the form

W t = XtSt, f t+1 = W ′
tzt+1, (14)

for some nonsingular matrix St. For example, St = I yields univariate factors with weights

that are proportional to characteristics as, e.g., in Kozak, Nagel, and Santosh (2020). With

characteristics defined as dummy variables for characteristics bins, portfolio sorts can also be

represented in this way. Another example are cross-sectional regression slope factors. Fama

and French (2020) use the insight of Fama (1976) that OLS cross-sectional regression slopes

are themselves portfolio returns. This is the case St = (X ′
tXt)

−1.

Fama and French (2020) conjecture that the OLS factors yield an “asset pricing model

that can be used in time-series applications.” In other words, they conjecture that for N

assets with OLS factor betas βt, the pricing relation µt = βtµf,t holds. However, such a

pricing relationship does not generally hold for OLS factors. As we show now, this is true

only if the covariance matrix takes a special form.

Proposition 2 Suppose Assumption 1 holds and let W t = XtSt. Then, for any nonsingular

J×J matrix St, the maximum squared conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1

is equal to the maximum squared conditional Sharpe Ratio of the individual assets if and only

if there exist conformable matrices Ψt, Ωt, and a matrix U t for which

U ′
tXt = 0, (15)
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such that

Σt = XtΨtX
′
t +U tΩtU

′
t. (16)

Proof. Lu and Schmidt (2012) Theorem 1 (B, F’) implies that (16) is equivalent to the
statement that there exists a nonsingularBt such thatΣtXt = XtBt. Rewriting Assumption
1 as µt = XtBtB

−1
t ϕ, we see that it is then equivalent to µt = ΣtXtStS

−1
t B−1

t ϕ = ΣtW tbt,
where bt = S−1

t B−1
t ϕ. Thus, condition (8) in Lemma 1 is satisfied, which means that Lemma

1 applies.

Without the restriction (15), the decomposition in (16) would always exist. For instance,

for any nonsingular symmetric Ψt, we could obtain U tΩtU
′
t from an eigendecomposition of

Σt −XtΨtX
′
t, where U t then contains the eigenvectors associated with the N − J nonzero

eigenvalues in the diagonal matrix Ωt.

How can researchers wishing to use OLS factors, or transformations thereof, ensure that

the condition U ′
tXt = 0 in (15) holds, at least approximately? Including many characteristics

in Xt should help. To see this, we can use the result in Lu and Schmidt (2012) that the

conditions in (15) and (16) are equivalent to J eigenvectors of Σt being spanned by Xt. The

matrix U t then contains linear combinations of the eigenvectors not spanned by Xt.
5 With

only a few characteristics included in Xt, it is unlikely that the J columns of Xt exactly

span J eigenvectors. Effectively, for each eigenvector, this is like asking whether a regression

of the N elements of the eigenvector on the J variables in Xt has perfect fit. Clearly, the

more characteristics we add, the better the fit. In this sense, it is more likely that U ′
tXt = 0

holds if Xt contains more characteristics.

Moreover, with a larger number of characteristics it is more likely that Xt spans very well

the relatively small number of eigenvectors associated with large eigenvalues, i.e., the major

sources of stock return covariance. In this case, even if Xt does not span J eigenvectors

5. If Qt and Λt are the matrix of eigenvectors and diagonal matrix of eigenvalues of Σt, respectively, and
Qt = (XtBt : U t) where the columns of XtBt, with nonsingular Bt, are the J eigenvectors spanned by Xt

and U t are the eigenvectors not spanned by Xt, then we have

Σt = XtBtΛ1,tB
′
tX

′
t +U tΛ2,tU

′
t (17)

which maps into (16) with BtΛ1,tB
′
t = Ψt and Λ2,t = Ωt. Moreover, since eigenvectors are orthogonal,

B′
tX

′
tU t = 0 and hence U ′

tXt = 0.
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perfectly, spanning the few important ones very well may render the violations of U ′
tXt = 0

quantitatively unimportant. OLS factors, or transformations thereof, may then span the SDF

approximately. We investigate this further in our empirical analysis in Section V.

Importantly, for additional characteristics to be helpful in ensuring that U ′
tXt = 0 holds

approximately, these additional characteristics do not necessarily need to contribute to varia-

tion in expected returns. If they help to span major sources of covariances, they will help OLS

factors, or transformations thereof, to span the SDF, even without contribution to variation

in expected returns.

The choice of transformation matrix St is again just one of convenience. Our first example

shows the choice that yields OLS cross-sectional regression slope factors:

Example 3 Suppose St = (X ′
tXt)

−1
and that (16) holds. We then obtain an SDF with

factors given by OLS cross-sectional regression slopes, f t+1 = (X ′
tXt)

−1
X ′

tzt+1. Prices of

risk are bt = Ψ−1
t Xtϕ and factor risk premia are constant, µf,t = ϕ. Factor betas are equal

to characteristics, βt = Xt.

Based on this example, condition (16) can be interpreted through the lens of factor models.

First note that the condition is equivalent to6

Σt = XtΨtX
′
t +U tΩtU

′
t + σ2I, U ′

tXt = 0, (18)

where we abuse notation a bit since Ψt, Ωt, and U t are different here from (16). In the case

of OLS factors this condition is equivalent to the factor model

zt+1 = αt + βf,t

(
f t+1 − Et f t+1

)
+ βg,t

(
gt+1 − Et gt+1

)
+ εt+1, (19)

where f t+1 are the OLS factors, with βf,t = Xt as in Example 3, gt+1 are latent factors,

with βg,t = U t, and εt+1 is a vector of idiosyncratic shocks. The condition (18) then requires

6. See Lu and Schmidt (2012) Theorem 1(F) and 1(F’).
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that latent risks not captured by the OLS factors are either idiosyncratic and homoskedastic,

or, if they are systematic, individual assets’ loadings on the latent factors are orthogonal to

the loadings on the OLS factors. This condition is often assumed up front in factor models

(e.g., in Kelly, Pruitt, and Su 2019).

A different choice of St produces univariate factors where weights in each characteristics

portfolio depend only on one characteristic because the columns of Xt serve as weights:

Example 4 Suppose St = I and that (16) holds. We then obtain an SDF with factors

f t+1 = X ′
tzt+1. Factor risk prices, bt = (X ′

tXt)
−1

Ψ−1
t ϕ, and factor means, µf,t = X ′

tXtϕ,

are time-varying. Factor betas are βt = Xt (X
′
tXt)

−1
.

The special case in the latter example is particularly convenient for illustrating the mean-

ing of U ′
tXt = 0 in (15). For the factor model to price assets perfectly, factor covariances

must span µt = Xtϕ. This is always the case for the factors in Example 2 where factor

weights are Σ−1
t Xt and hence individual assets’ factor covariances are ΣtΣ

−1
t Xt = Xt. In

contrast, in the case of Example 4, individual assets’ covariances with factor portfolios with

factor weights Xt are

ΣtXt = XtΨtX
′
tXt +U tΩtU

′
tXt. (20)

If U ′
tXt = 0, then the second component is zero and the expression hence simplifies to a

term Xt multiplied by a nonsingular matrix. Factor covariances therefore span µt. But

if U ′
tXt ̸= 0 then the second component does not disappear. As a consequence, the factor

covariances are contaminated by components that are not linear inXt, and hence are unpriced

as they do not earn expected return. Thus, when U ′
tXt ̸= 0, the factors with weights Xt

incorporate unpriced risks, while factors that span the SDF capture only priced risks.

II.C. Hedged heuristic factors

If condition U ′
tXt = 0 in Proposition 2 does not hold, any factors with weights that are

a nonsingular transformation of Xt load on unpriced risks, i.e., risk exposure that is not
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compensated with higher excess returns. This prevents the factors from reaching the mean-

variance frontier.

Using the GLS factors, or transformations thereof, following Proposition 1 would avoid

contamination of factors with unpriced risks, but their construction requires inversion of the

large covariance matrix Σt (that would have to be estimated in practice). For this reason,

it is useful to ask whether there exist an alternative factor specifications that use some

information about covariances to find characteristics-based factors that span the SDF, but

without requiring estimation and inversion of the whole covariance matrix Σt. These factors

will be hedged factors because they hedge unpriced exposures of the original factors.

We first show a result that will be helpful for checking whether a candidate hedged factor

model with factor portfolio weight matrix Ht spans the SDF.

Lemma 2 Suppose Assumption 1 holds and that Ht is some matrix such that H ′
tXt has full

column rank and H ′
tΣtHt is positive definite. Then the maximum squared conditional Sharpe

ratio of the factors f t+1 = H ′
tzt+1 is equal to the maximum conditional squared Sharpe Ratio

of the individual assets if and only if there exist a nonsingular matrix Ψt, and some matrices

Ωt and U t for which

U ′
tHt = 0, (21)

such that

Σt = XtΨtX
′
t +U tΩtU

′
t. (22)

Proof. Lu and Schmidt (2012) Theorem 3 (B, F’) implies that (22) is equivalent to the
statement that there exists some Bt such that Xt = ΣtHtBt. Rewriting Assumption 1 as
µt = ΣtHtBtϕ = ΣtW tbt, where bt = Btϕ. Thus, condition (8) is satisfied, which means
that Lemma 1 applies.

There are two key points to note. First, the requirement that H ′
tXt has full column

rank ensures that no information about expected returns is lost when individual assets are

aggregated with Ht as portfolio weight matrix. Second, the requirement that U ′
tHt = 0

ensures that the factors do not load on unpriced risk. When both conditions hold, a similar
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calculation as in (20) for the St = I case, but now with Ht as factor portfolio weights yields

ΣtHt = XtΨtX
′
tHt +U tΩtU

′
tHt = XtΨtX

′
tHt, (23)

which means that the individual assets’ covariances with these factors are perfectly linear in

Xt and so they span µt.

While Lemma 2 allows us to check whether candidate factors span the SDF, it does not

show how to construct factors that satisfy these requirements. Some conditions on U tΩtU
′
t

will have to hold for the construction to be possible without using the information from the

full Σt matrix. To see how additional structure on U tΩtU
′
t can help, suppose that J columns

of U t, collected in V t, are such that rank(V ′
tXt) = J , while the remaining columns, collected

in Et, have E′
tXt = 0 and E′

tV t = 0. Moreover, suppose that Ωt is block-diagonal such

that

U tΩtU
′ = V tΓtV

′
t +EtΦtE

′
t. (24)

If we knew V t, we could then simply remove from characteristics-based factor weights W t =

XtSt the component that is correlated with U t by subtracting the projection of the weights

on V t,

Ht = XtSt − V t(V
′
tV t)

−1V ′
tXtSt. (25)

It is easy to verify that H ′
tU t = 0 and that H ′

tXt has full column rank, i.e., the conditions

in Lemma 2 hold.

We cannot directly implement this approach as V t is not directly observable. But it can

be backed out from moments of zt and Xt. As we show, the factor hedging method of Daniel,

Mota, Rottke, and Santos (2020) (DMRS) is a feasible version of the approach above.

The goal of DMRS’s procedure is to hedge the unpriced risk in heuristic factors. The first

step is to construct hedging factors that go long in stocks with high loadings on the heuristic

factors and short in stocks with low loadings, while holding constant the characteristics-

exposure of the long and short legs of hedging factors, which ensures that they have zero
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expected return according to Assumption 1. DMRS do this by sorting stocks by loadings on

heuristic factors within characteristics-sorted portfolios. Here, we work with more general

characteristics-based factors with weights W t = XtSt and we construct a hedging portfolio

that has precisely zero expected return by regressing conditional covariances of individual

stocks with factors, i.e., ΣtW t, on Xt, and then using the residuals,

W h,t = RtΣtXtSt (26)

as portfolio weights for hedge portfolios.

The second step is to calculate stocks’ covariances with the hedge portfolio returns so

that we can modify stocks’ weights in the factor portfolios to remove unpriced risks:

V̂ t = ΣtW h,t = V tΓtV
′
tRtV tΓtV

′
tXtSt. (27)

The third step is to regress the factor portfolio weights W t = XtSt on V̂ t to obtain

residual factor portfolio weights that have been purged of unpriced risk exposure. Now note

that V̂ t in (27) is equal to V t post-multiplied by a nonsingular matrix. Hence regressing W t

on V̂ t produces the same residuals as regressing W t on V t. Therefore, the residuals7

Ĥt = XtSt − V̂ t(V̂
′
tV̂ t)

−1V̂ ′
tXtSt (30)

are the same as the residuals in (25) and hence Ĥt = Ht. In other words, the three steps

7. DMRS use a slightly different approach, but under the assumptions of Proposition 3 below, it yields the
same hedged factors. They purge the heuristic factors from unpriced risks that do not earn expected return
by regressing the J heuristic factors on the J hedge portfolio returns and using the J time series of residuals
as the hedged factors. The J × J matrix of regression coefficients in these regressions is

Kt = S′
tX

′
tW h,t(W

′
h,tΣtW h,t)

−1S−1
t , (28)

and so the hedged factors have weights

Ĥt = XtSt −W h,tK
′
t. (29)

Substituting W h,t = V tAt, for some nonsingular matrix At, into this expression and Kt, it can be seen that
this last expression is equivalent to (25).
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above provide a way to construct the hedged portfolio weights in (25) from observable mo-

ments.

The following proposition states the result more formally.

Proposition 3 If the matrices U t and Ωt in (22) are such that there exists a decomposition

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, (31)

where V t is an N × J matrix of full column rank, V ′
tXt is full rank, RtV t has full column

rank, E′
tXt = 0, E′

tV t = 0 and Γt is nonsingular, then the maximum squared conditional

Sharpe ratio of the hedged factors f t+1 = Ĥ ′
tzt+1 with Ĥt as defined in (30) is equal to the

maximum squared conditional Sharpe Ratio of the individual assets.

Proof. Write V̂ t = V tAt where At = ΓtV
′
tRtV tΓtV

′
tXtSt. By assumption, RtV t has full

column rank J , hence V ′
tRtV t = V ′

tRtRtV t has full rank. Since pre- and post-multiplying
this expression by full rank matrices Γt and V ′

tXtSt does not change rank, it follows that
At is full rank and hence nonsingular. Then, substituting V̂ t = V tAt, with At nonsingular
into (30) yields the expression for Ht in (25), i.e., Ĥt = Ht. Then U ′

tĤt = 0 immediately
follows. Therefore, by Lemma 2, the result follows.

The rank requirements for several matrices in Proposition 3 have an economic interpre-

tation. That V ′
tXt has full rank and RtV t has full column rank ensures that the hedging

portfolio weight vectors constructed via (27) and (30) are linearly independent. One could

relax these rank requirements by building in a dimension-reduction step that removes linear

dependencies in the construction of W h,t. However, for our purposes here, the benefits from

greater generality of this approach would not be worth the costs of additional expositional

complexity.

What do we gain from the hedging procedure? Comparing the conditions in Proposition

3 with (15) and (16) in Proposition 2, we can see that the conditions on the covariance

matrix that are required to hold for the hedged factors to span the SDF are weaker than

those required for the OLS factors (or nonsingular transformations thereof) to span the SDF.

While Proposition 2 requires the columns of Xt to be orthogonal to the columns of U t, the
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conditions in Proposition 3 allow violations of this orthogonality condition as long as there

are at most J linearly independent sources of such non-orthogonality as collected in the J

columns of the matrix V t.

II.D. Iterated hedging

When V t has more than J columns, then the (infeasible) hedged factor construction based

on the unobservable V t as in (25) still works as H ′
tU t = 0 still holds and H ′

tXt still has

full column rank, i.e., the conditions in Lemma 2 still hold. However, in this case the feasible

hedged factor weights Ĥt we construct in (30) are no longer equal to Ht. The reason is that

if we again construct V̂ t as in (27), the J columns of V̂ t now contain J linear combinations

of the 2J columns in V t. Projection on V̂ t therefore no longer produces the same residuals

as a projection on V t.

However, by iterating on the hedging procedure, we can solve this problem. Repeating

the hedging procedure by regressing individual stocks’ conditional covariances with hedged

factors, i.e., ΣtĤt, on Xt and collecting the residuals RtΣtĤt analogous to (26), but here

for hedged factors. Using these residuals as portfolio weights, and calculating the covariances

of individual stocks with these portfolio returns, we get, in analogy to (27),

V̂ 2,t = V tΓtV
′
tRtV tΓtV

′
tĤt, (32)

where the only difference to (27) is that XtSt was replaced by Ĥt. Note that V̂ 2,t is

comprised of J linear combinations of the 2J columns of V t.

Under conditions that we state more formally shortly, V̂ t and V̂ 2,t jointly span the same

column space as V t. Therefore, the residuals from the regression of XtSt on V t in (25)

are the same as those from a regression of XtSt on V̂ t and V̂ 2,t jointly. And the latter

regression can in turn be implemented in two steps, which results in an iterated hedging

procedure. By the Frisch-Waugh-Lovell theorem, the residuals of a regression of XtSt on V̂ t

and V̂ 2,t jointly are the same as the residuals of a regression of the first step residuals Ĥt
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from regressing XtSt on V̂ t in (30) on the residuals from regressing V̂ 2,t on V̂ t. Therefore,

we can construct the hedged portfolio weights as

Ĥ2,t = M tXtSt −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′
2,tM tXtSt

= Ĥt −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′
2,tM tĤt, (33)

where M t = I− V̂ t(V̂
′
tV̂ t)

−1V̂ ′
t is the residual maker matrix from regression on V̂ t, and we

obtain Ĥ2,t = Ht.

The following proposition states this result formally. It looks similar to Proposition 3,

but note that V t now has 2J columns.

Proposition 4 If the matrices U t and Ωt in (22) are such that there exists a decomposition

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, (34)

where V t is an N × 2J matrix of full column rank, RtV t has full column rank, (V ′
tXtSt :

V ′
tĤt) has full rank, with Ĥt defined as in (30), E′

tXt = 0, E′
tV t = 0 and Γt is nonsingular,

then the maximum squared conditional Sharpe ratio of the hedged factors f t+1 = Ĥ ′
2,tzt+1

with Ĥ2,t as defined in (33) is equal to the maximum squared Sharpe Ratio of the individual

assets.

Proof. We first show V̂ t and V̂ 2,t jointly span the same column space as V t. Note that we

can write (V̂ t : V̂ 2,t) = V tGtAt with At = (V ′
tXtSt : V ′

tĤt) where Gt = ΓtV
′
tRtV tΓt

is a full-rank 2J × 2J square matrix (RtV t has full column rank, so RtV tΓt has rank 2J .
Premultiplying RtV tΓt with its own transpose then results in a matrix that is also of rank
2J). Since At and Gt are full rank and hence invertible, we have V t = (V̂ t : V̂ 2,t)A

−1
t G−1

t ,

i.e., V̂ t and V̂ 2,t jointly span the same column space as V t. Substituting this relation into

(25), we obtain the residuals of a regression of XtSt on (V̂ t : V̂ 2,t). By the Frisch-Waugh-
Lovell theorem, these residuals are in turn identical to those in the regression of M tXtSt on
M tV̂ 2,t in (33). Hence Ĥ2,t = Ht and so Ĥ ′

2,tU t = 0. Therefore, by Lemma 2, the result
follows.

In analogy to the case with a single round of hedging that we discussed following Propo-

sition 3, the rank requirements for several matrices in Proposition 4 have an economic inter-
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pretation. The requirements that (V ′
tXtSt : V

′
tĤt) has full rank and RtV t has full column

rank are both needed to ensure that iterated hedging factor portfolio weight vectors Ĥ2,t are

linearly independent. One could again relax these rank requirements by building dimension-

reduction steps that removes linear dependencies in the iterated hedging procedure.

What do we gain from iterated hedging? Comparing the conditions in Proposition 4 with

those in Proposition 3, we can see that those in Proposition 4 are weaker. While the conditions

in Proposition 3 allow for J linearly independent sources of such non-orthogonality of Xt

and the columns of U t, the conditions in Proposition 4 allow for 2J linearly independent

sources of such non-orthogonality. In other words, iterated hedging can remove more sources

of unpriced risk contamination in characteristics-based factors than a single round of hedging

can.

There is no reason to necessarily stop after a second round of hedging. We do not show

formal results on this, but from the logic of the hedging iteration above, it should be clear that

further rounds of hedging would remove additional sources of unpriced risk contamination.

When working with population moments, this should further raise the maximum squared

conditional Sharpe Ratio of the hedged factors and hence get them closer to spanning the

SDF. Whether this is also true in a finite sample with estimated moments is not clear. At some

point, further hedging may be counterproductive and bring in estimation error contamination

rather than removing unpriced risk contamination. After all, doing many iterations of the

hedging procedure should be no different than constructing GLS factors by inverting an

estimate of the conditional covariance matrix (which may not work well unless N is small

relative to T ). We investigate this further in Section V.

II.E. Summary

When conditional expected returns are linear in firm characteristics, aggregation of individ-

ual stocks into characteristics-based factor portfolios without incorporating information from

the conditional covariance matrix of individual stock returns leads to a deterioration of the
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investment opportunity set unless the conditional covariance matrix satisfies certain condi-

tions. These conditions are more likely to hold in large-scale factor models that use many

characteristics. Methods for hedging unpriced risks in factors allow a partial relaxation of

these conditions, especially if hedging procedures are applied iteratively.

III. Dimensionality reduction

So far we have discussed factor models where the pricing information in J characteristics is

captured by J factors in the SDF. As we show now, under certain conditions on the conditional

covariance matrix of individual stock returns, one can summarize the pricing information in

J characteristics-based factors in a smaller number of K < J factors. Of course, there is

always a single factor that prices the individual assets (which the linear combination of J

factors shown in Proposition 1), but without further assumptions, the construction of this

single factor requires inversion of a large conditional covariance matrix. The point of the

methods we discuss in this section is to achieve dimension reduction without having to invert

or eigen-decompose this large covariance matrix.

We first present general conditions on the conditional covariance matrix that need to hold

such that dimension reduction is possible without loss of pricing information. Then we show

that, under these conditions, various approaches that have appeared in the literature are

actually equivalent or closely related.

Corollary 2 Suppose expected returns are given by

µt = XtQtϕ, (35)

where Qt is a J×K matrix with K ≤ J , and let W t = XtQtSt. Then the maximum squared

conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1, for any nonsingular K ×K matrix

St, is equal to the maximum squared Sharpe Ratio of the individual assets if and only if there
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exist conformable matrices Λt, Ωt, and a matrix U t for which

U ′
tXtQt = 0, (36)

such that

Σt = XtQtΛtQ
′
tX

′
t +U tΩtU

′
t. (37)

Proof. Directly follows from Proposition 2 by using XtQt in place of Xt.

We have achieved dimension reduction because there are now K factors in f , not J . This

is made possible by the fact that the factor component of the covariance matrix related to

Xt is now a lower-dimensional XtQt, which is N ×K, with K ≤ J , rather than the larger

N × J matrix Xt that we had in Proposition 2. And Λt is a K ×K matrix rather than the

J × J matrix Ψt in Proposition 2.

How can we find Qt to construct the factors f? As we show now, if we make a somewhat

stronger assumption than (36), namely that U ′
tXt = 0 we can obtain Qt through principal

component analysis (PCA). Under this assumption, OLS factors, for instance, and trans-

formations thereof span the SDF. PCA applied to OLS factors can then extract Qt. More

precisely, to extract Qt as principal components, we need to add additional identification

assumptions on Qt and Λt. These assumptions pin down a specific rotation of Qt, but they

do not affect the pricing implications of the factor model. With different choices of identi-

fying assumptions, we then obtain conditional versions of two recently proposed methods of

dimension-reduced factor construction.

Example 5 (IPCA) Suppose U ′
tXt = 0, Q′

tQt = I and Λt is diagonal with descending diag-

onal entries.8 We can then obtain Qt and Λt from an eigendecomposition of the conditional

covariance matrix of OLS factor returns, because it factors as

(
X ′

tXt

)−1
X ′

tΣtXt

(
X ′

tXt

)−1
= QtΛtQ

′
t, (38)

8. The last two assumptions correspond to identification assumption in Kelly, Pruitt, and Su (2019):
Γ′

βΓβ = IK and cov(f t) has only descending diagonal entries (their notation).
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where Qt, given the assumptions above, becomes a matrix of eigenvectors of this covariance

matrix associated with the K non-zero eigenvalues. Suppose further that St = (Q′X ′
tXtQ)−1.

Then we obtain a conditional version of the IPCA factors of Kelly, Pruitt, and Su (2019):

f IPCA,t+1 = (Q′
tX

′
tXtQt)

−1Q′
tX

′
tzt+1. (39)

The expression for f IPCA,t+1 in (39) above is a conditional version of the first of two

first-order conditions in Kelly, Pruitt, and Su (2019) that define the instrumented principal

components analysis (IPCA) estimator. We can also show that a conditional version of

their second first-order condition (their eq. 7) holds in terms of population moments. If it

holds, then the right-hand side their second first-order condition should equal vec(Qt) when

evaluated with the factors in (39) and under the conditions of Corollary 2. Evaluating their

second first-order condition, this is indeed what we obtain:

(
X ′

tXt ⊗ Et[f t+1f
′
t+1]

)−1 Et

[(
X ′

t ⊗ f t+1

)
zt+1

]
=

(
X ′

tXt ⊗ Et[f t+1f
′
t+1]

)−1
vec(Et[f t+1z

′
t+1]Xt)

= vec
(
Et[f t+1f

′
t+1]

−1Et[f t+1z
′
t+1]Xt

(
X ′

tXt

)−1
)

= vec(Qt), (40)

where for the last step we evaluated the conditional expectations using (39), (35), (37), and

(36). Hence, factors constructed as in (39) with Qt obtained as eigenvectors of the OLS

factor return covariance matrix in (38) solve both first-order conditions, i.e., they are indeed

the IPCA factors.9

Kelly, Pruitt, and Su (2019) show that in the case of orthonormalized characteristics,

IPCA is equivalent to PCA on returns managed portfolios with weights X ′
t. Our result here

9. The assumption of time-constant Qt and Λt can justify working with a constant Q extracted from
an average conditional, or approximately unconditional, covariance matrix. Working through the first-order
condition in (40) expressed in terms of unconditional expectations (the population analog to the sample
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shows that IPCA is more generally equivalent to PCA on managed portfolios, even in the

case where characteristics are not orthonormalized, if the managed portfolios are constructed

as OLS factors. In particular, applying PCA to OLS portfolios recovers Qt. By applying this

matrix to univariate portfolios X ′
tzt+1 and further transforming them by an OLS factor (as

in (39)), yields our version of the IPCA estimator.

The OLS factor population covariance matrix that we apply PCA to in (38) is singular if

K < J as it is a J × J matrix with only K non-zero eigenvalues. The matrices Λt and Qt in

our notation contain only the non-zero eigenvalues and the eigenvectors associated with the

non-zero eigenvalues. With an estimated covariance matrix in a finite sample, the truly zero

eigenvalues would not be exactly zero but likely very small.

Example 6 (PPCA) Suppose U ′
tXt = 0, Q′

tX
′
tXtQt = I and Λt is diagonal with descend-

ing diagonal entries.10 We can then obtain Qt and Λt from an eigendecomposition of the

conditional covariance matrix of univariate factor returns constructed using orthonormalized

characteristics, because it factors as

(
X ′

tXt

)− 1
2 X ′

tΣtXt

(
X ′

tXt

)− 1
2 =

(
X ′

tXt

) 1
2 QtΛtQ

′
t

(
X ′

tXt

) 1
2 , (41)

where Gt = (X ′
tXt)

1
2 Qt is orthonormal by assumption and thus can be recovered as a matrix

of eigenvectors of this covariance matrix associated with the K non-zero eigenvalues. We get

Qt = (X ′
tXt)

− 1
2 Gt. Suppose further that St = I. Then we obtain a conditional version of

averages in KPS), we the obtain vec(Q):[
E
(
X ′

tXt ⊗ Et

[
fKPS,t+1f

′
KPS,t+1

])]−1 E
[(
X ′

t ⊗ fKPS,t+1

)
zt+1

]
=

[
E
(
X ′

tXt

)
⊗Λ

]−1
vec

(
E
[
Et[fKPS,t+1z

′
t+1]Xt

])
=

[
E
(
X ′

tXt

)
⊗Λ

]−1
vec

(
ΛQE

(
X ′

tXt

))
= vec(Q).

10. The last two assumptions correspond to identification assumptions stated in assumption 3 of Kim,
Korajczyk, and Neuhierl (2021). Our assumption that U ′Xt = 0 is the population version of their assumption
2 (ii), which states that factor model residuals and Xt are, asymptotically, cross-sectionally orthogonal.
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the PPCA factors of Kim, Korajczyk, and Neuhierl (2021):

fPPCA,t+1 = G′
t

(
X ′

tXt

)− 1
2 X ′

tzt+1 (42)

=
(
Q′

tX
′
tXtQt

)−1
Q′

tX
′
tzt+1 = Q′

tX
′
tzt+1. (43)

The expression for fPPCA,t+1 in (43) above is a conditional version of the factors in Kim,

Korajczyk, and Neuhierl (2021) obtained from a cross-sectional regression of stock returns

on their factor loadings Gβ(Xt) which we parameterize as linear here, Gβ(Xt) = XtQt.

To see this, note that Kim, Korajczyk, and Neuhierl (2021) identify Gβ(Xt) via a PCA

on projected returns, Xt (X
′
tXt)

−1
X ′

tzt+1. Under our assumption in (37), the covariance

matrix of these returns is equal to XtQtΛtQ
′
tX

′
t. Because XtQt is orthonormal, Kim et al.’s

PCA solution, therefore, recovers Gβ(Xt) = XtQt and their factors match ours in (43). The

expression in (42) shows that we can alternatively identify these factors via a simple PCA

on univariate portfolio returns (rather than projected individual stock returns) constructed

using orthonormalized characteristics, to obtain Gt.

Overall, the results in this section show that there is a great deal of similarity in seemingly

different recently proposed methods for dimension reduction. Our earlier results on the

conditions required for characteristics-based factors to span the SDF provide a basis to get

to these dimension-reduction in a straightforward way by applying PCA to a certain set of

characteristics-based portfolios.

IV. Extensions

Before turning to an empirical analysis, we first discuss a number of conceptual issues that

come up if we want to relate our results from the previous sections to empirical data.
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IV.A. Alternative assumptions about expected returns

As we discussed, our Assumption 1 that conditional expected returns are linear in charac-

teristics is, in principle, completely general as for any given set of basis characteristics, one

could define Xt as including nonlinear functions and interactions of these basis characteris-

tics. That said, once a researcher has settled on a particular set of characteristics to include

in Xt, the linearity assumption has economic content. For this reason, one may want to

entertain alternative assumptions that link a specific characteristics matrix Xt to µt.

For example, within a framework in which characteristics predict returns because of mis-

pricing, our baseline Assumption 1 can be reasonable if the characteristics in Xt are directly

related to the magnitude of mispricing without involving cross-asset information. As an

example, consider scaled price ratios like the book-to-market ratio. If the numerator (book

value) controls for differences across stocks in their fundamental scale and the remaining price

variation that comes in through the denominator (market value), each stock’s book-to-market

ratio may be a good measure of this stock’s mispricing.

However, an alternative view may be that characteristics in Xt capture not the magni-

tude of mispricing directly but rather sentiment-driven investors’ demand for certain types

of stocks. If these sentiment investors trade against mean-variance arbitrageurs, the portfo-

lio optimization of the arbitrageurs induces cross-dependencies across expected returns and

covariances that can result in equilibrium expected returns that differ from Assumption 1

(for this given Xt). To illustrate, consider a CARA-normal model as in Kozak, Nagel, and

Santosh (2018) where a measure (1− θ) of rational arbitrageurs have demand 1
aΣ

−1
t µt and a

measure θ of sentiment investors have demand in excess of rational investor demand of Xtd

for some vector d, i.e., 1
aΣ

−1
t µt+Xtd. With total asset supply of one for each asset, collected

in vector ι, market clearing implies

µt = aΣt(ι− θXtd) = ΣtXtϕ, (44)
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for some vector ϕ, where the last equality follows because Xt includes a column of ones.

Thus, in this case instead of Assumption 1, we would have

Assumption 2

µt = ΣtXtϕ (45)

with some J × 1 vector ϕ.

A closely related assumption appears in Brandt, Santa-Clara, and Valkanov (2009). They

assume that mean-variance efficient portfolio weights are linear in characteristics and market

portfolio weights, while here Assumption 2 implies that the weights Σ−1
t µt = Xtϕ are linear

in characteristics. Similarly, Kozak, Nagel, and Santosh (2020) assume that SDF prices of

risk are linear in Xt.

The SDF in this case is spanned by GLS factors from GLS cross-sectional regression of

zt+1 on ΣtXt, or transformations of these factors. We can obtain these factors by replacing

Xt in Proposition 1 with ΣtXt everywhere. We get factors

f t+1 = S′
tX

′
tzt+1, (46)

i.e., the GLS factors simplify to univariate factors or transformations thereof (e.g., OLS

factors with St = (X ′
tXt)

−1). In other words, one can construct factors that span the SDF

solely based on the information in characteristics. No information about Σt is required to

construct these factors! Unfortunately, as we see in the following example that summarizes

the univariate factor case, conditional factor means and betas vary over time with Σt, which

renders empirical implementation difficult without further assumptions.

Example 7 Suppose St = I. We then obtain an SDF with factors f t+1 = X ′
tzt+1. Factor

means and covariances are time-varying, µf,t = X ′
tΣtXtϕ, Σf,t = X ′

tΣtXt, and factor risk

prices are constant: bt = ϕ. Factor betas βt = (X ′
tΣtXt)

−1
ΣtXt are varying with Σt.
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Under Assumption 2, dimension reduction works in the same way and under the same

conditions on the covariance matrix as in Corollary 2.11

Whether Assumption 2 or Assumption 1 is more appropriate once a researcher has settled

on a specification of Xt is an empirical question. We return to our baseline Assumption 1

for the rest of this section.

IV.B. Conditioning down

For empirical work, our results in terms of conditional moments are not straightforward to

work with. In empirical implementation, researchers often like to work with unconditional

pricing restrictions and unconditional moments as estimating conditional moments requires

additional assumptions about the dynamics of conditional moments.

For this purpose, it is convenient if a model implies that factors’ conditional expected

returns are constant and either conditional factor betas or factor prices of risk are also

constant or depend only on the observable characteristics Xt (and not on Σt). For example,

if β = Xt and µf,t = µf , one can implement the factor model in its conditional beta pricing

formulation and then condition down to

E[zt+1] = E[Xt]µf . (47)

Alternatively, if bt = ϕ and µf,t = µf , we have an SDF

Mt+1 = 1− ϕ′(zt+1 − µf ), (48)

which we can rescale to

Mt+1 = 1− ϕ′

1− ϕ′µf

zt+1 (49)

11. In this case, we don’t need the additional assumption about expected returns in (35) because its expected
returns automatically inherit the lower-dimensional structure through their dependence on the covariance
matrix in Assumption 2.
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without affecting the pricing implications for excess returns. In this formulation, one can

estimate the J constant prices of risk b = ϕ′

1−ϕ′µf
from the J unconditional pricing restrictions

E[Mt+1f t+1] = 0 without having to model conditional moments.

Recall that our earlier results in Section II expressed factors up to a transformation by

a nonsingular matrix St. We can choose this matrix to generate factors with the desired

conditioning-down properties.

Consider first the GLS factors and their transformations. The case we presented in

Example 1 with St =
(
X ′

tΣ
−1
t Xt

)−1
yields βt = Xt and µf,t = ϕ, so the beta-pricing

formulation conditions down nicely, but there is no St that produces both prices of risk that

do not depend on Σt and factor means that do not depend on Σt. As a consequence, there

does not exist a version of St that would yield an SDF that we could estimate without having

to model Σt.

Similarly, for OLS factors and their transformations, the case in Example 3 with St =

(X ′
tXt)

−1
yields βt = Xt and µf,t = ϕ, so again the beta-pricing formulation conditions

down nicely, but there is no St that produces both prices of risk that do not depend on Σt

and factor means that do not depend on Σt.

Under the alternative Assumption 2 about expected returns in Section IV.A, too, there

is no specification of St that produces, at the same time, prices of risk that do not depend

on Σt and factor means that do not depend on Σt.

IV.C. Orthonormalized characteristics

Empirical work often considers characteristics that are normalized in some fashion. For

example, portfolio sorting procedures use only information about cross-sectional ranks of

stocks by characteristics, not the value of the characteristics themselves; other methods trans-

form characteristics into cross-sectional ranks and use the rank-transformed characteristics

as portfolio weights (Kozak, Nagel, and Santosh 2020); further alternatives include orthonor-

malizing characteristics such that, after orthonormalization, X ′
tXt = I holds. Common to
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these methods is that, to varying degrees, they remove time-series variation from charac-

teristics. For example, if the original characteristics matrix includes a column of ones as

first column, and characteristics are then orthonormalized using the Gram-Schmidt process,

this cross-sectionally demeans all characteristics and removes time-series variation in their

cross-sectional variances and correlations.

IV.D. Conditioning down with normalized characteristics

We now show that constructing factors based on such normalized characteristics can be

advantageous in light of the requirements we discussed in Section IV.B for unconditional

pricing restrictions to imply an SDF with constant factor prices of risk and constant factor

means.

However, before we can discuss conditioning down the pricing relationship to uncondi-

tional moments, we first need to deal with the fact that if Assumption 1 holds for a given

set of original characteristics, it does not necessarily hold for the normalized version of these

characteristics. Whether it holds for the normalized version is ultimately an empirical ques-

tion, but there are plausible reasons to think that it could. To see why, let’s focus on the case

of orthonormalization and let Ct be the original characteristics matrix and Xt = CtN
−1
t

the normalized one, with N t = (C ′
tCt)

1
2 . What is needed, roughly, is that the normalized

characteristics do not contain information about the time-variation in cross-sectional mean,

dispersion, or correlation of the original characteristics that the normalization has removed.

More precisely, we need that

E[N t|Xt] = N (50)

for some constant matrix N . If this holds, and Assumption 1 holds for the original charac-

teristics, i.e., E[zt+1|Ct] = CtϕC , then,

E[zt+1|Xt] = E {E[zt+1|Ct]|Xt} = Xtϕ, ϕ = NϕC , (51)
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i.e., we see that the relationship between characteristics and conditional expected excess re-

turns remains linear with constant coefficients ϕ. In this case, GLS factors constructed based

on the normalized characteristics price perfectly all assets conditional on Xt. The maximum

squared Sharpe ratio attainable conditional on Xt may be lower than conditional on Ct,

but all of our earlier analysis of the conditions for OLS factors to span the SDF, for factor

hedging, and dimension reduction then go through based on the normalized characteristics

with conditional moments conditioned on Xt.

Normalization of characteristics can be useful if we wish to condition down to uncondi-

tional pricing restrictions and obtain an SDF with constant factor prices of risk and constant

factor means. For instance, purging characteristics of information about time-varying cross-

sectional mean, dispersion, or correlation of characteristics, removes much of the information

that in characteristics that could be related to time-variation in Σt. As a consequence, rel-

atively mild assumptions suffice to obtain constant factor prices of risk and constant factor

means.

Based on orthonormalized characteristics, the OLS factors in Example 3 have means

µf,t = ϕ and prices of risk bt = Ψ−1
t ϕ. So time-variation inΨt is the only remaining source of

time-variation in the prices of risk. With orthonormalized characteristics, the assumption that

Ψt is constant is a relatively weak one. Recall that all conditional moments in our analysis,

including Ψt, are conditioned on Xt. Since orthonormalization removes variation over time

in the average value of characteristics, their dispersion, and their correlation, there may not

be much information left in characteristics that captures time-variation in Ψt. Therefore,

conditional on the normalized characteristics Xt, Ψt could be constant even it is not constant

conditional Ct.

For example, consider book-to-market equity ratios. Before normalization, the average

book-to-market ratio across firms may have time-series variation that is informative about

time-variation in conditional covariances Ψt. Orthonormalization removes this common vari-

ation. Similarly, before normalization, book-to-market ratios may have time-varying cross-
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sectional dispersion that is informative about time-variation in Ψt. Orthonormalization re-

moves this information. There could potentially still be some information in, say, the cross-

sectional ordering of firms by characteristics each period that could contain information about

time-varying in Ψt, but it seems likely that orthonormalizing removes most of the variation

in characteristics that could be informative about time-variation in Ψt.

If Ψt is indeed constant conditional on the orthonormalized characteristics, then prices

of risk are constant, bt = b, and hence the SDF

Mt+1 = 1− b′(f t+1 − µf ) (52)

can be estimated from unconditional pricing restrictions and without estimating a conditional

covariance matrix. Thus, orthonormalization combined with a relatively weak assumption

about Ψt may make it possible to use standard estimation approaches that rely on uncondi-

tional moments.

IV.E. Testing

We close this section with a few remarks on testing. The previous analysis made clear

that heuristic factor models, such as OLS factors, only span the SDF when the conditional

covariance matrix satisfies certain conditions. How can we let the data tell us whether these

conditions hold? Going into the sampling theory of estimation and testing is beyond the

scope of this paper.12 Instead, we will highlight population moment conditions that reveal

misspecification (and ones that do not). We focus our discussion on OLS factors.

It may seem straightforward to test an OLS factor model. Let f t+1 denote the OLS

factors from Example 3. In this case we have observable conditional betas βt = Xt and

12. Pezzo, Velu, Zhou, and Wang (2022) build on our population results to develop an asymptotic inference
approach based on reduced-rank regression.
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constant factor means µf,t = ϕ. Therefore, it may seem natural to simply evaluate whether

E[zt+1] = E[Xtf t+1] (53)

holds in the data. In fact, this is what Fama and French (2020) do in their empirical work

when they evaluate an OLS factor model. However, testing the equality (53) just tests

whether there is a linear relation between characteristics and expected returns as stated in

Assumption 1. If Assumption 1 holds, the equality (53) is true irrespective of whether the

conditions in Proposition 2 for OLS factors to span the SDF hold or not. To see this, note

that E[Xtf t+1] = E[Xt(X
′
tXt)

−1X ′
tzt+1] = E[Xtϕ] = E[zt+1] by Assumption 1. So testing

the equality (53) is not a test of the OLS factor asset pricing model.

The key here is that misspecification due to the conditional covariance matrix not satis-

fying the conditions in Proposition 2 would show up as βt deviating from Xt. By assuming

βt = Xt, the approach of Fama and French (2020) assumes away any misspecification of the

SDF.

One way to testing for misspecification is to construct hedged factors as in Sections II.C

and II.D. If the hedged factors achieve a higher Sharpe ratio than the OLS factors, the OLS

factors do not span the SDF. We implement this approach empirically in the next section.

V. Empirical analysis

Our analysis so far provides conditions on the conditional covariance matrix of individual

stock returns under which OLS factors (and transformations thereof) span the SDF, as well

as conditions under which dimension-reduction via principal components analysis of OLS

factor portfolios yields the same factors as IPCA. Do these conditions hold empirically for

various combinations of characteristics-based factors used in the prior literature?

Directly answering this question by comparing the maximum squared Sharpe ratio attain-

able with OLS factors to the maximum squared Sharpe ratio of GLS factors is difficult because
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constructing GLS factors requires the estimation and inversion of a large conditional covari-

ance matrix for an unbalanced panel of thousands of stocks. Below we employ a heuristic

approach for estimating this covariance matrix, but we also use our earlier results on iterated

factor hedging to shed more light on this issue. The logic behind this latter approach is that

if a set of OLS factors does not span the SDF, then hedging the factors should improve the

maximum squared Sharpe ratio. If a set of OLS factors already spans the SDF, then factor

hedging should not yield an improvement. In fact, empirically, with estimated moments that

are contaminated with estimation error, factor hedging might lead to a deterioration in the

Sharpe ratio.

V.A. Data and factor construction

We use rank-transformed standardized stock characteristics from Kozak (2019) and daily

stock returns from July 1972 to December 2021. We apply several filters to preserve char-

acteristics with maximum data availability. In particular, we remove any characteristics for

which more than 25% of the observations in the panel of firms are missing. We remove any

time periods in the early part of the sample for which less than 500 firms are available. We

also remove firms whose past market caps do not exceed 0.0025% of the aggregate stock

market capitalization (e.g., firms with market capitalizations less than $1 billion on a $40

trillion aggregate stock market valuation). Lastly, we fill in any missing characteristics with

their cross-sectional means, which are equal to zero for standardized data.13 We collect the

resulting 34 rank-transformed standardized characteristics, including the unitary character-

istic, for each of the stocks in the monthly characteristics matrix Xt.
14 Our final dataset

contains 594 months of monthly characteristics and daily returns on 9,201 stocks.

As we discussed in Section IV.D, normalizations such as rank-transformation remove

time-varying components of characteristics. Unlike orthonormalization, rank-transformation

13. We also use a dataset with no market capitalization filters, a dataset with imputed characteristic values
using a more advanced imputation method, as well as other datasets based on different and broader sets of
characteristics (see Appendix, Section B).

14. Table I provides the list of characteristics we use.
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does not remove information about time-varying correlations, but time-varying components

of cross-sectional means and dispersion of characteristics are removed. On one hand, remov-

ing these components may restrict the investment opportunity set and lower the maximum

squared Sharpe ratio that is attainable. On the other hand, the conditions necessary for

means, covariances, and risk prices of OLS factors to be constant are more likely to hold. If

these moments are constant, the unconditional maximum squared Sharpe ratio of the factors

is equal to its (constant) conditional version and we can evaluate factor models based on the

unconditional maximum squared Sharpe ratio that the factors attain.

We consider several types of factor constructions in line with our theoretic developments

in the earlier part of the paper: (i) univariate factors with weights given by X ′
t; (ii) orthonor-

malized factors with orthonormalized weights (X ′
tXt)

− 1
2X ′

t constructed using the singular

value decomposition;15 (iii) OLS factors with weights (X ′
tXt)

−1X ′
t; and (iv) GLS factors

with weights equal to (X ′
tΣ

−1
t Xt)

−1X ′
tΣ

−1
t .

We update factor weights at the end of each month t. To avoid intra-month trading,

we evaluate all return-based performance metrics using stock returns aggregated to monthly

frequency, which corresponds to monthly buy-and-hold returns. For factor hedging and cross-

sectional regressions that rely on rolling covariance estimates, we use the most recently avail-

able data up to that point in time (i.e., up until the end of a prior month).

Our main analysis is conducted in full sample. We also report out-of-sample results

using a split-sample approach. Specifically, we split the sample into two parts: pre-2005 and

2005–present. When reporting out-of-sample maximum squared Sharpe ratios, we use the

sample covariance matrix of monthly factor returns as an estimate of the unconditional factor

covariance matrix and factor means as estimates of unconditional expected excess returns on

15. Let the singular value decomposition of X be given by UΛV ′. Then orthonormalized characteristics

X(X ′X)−
1
2 can be constructed simply as UV ′. This orthogonalization is also known as Löwdin symmetric

orthogonalization, as well as Mahalanobis whitening or ZCA (zero-phase component analysis; see Murphy
(2023)). Unlike Gram-Schmidt orthogonalization, it treats all characteristics symmetrically and has an ap-
pealing property that orthonormalized columns are the least distant from the original columns of Xt (in the
least squares sense). That is, it indicates the gentlest pushing of each characteristic in the cross-section in order
to get them to be orthogonal. Such orthogonalization, therefore, partially preserves the economic identity of
characteristics and factors which is a useful property in our setting.
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the factors, with both estimated in the pre-2005 sample of returns. Combining information

from covariances and means, we compute MVE portfolio weights which we then fix and

apply to the 2005–present sample of monthly stock returns. We then compute annualized

unconditional squared Sharpe ratios of these series in the out-of-sample period.

V.B. GLS factors

While GLS factors defined in Proposition 1 are mean-variance efficient, they are generally in-

feasible because their construction requires knowledge of the conditional covariance matrix of

individual stock returns, Σt. We propose a heuristic non-parametric approach for estimating

Σt.

We compute rolling covariances in 3-year windows of daily individual stock returns (up

until the end of previous month), we use PCA to extract 30 factors, and we approximate

the conditional covariance matrix based on this 30-factor model at every time t. We set

idiosyncratic variances equal to the cross-sectional mean of idiosyncratic stock-level variances

for every time t.16

This approach is conceptually similar to what factor hedging is attempting to achieve:

extract information from the empirical covariance matrix. Hedging does not estimate the full

covariance matrix, however, while this method does.

V.C. Hedging factors

As an alternative to GLS-based approaches which rely on the estimate of the rolling or highly

parametric covariance matrix of stock returns, we implement the factor hedging procedure

of Section II.C. We view this procedure as an iterative approach of extracting information

from the inverse of the covariance matrix of stock returns without the need to fully estimate

this matrix.

16. Our rolling covariance matrix approach potentially uses some info not in Xt, which is a slight deviation
from our theoretical setup.
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We compute daily rolling covariances of individual stocks returns with the factors within

overlapping backward-looking 3-year windows. We then regress these daily covariances on

the characteristics Xt. The residuals from these regressions give us daily portfolio weights

W h,t of the hedging portfolios which we then use to calculate daily hedging factor returns.

This completes the first step in the approach we outlined in Section II.C.

For our main analysis, the second and third steps follow the procedure we outlined in the

main text in Section II.C: we calculate stocks’ covariances with the hedge portfolio returns so

that we can modify stocks’ weights in the factor portfolios to remove unpriced risks, and then

regress the factor portfolio weights on these covariances to obtain residual factor portfolio

weights that have been purged of unpriced risk exposure. We define characteristics associated

with these factors to be “hedged characteristics.” To construct iterated hedged factors, we

repeat this procedure multiple times.17

V.D. Empirical performance of hedged factors

Figure I shows improvement in average in-sample MVE portfolio’s squared Sharpe ratios

constructed from hedged OLS factors relative to unhedged factors, in %. We run the hedging

procedure for up to three rounds of hedging. We calculate these improvements for OLS

factor models with different numbers of characteristic-based factors from one to fifteen, in

addition to the constant characteristic which is implicitly included in all models. Since there

are different possible subsets of J factors from the full 34 OLS factors, we draw, for each

J , 10,000 random subsets of J factors. Figure I shows the percentage improvement in the

maximum squared Sharpe ratio averaged across these random subsets for each J .

As the figure shows, the benefit of hedging decreases as the number of characteristics

17. In addition to this approach we also implement the approach of DMRS that we discussed in footnote
4 of Section II.C. That is, in the second and third steps we purge the ad-hoc factors from unpriced risks by
regressing the daily univariate factors on the daily hedge portfolio returns. The parameters of this regression
are estimated using full sample and then used to construct residuals (as an alternative, we also implemented
and tested estimating the parameters of this regression in rolling or expanding windows). The residuals are the
hedged factors. We refer to this type of hedging as “DMRS hedging.” The results are reported in Appendix
Tables A.IV, A.V and A.VI.
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Figure I: In-sample maximum squared Sharpe ratio improvement due to iterative
hedging of OLS factors. The plot shows improvement, in %, of annualized average in-
sample maximum squared Sharpe ratio of hedged OLS factors relative to unhedged factors,
for all models with a constant and 1–15 additional factors. We hedge the factors up to three
times. We also report performance of the GLS factors which use the sample conditional
covariance matrix of individual stock returns estimated using the rolling PCA procedure
outlined in Section V.B. For each number of factors on the x-axis, results are averaged across
10,000 models with this number of factors randomly drawn from the set of all factors.

increases. This is what we anticipated in our discussion of Proposition 2. Including a large

number of characteristics makes it more likely that loadings on major sources of covariances

are spanned by the columns of Xt. This renders violations of the conditions of Proposition 2

quantitatively less important. As a consequence, a large number of OLS factors approximately

spans the SDF and factor hedging provides little additional benefit.

The benefit trends towards zero and might even turn negative when J is large. Under

population moments, as in our earlier theoretical analysis, hedging would never lead to a

deterioration of the Sharpe ratio in sample. However, with estimated moments, estimation

error contaminates the hedging procedure and hedging can then lead to a deterioration,

especially out of sample.

The figure also shows that there can be a benefit from iterating on the hedging procedure

using the iterated hedging approach that we developed in our theoretical analysis. This

benefit is larger if the number of factors is relatively small. For example, with J = 2..5,

hedging a single time leads to an improvement in average maximum squared Sharpe ratio
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Figure II: In-sample maximum squared Sharpe ratio of hedged OLS factors. The
plot shows annualized average in-sample maximum squared Sharpe ratios of unhedged and
hedged OLS factors, as well as GLS factors. We hedge the factors up to three times. The
latter use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section V.B. For each number of factors on the
x-axis, results are averaged across 10,000 models with this number of factors randomly drawn
from the set of all factors.

of about 50%. Hedging one more round raises this number to about 60%, on average. The

marginal benefit of each additional round of hedging is small. For J ≥ 15 the benefit of the

second round of hedging largely dissipates.

The red line in Figure I depicts average squared Sharpe ratio improvements generated by

GLS factors based on a conditional covariance matrix of individual stock returns estimated

using the rolling PCA procedure outlined in Section V.B. Recall that iterative hedging is

essentially a way of using information from this (inverse) covariance matrix without the need

to estimate the entire matrix. As such, we would expect hedging to perform similarly to GLS.

This is exactly what we see in the figure: GLS factors generate improvements in maximum

squared Sharpe ratios of broadly similar magnitude—slightly higher than hedging for models

with one or two factors, and about the same as hedged factors for models with three or more

factors. Overall, this result suggests that factor hedging performs as intended. It is a useful

simpler alternative to GLS that avoids estimation of the full conditional covariance matrix

of individual stock returns.
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Figure II demonstrates the effect of these improvements on the total average squared

Sharpe ratio, in levels, for models with unhedged, hedged (up to three times), and GLS

factors. Similar to Figure I, we see that using hedged or GLS factors leads to sizeable

improvements in maximum squared Sharpe ratios. The level of improvement decays only

slightly as J increases in the range 1..15, indicating that although the relative benefit of

hedging decays with J , as we have seen in Figure I, hedging still leads to roughly the same

level increases in squared Sharpe ratio (of around 2.0) in our dataset for J ≤ 15. For larger J ,

the level of improvement continues to decay, however, and approaches zero when all factors

are included (see Table II below).

In addition to studying the OLS factors, we also repeat the above analysis for univariate

and orthonormalized factors in Appendix, Section A. We find that average squared Sharpe

ratio improvements of univariate factors decay much more slowly with the number of factors

J , and that there is higher benefit to hedging more than one round. These results suggest

that univariate factors might be more contaminated with unpriced risks than OLS factors and

there is more room for correcting these inefficiencies with hedging or GLS factor constructions,

even for models with a large number of factors. Results for orthonormalized factors are in

between those for OLS and univariate factors. We summarize all these results in Appendix

Table A.I.

We now turn our attention to the edge cases of the Figure I. First, we look at models with

two factors: the level factor corresponding to the constant vector in Xt and one additional

factor based on one characteristic at a time. Second, we look at models that use all available

factors. We can consider each of these models individually without having to rely on random

sampling as we have done previously.

Table I shows how hedging changes the in-sample squared Sharpe ratio of various spe-

cific two-factor models. The first column shows the results for unhedged factors, the next

three columns hedge factors iteratively up to three times, and the last column employs GLS

hedging. In each row of the table, the characteristics matrix Xt includes a constant and the
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TABLE I: In-sample maximum squared Sharpe ratios of two-factor OLS models.
We report in-sample maximum annualized squared Sharpe ratios of all models which use OLS factors
(first column), OLS hedged factors for n = 1..3 rounds, as well as approximate GLS factors (the last
column). All models include two characteristics in Xt: a constant, and one of the characteristics
listed in the rows. GLS factors use a non-parametric covariance matrix estimated via PCA applied
to 3-year rolling windows of daily stocks returns. The row labeled “ER” uses fitted values from a
panel regression of returns on all characteristics as a standalone characteristic. The last row averages
the numbers across all models. ∗ indicate p < 0.05 of a one-sided test of the squared Sharpe ratio
difference of the given model relative to the unhedged benchmark (first column). ∗∗ indicate p < 0.01.

OLS Hedged n times GLS

1 2 3

Size 0.37 0.73∗ 0.56 0.59 0.80∗∗

Value (A) 0.76 1.19∗ 1.23∗ 1.22∗ 1.21∗∗

Gross Profitability 0.52 0.97∗∗ 0.91∗ 0.86∗ 1.13∗∗

F-score 0.83 1.63∗∗ 1.86∗∗ 1.86∗∗ 2.18∗∗

Debt Issuance 0.43 0.76∗ 0.75 0.77∗ 1.00∗∗

Share Repurchases 0.71 1.35∗∗ 1.40∗ 1.54∗∗ 1.39∗∗

Net Issuance (A) 1.14 1.94∗∗ 2.03∗∗ 2.17∗∗ 1.88∗∗

Asset Growth 0.86 1.23∗ 1.29∗ 1.35∗ 1.48∗∗

Asset Turnover 0.58 0.79 0.60 0.65 0.90∗

Gross Margins 0.41 1.00∗∗ 0.85∗ 0.94∗∗ 1.25∗∗

Earnings/Price 0.71 1.22∗ 1.10 1.09 1.30∗∗

Investment/Capital 0.60 0.94∗ 0.89 0.91 1.07∗∗

Investment Growth 0.82 1.16∗ 1.22∗ 1.23∗ 1.47∗∗

Sales Growth 0.73 0.95 0.85 0.93 1.06∗

Leverage 0.53 0.75 0.76 0.72 0.87∗

Return on Assets (A) 0.44 0.84∗ 0.71 0.73∗ 1.07∗∗

Return on Book Equity (A) 0.44 0.81∗ 0.66 0.70 1.01∗∗

Sales/Price 0.65 0.87 0.79 0.81 0.93∗

Momentum (6m) 0.36 0.65∗ 0.66∗ 0.65∗ 0.92∗∗

Industry Momentum 1.04 1.62∗ 1.55∗ 1.52∗ 1.97∗∗

Momentum (12m) 0.72 1.13∗ 1.13∗ 1.10∗ 1.56∗∗

Momentum-Reversals 0.46 0.81∗ 0.76 0.72 0.87∗∗

Value (M) 0.60 0.90∗ 0.94∗ 0.94∗ 1.11∗∗

Net Issuance (M) 1.11 1.87∗∗ 1.86∗ 1.89∗ 2.35∗∗

Short-Term Reversals 0.73 1.62∗∗ 1.64∗∗ 1.64∗∗ 2.12∗∗

Idiosyncratic Volatility 0.75 1.15 0.96 0.91 1.49∗∗

Beta Arbitrage 1.09 0.80 0.88 0.91 1.28
Industry Rel. Reversals 1.50 2.60∗∗ 2.63∗∗ 2.66∗∗ 3.37∗∗

Price 0.37 0.67∗ 0.69∗ 0.67∗ 0.86∗∗

Firm’s age 0.55 1.09∗ 0.98∗ 0.95∗ 1.11∗∗

Share Volume 0.83 0.83 0.78 0.77 1.26∗∗

Exchange Switch 0.83 1.42∗∗ 1.36∗∗ 1.35∗∗ 1.42∗∗

IPO 0.43 0.84∗ 0.72 0.73 0.88∗∗

ER 7.05 9.13∗ 9.63∗∗ 9.73∗∗ 11.32∗∗

Average 0.88 1.36 1.34 1.36 1.64
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characteristic listed in this row. For all of these, since only one characteristics is used, it is

highly unlikely that the conditions hold that are required by Proposition 2 for OLS factors

to span the SDF. Hedging the factors should therefore improve the Sharpe ratio. Consistent

with this logic, we find improvements from hedging for every characteristic, and the gain is

often substantial.

To interpret this correctly, it is important to keep in mind that the failure of the unhedged

factors to span the SDF is not a simple consequence of the fact that two-factor models

omit other characteristics that are informative about expected returns but are left out from

the two-factor model. The hedged factors do not use any information from these other

characteristics either. Instead, the reason for the inferiority of the unhedged factors is that a

single characteristic is not enough to satisfy the conditions in Proposition 2 for OLS factors

to span the SDF that prices assets conditional on this single characteristic.

To see this more clearly, we report squared Sharpe ratios based on approximate GLS

factors in the last column of the table. We use a non-parametric covariance matrix estimated

via PCA applied to 3-year rolling windows of daily stocks returns to estimate GLS factors.

The table shows that hedging OLS factors moves their squared Sharpe ratios in the direction

of the GLS factors. GLS factors achieve higher in-sample squared Sharpe ratios than hedged

factors do.

As the table shows, there is considerable heterogeneity in how much hedging or GLS ad-

justments improve the Sharpe ratio. Characteristics like short-term reversals, net issuance,

gross margins show dramatic improvements of more than 100% with three rounds of hedging,

and even more so when GLS factors are considered, while others show little in-sample im-

provement. The bottom row shows that on average, across all portfolios, maximum squared

Sharpe ratios increase from 0.88 (unhedged factors) to 1.36 (after three rounds of hedging),

to 1.64 for GLS factors. These improvements in squared Sharpe ratios are statistically sig-

nificant. To demonstrate this we conduct a one-sided 5% or 1% test based on Barillas, Kan,

Robotti, and Shanken (2020) which compares the squared Sharpe ratio of the model in ques-
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tion to the benchmark OLS model with no hedging (the first column). We use ∗ and ∗∗ to

indicate significance at these two levels, respectively.

Lastly, we construct a composite characteristic which uses fitted values from a panel

regression of returns on all characteristics (row labeled “ER”). This characteristic summarizes

expected return predictability of all original characteristics, but uses a single factor and thus

generally does not satisfy the conditions in Proposition 2 for OLS factors to span the SDF

that prices assets conditional on this single composite characteristic. As such, it is a natural

candidate for hedging or GLS factor construction. The table shows that benefits of hedging

for this characteristics are substantial. Hedging three rounds achieves a squared Sharpe ratio

of 9.63 (from 7.05), while GLS constructions rise this number as high as 11.32.18 These

results indicate that the conditions in Proposition 2 are indeed likely to be violated. In other

words, sorting stocks on fitted expected returns preserves information in means but largely

discards information in covariances, which prevents the factor from reaching mean-variance

efficiency.

Appendix Table A.III shows the out-of-sample results. Overall, they are consistent with

in-sample results. Hedging once increases the squared Sharpe ratios marginally, from 0.47 to

0.61 on average across all models with no out-of-sample benefit to hedging more rounds. GLS

factors achieve the squared Sharpe of 0.89. Hedging the “ER” characteristic also improves

squared Sharpe out of sample, to 1.61 (from 1.31) after three rounds of hedging, and as high

as 2.56 when using GLS factors. Table A.II reports the out-of-sample results for univariate

factors and factors based on orthonormalized characteristics. Out-of-sample results exhibit

similar patterns as the in-sample results, but the magnitude of effects is diminished.

In Table II, we consider the effect of hedging on the models with the full set of 34 factors,

both in sample (top panel) and out of sample (bottom panel). The first column shows the

maximum squared Sharpe ratios of the original unhedged models, while the following five

18. These GLS constructions can be interpreted as direct estimates of an MVE portfolio constructed from
individual stock returns in (4), where stock-level expected returns µt are estimated via a panel regression
of returns on all characteristics, and the stock-level covariance matrix of returns Σt is estimated using the
non-parametric PCA-based approach discussed above.
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TABLE II: Maximum squared Sharpe ratios of hedged factors.
We report in-sample (top panel) and out-of-sample (bottom panel) annualized maximum squared
Sharpe ratio of the MVE portfolio constructed from 34 unhedged (first column) or hedged up to five
times factors. Rows correspond to three types of factors we discuss in Section V.A. ∗ indicate p < 0.05
of a one-sided Barillas, Kan, Robotti, and Shanken (2020) test of the squared Sharpe ratio difference
of a given model relative to the unhedged benchmark (first column). ∗∗ indicate p < 0.01.

Unhedged Hedged n times

1 2 3 4 5

In-sample

Univariate 13.8 16.4∗ 17.2∗∗ 17.3∗∗ 17.4∗∗ 17.4∗∗

Orthonormal 18.0 20.1∗ 20.3∗ 20.4∗ 20.5∗ 20.5∗

OLS 21.3 21.8 21.5 21.6 21.6 21.6

Out-of-sample

Univariate 1.3 1.5 2.1 2.3 2.4 2.5
Orthonormal 3.4 3.1 3.4 3.6 3.6 3.7
OLS 4.0 3.8 3.9 4.1 4.1 4.2

columns hedge the factors up to five times. We use ∗ and ∗∗ to indicate significance of the

squared Sharpe ratio difference at the 5% and 1% level, respectively, using the one-sided test

of Barillas, Kan, Robotti, and Shanken (2020).

The results in the table are consistent with our previous findings and intuition. First,

hedging raises the squared Sharpe ratio for univariate factors (13.8 to 17.4 in sample and 1.3 to

2.5 out of sample). For orthonormal and OLS factors the increases are small, consistent with

our previous findings that the benefits of hedging decay as the number of factors increases.

To summarize, the results in this section demonstrate sizeable benefits of hedging and GLS

factor constructions in terms of squared Sharpe ratio improvements. Hedging is especially

beneficial for univariate factors. The benefits of hedging for OLS factors diminish quickly as

the number of factors increases because the large number of characteristics renders violations

of the conditions of Proposition 2 quantitatively less important. As a consequence, when

the number of OLS factors is large, they approximately span the SDF and factor hedging

provides little additional benefit. In the same spirit, hedging GLS factors does not lead
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to any increase in the squared Sharpe ratio since these factors are already approximately

mean-variance efficient.

V.E. Dimensionality reduction

Our final empirical analysis looks at dimensionality reduction. In Section III, we showed the

conditions necessary for dimensionality reduction to be possible. We also showed a few ways

how to proceed with dimensionality reduction and how these approaches are related. In this

section we explore and compare these methods empirically.

In particular, in the discussion of Example 5 we showed that the factors f IPCA,t+1 in

(39) satisfy a conditional version of the first-order conditions in Kelly, Pruitt, and Su (2019)

that define the IPCA estimator. This means that a conditional equivalent of an IPCA

estimator can be constructed using PCA on managed portfolios, even in the case where

characteristics are not orthonormalized, if the managed portfolios are constructed as OLS

factors. In particular, applying PCA to OLS portfolios recovers Qt. By applying this matrix

to univariate portfolios X ′
tzt+1 and further transforming them by (Q′

tX
′
tXtQt)

−1 as in (39)

yields our version of the IPCA estimator. The assumption of time-constant Qt and Λt can

justify working with a constant Q extracted from an average conditional, or approximately

unconditional, covariance matrix.19

Similarly, Example 6 showed that under Assumption (35) we should apply PCA to uni-

variate portfolios constructed using orthonormalized characteristics to obtain PPCA factors

from Kim, Korajczyk, and Neuhierl (2021).

As benchmarks for comparison, we also apply PCA to univariate portfolios as motivated

by Kozak, Nagel, and Santosh (2018) and Kozak, Nagel, and Santosh (2020) (we denote

this specifications a “SCS”). Lastly, we include a GLS analogue of IPCA, labeled as “IPCA

(GLS)”, that constructs the factors as f t+1 =
(
Q′

tX
′
tΣ

−1
t XtQt

)−1
Q′

tX
′
tΣ

−1
t zt+1, where Qt

19. In practice, however, the theoretic equivalence between our analytic IPCA approach and the iterative
procedure of Kelly, Pruitt, and Su (2019) might not hold exactly if this time-constancy assumption is violated,
or if the assumptions in Corollary 2 about the covariance matrix do not hold and hence the dimension-reduction
to K factors approach is misspecified.
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TABLE III: Dimensionality reduction: Comparing different portfolio-formation approaches
The table reports in-sample (top panel) and out-of-sample (bottom panel) maximum annualized
squared Sharpe ratios of N PCs (columns) of factors from one of four portfolio-formation approaches
(rows): (i) univariate from Kozak, Nagel, and Santosh (2018) and Kozak, Nagel, and Santosh (2020)
(SCS), (ii) IPCA from Kelly, Pruitt, and Su (2019) implemented as in Example 5, (iii) PPCA from
Kim, Korajczyk, and Neuhierl (2021) implemented as in Example 6, and (iv) GLS analogue of IPCA
factors as explained in the text. Out-of-sample results are based on a split sample estimation be-
fore/after 2005.

1 2 3 4 5 6 7 8 9 10 11 12

In-sample

SCS 0.2 0.6 0.9 1.2 3.1 3.1 3.1 4.4 4.7 4.7 7.9 8.1
IPCA 0.3 1.3 4.1 4.5 7.0 7.7 11.9 12.6 13.7 14.4 14.8 15.3
PPCA 0.3 0.3 0.7 2.5 8.3 8.3 8.7 12.0 12.0 13.2 13.2 13.3
IPCA (GLS) 0.6 1.3 11.1 10.9 12.0 12.9 16.4 16.8 16.7 16.5 16.3 16.4

Out-of-sample

SCS 0.1 0.2 0.4 0.5 0.4 0.3 0.3 0.6 0.8 0.8 1.6 1.5
IPCA 0.3 0.1 0.7 0.8 1.0 1.1 2.1 2.2 2.6 3.1 3.5 3.8
PPCA 0.2 0.2 0.4 1.0 1.6 1.3 1.2 3.0 2.4 3.2 3.1 3.1
IPCA (GLS) 0.4 0.2 2.7 2.2 2.8 2.8 4.7 4.8 3.8 3.8 3.8 3.7

are eigenvectors from PCA of the GLS factors. For all approaches, we apply PCA to monthly

returns.

We now compare empirical performance of these methods of dimensionality reduction

in terms of unconditional mean-variance efficiency. Table III reports in-sample and out-of-

sample maximum annualized squared Sharpe ratios of these extracted latent factors for each

of the four portfolio-formation approaches. We report our results by varying the number of

latent factors from 1 to 12 (shown in columns). To compute out-of-sample metrics we split

the sample in 2005, estimate mean-variance optimal factor combination in the earlier part of

the sample using daily returns, and compute squared Sharpe ratios in the latter part using

these pre-2005 weights and monthly returns.

The table shows that our analytical versions of IPCA factors from Example 5 and PPCA

factors from Example 6 perform better than PCA on simple univariate factors (SCS). The
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primary reason for this improvement is the additional linear transformation step in the IPCA

procedure. This result is similar to our previous finding that OLS factors perform better

than univariate factors in terms of being less contaminated by non-priced risks. Performing

an OLS transformation on PCA-implied “characteristics” delivers the same benefit.

Equation (41) shows that PPCA can be thought as a simple PCA on univariate portfolios

as in the SCS approach, but applied to orthonormalized characteristics. That is, PPCA uses

only information from orthonormalized characteristics and disregards the information from

the original characteristics. As discussed in Section IV.D normalization of characteristics

removes time-series variation in their cross-sectional variances and correlations, but can be

advantageous for conditioning down the models. The maximum squared Sharpe ratio attain-

able conditional on orthonormalized characteristics might therefore be lower than that of the

original characteristics. Table III shows that Sharpe ratio deterioration is small in the data:

squared Sharpe ratios attainable from orthonormalized characteristics (PPCA) are roughly

the same as the ones from the IPCA method but significantly higher than the ones attainable

from SCS factors.

Note that if we work with cross-sectionally orthonormalized characteristics directly, all

methods discussed above become equivalent. This is because in this case X ′
tXt = I so any

OLS transformations drop out. That is, other methods, such as IPCA, become equivalent

to PPCA if we restrict their information set to orthonormalized characteristics. Without

this restriction, these other methods, in principle, use a broader information set and could

outperform PPCA. However, in practice, we find that the difference in performance is small.

The last row in each panel focuses on the GLS analogue of IPCA factors. We see that

these factor models achieve squared Sharpe ratio improvements with fewer factors than their

counterparts that ignore information in the covariance matrix of stock returns. The GLS

version of IPCA achieves the highest squared Sharpe ratios and only needs 7-8 factors to get

there.

The fact that the GLS version of IPCA performs better than IPCA when the number
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of latent factors is low suggests that latent factor models with a small number of factors

can potentially benefit from hedging. We investigate this conjecture in Table A.VII in the

Appendix. We find that hedging can indeed improve the performance of latent factor models,

especially the ones that are not OLS transformed, such as the SCS model. Table A.VIII in

the Appendix shows that the same is true in out-of-sample data.

In summary, we find that latent factor models perform quite differently depending on how

their factors are constructed. In general, OLS-transformed characteristics lead to more effi-

cient factors with less contamination from unpriced risks, both for simple and latent factors.

If we restrict the information set to include only orthonormalized characteristics, which is

what PPCA does, all methods become equivalent under this information set and perform on

par with the OLS-transformed factors. We see some benefits of hedging or GLS adjustments

for latent factors, especially the ones that are not OLS-transformed.

VI. Conclusion

Heuristic factor construction by sorting on firm characteristics, weighting by characteristics,

or computing OLS cross-sectional regression slopes does not use information about the co-

variance matrix of individual stock returns. As a consequence, these heuristic factors span

the SDF that prices individual stocks only if the covariance matrix satisfies certain special

conditions. We work out what these conditions are and obtain a number of insights.

First, horse races between direct prediction of excess returns with characteristics and

heuristic characteristics-based factor models, or between different heuristic factor models,

have no economic content other than exposing the shortcomings of heuristic factor construc-

tion that neglects covariance matrix information. Results from such horse races do not lead

to insights about competing economic theories of risk premia and mispricing.

Second, when the individual stock return covariance matrix satisfies conditions such that

OLS cross-sectional regression slope factors span the SDF, then nonsingular transformations

of OLS factors span the SDF, too, including univariate factors in which stocks in each factor
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are weighted by a single characteristic. Choice among these different transformations is

then a matter of convenience, for example, to obtain suitable conditioning-down properties.

Empirically, these conditions do not hold exactly, and OLS factors seem to generally get

closer to spanning the SDF.

Third, the conditions on the covariance matrix that allow OLS factors, or transforma-

tions thereof, to span the SDF are more likely to hold when the number of characteristics

employed by the econometrician is larger. Additional characteristics can help even if they

are unrelated to expected returns as long as they help to capture important sources of stock

return covariances. We find empirical support for this prediction.

Fourth, heuristic factor models that employ only a small number of characteristics can

benefit from purging unpriced risks using hedging methods. Compared with unhedged fac-

tors, hedged factors can span the SDF under weaker conditions on the covariance matrix of

individual stock returns. Hedging unpriced risks effectively incorporates some information

about the covariance matrix into factor construction, but without requiring inversion of a

large covariance matrix. Consistent with our theoretical results, we find that hedging bene-

fits are largest for small-scale factor models while OLS factor models with a large number of

factors are already close to spanning the SDF.

Fifth, iterating on these hedging procedures allows further relaxation of the conditions

on the covariance matrix. Empirically, we find modest benefits from iterated hedging for

small-scale factor models, but the benefits from iteration are small for models with a large

number of factors.

Sixth, when the relationship of expected returns and covariance matrix to characteristics

has a lower-dimensional structure such that information in J characteristics can be captured

by K < J characteristics, then the SDF can be spanned by K factors without requiring

inversion of a large covariance matrix. Under the conditions on the covariance matrix that

allow the factors to span the SDF, simple PCA on OLS factors is equivalent the IPCA

method of Kelly, Pruitt, and Su (2019), and simple PCA on univariate factors constructed
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from orthonormalized characteristics is equivalent to the PPCA method of Kim, Korajczyk,

and Neuhierl (2021).

Overall, our results provide the conceptual foundations for the construction, hedging, and

dimension-reduction of reduced-form characteristics-based factors that was missing so far in

the vast empirical literature on factor models in cross-sectional asset pricing.
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Appendix (for online publication)

A. Additional plots and figures

A.1. Empirical performance of hedged factors

In Figure A.1 we perform the exercise from Figure I using univariate factors. Interesting
differences emerge from comparing results for OLS and univariate factors. First, average
squared Sharpe ratio improvements decay much more slowly with the number of factors J .
Second, there is higher benefit to hedging more than one round and even higher if GLS factors
are used. These results suggests that univariate factors might be more contaminated with
unpriced risks than OLS factors and there is more room for correcting these inefficiencies
with hedging or GLS factor constructions, even for models with a large number of factors.
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Figure A.1: In-sample maximum squared Sharpe ratio improvement due to iter-
ative hedging of univariate factors. The plot shows improvement, in %, of annualized
average in-sample maximum squared Sharpe ratio from hedged univariate factors relative to
unhedged factors, for all models with a constant and 1–15 additional factors. We hedge the
factors up to three times. We also report performance of the GLS factors which use the
sample conditional covariance matrix of individual stock returns estimated using the rolling
PCA procedure outlined in Section V.B. For each number of factors on the x-axis, results
are averaged across 10,000 models with this number of factors randomly drawn from the set
of all factors.

Figure A.2 studies orthonormalized factors. The results lie in between of OLS and uni-
variate factors: the speed of the squared Sharpe ratio improvement decay with the number
of factors J is greater than in the univariate case but lower than with OLS factors; hedging
more than once provides greater benefit than for OLS factors but less than with univariate
factors.

Figures A.3 and A.4 show the same results evaluated out-of-sample using the sample
split approach discussed previously. Out-of-sample results exhibit similar patterns as the
in-sample results, but the magnitude of effects is diminished.
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Figure A.2: In-sample maximum squared Sharpe ratio improvement due to it-
erative hedging of orthonormalized factors. The plot shows improvement, in %, of
annualized average in-sample maximum squared Sharpe ratio from hedged orthonormalized
factors relative to unhedged factors, for all models with a constant and 1–15 additional fac-
tors. We hedge the factors up to three times. We also report performance of the GLS factors
which use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section V.B. For each number of factors on the
x-axis, results are averaged across 10,000 models with this number of factors randomly drawn
from the set of all available factors.

Table A.I reports the level of in-sample maximum squared Sharpe ratios for hedged and
GLS factors. We show results for univariate, orthonormal, and OLS factors. Table A.II shows
the same results evaluated out-of-sample using the sample split approach discussed previously.
Out-of-sample results exhibit similar patterns as the in-sample results, but the magnitude of
effects is diminished. For OLS factors hedging provides small improvement for models with
a small number of factors and no improvement for models with 12 or more factors. GLS
factors (last row) work somewhat better than hedged factors and still yields some efficiency
improvements even for models with 15 factors. For univariate and orthonormal factors, the
improvements in squared Sharpe ratios decay slower with the number of factors. We can still
see benefits for OOS performance even for models with 15 factors.

Table A.III reports maximum out-of-sample annualized squared Sharpe ratios of all two-
factor models which use OLS factors (first column), OLS hedged factors for n = 1..3 rounds,
as well as approximate GLS factors (the last column). All models include two characteristics
in Xt: a constant, and one of the characteristics listed in the rows.

We consider DMRS hedging as an alternative to our hedging approach. Tables A.IV and
A.V show in-sample and out-of-sample results, respectively. Overall, DMRS hedging appears
to be less reliable and performs significantly worse than our hedging approach.
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Figure A.3: Out-of-sample maximum squared Sharpe ratio improvement due to
iterative hedging of OLS factors. The plot shows improvement, in %, of annualized
average out-of-sample maximum squared Sharpe ratio from hedged OLS factors relative to
unhedged factors, for all models with a constant and 1–15 additional factors. We hedge the
factors up to three times. We also report performance of the GLS factors which use the
sample conditional covariance matrix of individual stock returns estimated using the rolling
PCA procedure outlined in Section V.B. For each number of factors on the x-axis, results
are averaged across 10,000 models with this number of factors randomly drawn from the set
of all factors.
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Figure A.4: Out-of-sample maximum squared Sharpe ratio improvement due to
iterative hedging of Univariate factors. The plot shows improvement, in %, of annu-
alized average out-of-sample maximum squared Sharpe ratio from hedged univariate factors
relative to unhedged factors, for all models with a constant and 1–15 additional factors. We
hedge the factors up to three times. We also report performance of the GLS factors which
use the sample conditional covariance matrix of individual stock returns estimated using the
rolling PCA procedure outlined in Section V.B. For each number of factors on the x-axis,
results are averaged across 10,000 models with this number of factors randomly drawn from
the set of all factors.
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TABLE A.I: In-sample maximum squared Sharpe ratios of hedged factors.
We construct hedged factors and iterate by hedging up to three times. The table shows average in-sample annualized maximum squared Sharpe ratios from hedged
univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant and 1–15 additional factors.
We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns estimated using the rolling PCA procedure
outlined in Section V.B (last row). For each number of factors reported in the columns, results are averaged across 10,000 models with this number of factors randomly
drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.8 1.1 1.5 1.9 2.3 2.8 3.2 3.7 4.2 4.7 5.2 5.7 6.2 6.6 7.1
Hedged 1x 1.2 1.6 2.2 2.9 3.5 4.2 4.9 5.6 6.3 6.9 7.6 8.2 8.8 9.3 9.9
Hedged 2x 1.1 1.6 2.3 3.1 3.8 4.6 5.3 6.1 6.8 7.5 8.2 8.9 9.5 10.1 10.6
Hedged 3x 1.1 1.6 2.3 3.1 3.8 4.6 5.4 6.1 6.9 7.6 8.3 8.9 9.5 10.1 10.7

Orthonormal

Unhedged 0.8 1.1 1.5 2.0 2.5 3.1 3.7 4.3 5.0 5.7 6.3 7.0 7.7 8.4 9.1
Hedged 1x 1.2 1.6 2.3 3.0 3.7 4.5 5.3 6.1 6.9 7.7 8.5 9.3 10.0 10.8 11.5
Hedged 2x 1.2 1.7 2.4 3.2 4.0 4.8 5.7 6.6 7.4 8.3 9.1 9.9 10.6 11.4 12.1
Hedged 3x 1.2 1.7 2.4 3.2 4.0 4.9 5.7 6.6 7.5 8.3 9.1 9.9 10.7 11.4 12.1

OLS

Unhedged 0.8 1.0 1.5 2.0 2.6 3.3 4.0 4.7 5.5 6.3 7.1 7.9 8.8 9.6 10.4
Hedged 1x 1.2 1.6 2.3 3.0 3.8 4.6 5.4 6.3 7.1 8.0 8.8 9.6 10.4 11.2 12.0
Hedged 2x 1.2 1.7 2.4 3.2 4.0 4.9 5.8 6.6 7.5 8.3 9.2 10.0 10.8 11.5 12.3
Hedged 3x 1.2 1.7 2.4 3.2 4.0 4.9 5.8 6.7 7.5 8.4 9.2 10.0 10.8 11.6 12.3

GLS (pca) 1.5 1.9 2.5 3.2 3.9 4.7 5.5 6.4 7.2 8.1 8.9 9.7 10.5 11.4 12.1

58



TABLE A.II: Out-of-sample maximum squared Sharpe ratios of hedged factors.
We construct hedged factors and iterate by hedging up to three times. The table shows average out-of-sample annualized maximum squared Sharpe ratios from hedged
Univariate, Orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant and 1–15 additional factors.
We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns estimated using the rolling PCA procedure
outlined in Section V.B (last row). For each number of factors reported in the columns, results are averaged across 10,000 models with this number of factors randomly
drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.4 0.5 0.5 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
Hedged 1x 0.5 0.5 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3
Hedged 2x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 3x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Orthonormal

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 1x 0.5 0.5 0.6 0.7 0.7 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 2x 0.5 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Hedged 3x 0.5 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 2.0 2.1

OLS

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.7 1.8 1.9 2.1
Hedged 1x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
Hedged 2x 0.5 0.5 0.6 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Hedged 3x 0.5 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 2.0 2.1

GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4
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TABLE A.III: Out-of-sample maximum squared Sharpe ratios of two-factor OLS models.
We report maximum out-of-sample annualized squared Sharpe ratios of all models which use OLS
factors (first column), OLS hedged factors for n = 1..3 rounds, as well as approximate GLS factors (the
last column). All models include two characteristics in Xt: a constant, and one of the characteristics
listed in the rows. GLS factors use a non-parametric covariance matrix estimated via PCA applied to
3-year rolling windows of daily stocks returns. The row labeled “ER” uses fitted values from a panel
regression of returns on all characteristics as a standalone characteristic. The last row averages the
numbers across all models. Out-of-sample results are based on a split sample estimation before/after
2005.

OLS Hedged n times GLS

1 2 3

Size 0.26 0.65 0.31 0.42 0.66
Value (A) 0.20 0.08 0.11 0.12 0.43
Gross Profitability 0.64 1.03 0.97 1.10 1.12
F-score 0.50 1.05 1.14 1.38 1.51
Debt Issuance 0.40 0.62 0.57 0.49 0.85
Share Repurchases 0.44 0.55 0.45 0.61 0.74
Net Issuance (A) 0.70 0.85 0.81 0.94 0.91
Asset Growth 0.26 0.23 0.18 0.19 0.55
Asset Turnover 0.67 0.77 0.57 0.50 0.72
Gross Margins 0.40 0.73 0.43 0.56 0.77
Earnings/Price 0.40 0.64 0.52 0.66 0.82
Investment/Capital 0.31 0.27 0.20 0.30 0.75
Investment Growth 0.30 0.18 0.22 0.21 0.57
Sales Growth 0.41 0.22 0.24 0.24 0.62
Leverage 0.19 0.07 0.09 0.10 0.41
Return on Assets (A) 0.45 0.95 0.76 0.84 1.00
Return on Book Equity (A) 0.42 0.98 0.64 0.79 0.91
Sales/Price 0.36 0.51 0.37 0.40 0.64
Momentum (6m) 0.27 0.39 0.42 0.43 0.73
Industry Momentum 0.85 0.72 0.51 0.44 1.22
Momentum (12m) 0.41 0.39 0.47 0.44 0.70
Momentum-Reversals 0.24 0.43 0.43 0.37 0.54
Value (M) 0.21 0.25 0.37 0.36 0.66
Net Issuance (M) 0.77 1.02 0.80 0.81 2.01
Short-Term Reversals 0.12 0.18 0.19 0.21 0.40
Idiosyncratic Volatility 0.56 0.37 0.18 0.23 1.03
Beta Arbitrage 0.90 0.59 0.62 0.63 1.03
Industry Rel. Reversals 0.08 0.19 0.22 0.22 0.40
Price 0.34 0.47 0.54 0.51 0.72
Firm’s age 0.38 0.77 0.53 0.56 0.74
Share Volume 0.66 0.54 0.37 0.36 1.14
Exchange Switch 1.17 2.08 2.00 2.03 1.70
IPO 0.30 0.59 0.33 0.35 0.62

ER 1.31 1.34 1.58 1.61 2.56

Average 0.47 0.61 0.53 0.57 0.89
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TABLE A.IV: In-sample maximum squared Sharpe ratios for DMRS-hedged factors.
We construct hedged factors and iterate by hedging using the DMRS procedure up to three times. The table shows annualized average in-sample maximum squared
Sharpe ratios from hedged univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant
and 1–15 additional factors. We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section V.B (last row). For each number of factors reported in the columns, results are averaged across 10,000 models with
this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.8 1.1 1.4 1.9 2.3 2.8 3.2 3.7 4.2 4.7 5.2 5.6 6.1 6.6 7.1
Hedged 1x 0.9 1.3 1.7 2.2 2.7 3.1 3.6 4.1 4.6 5.1 5.6 6.0 6.5 6.9 7.4
Hedged 2x 1.0 1.3 1.8 2.3 2.7 3.2 3.7 4.2 4.6 5.1 5.6 6.0 6.5 6.9 7.4
Hedged 3x 1.0 1.4 1.8 2.3 2.8 3.2 3.7 4.2 4.6 5.1 5.6 6.0 6.5 6.9 7.3

Orthonormal

Unhedged 0.8 1.1 1.5 2.0 2.5 3.1 3.7 4.4 5.0 5.7 6.4 7.0 7.8 8.4 9.1
Hedged 1x 0.9 1.3 1.8 2.3 2.8 3.5 4.1 4.8 5.4 6.1 6.7 7.3 8.0 8.6 9.2
Hedged 2x 1.0 1.4 1.9 2.4 2.9 3.5 4.1 4.8 5.4 6.1 6.7 7.3 8.0 8.6 9.2
Hedged 3x 1.0 1.4 1.9 2.4 2.9 3.5 4.1 4.8 5.4 6.0 6.7 7.3 7.9 8.5 9.1

OLS

Unhedged 0.8 1.0 1.5 2.0 2.6 3.3 4.0 4.7 5.5 6.3 7.1 8.0 8.8 9.6 10.5
Hedged 1x 0.9 1.3 1.8 2.4 3.0 3.6 4.3 5.1 5.8 6.6 7.4 8.1 8.9 9.7 10.5
Hedged 2x 1.0 1.3 1.9 2.4 3.0 3.7 4.4 5.1 5.9 6.6 7.4 8.1 8.9 9.7 10.4
Hedged 3x 1.0 1.4 1.9 2.4 3.1 3.7 4.4 5.1 5.8 6.6 7.3 8.1 8.9 9.6 10.4

GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.5 7.3 8.1 9.0 9.8 10.6 11.4 12.2
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TABLE A.V: Out-of-sample maximum squared Sharpe ratios for DMRS-hedged factors.
We construct hedged factors and iterate by hedging using the DMRS procedure up to three times. The table shows annualized average out-of-sample maximum squared
Sharpe ratios from hedged univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant
and 1–15 additional factors. We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section V.B (last row). For each number of factors reported in the columns, results are averaged across 10,000 models with
this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
Hedged 1x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1 1.2
Hedged 2x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1 1.1
Hedged 3x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1

Orthonormal

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 1x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Hedged 2x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Hedged 3x 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6

OLS

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.7 1.8 1.9 2.1
Hedged 1x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9
Hedged 2x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9
Hedged 3x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9

GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4
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TABLE A.VI: Maximum squared Sharpe ratios of hedged factors (DMRS hedging).
We report in-sample (top panel) and out-of-sample (bottom panel) annualized maximum squared
Sharpe ratio of the MVE portfolio constructed from 34 unhedged (first column) or DMRS-hedged (up
to five times) factors. Rows correspond to three types of factors we discuss in Section V.A.

Unhedged Hedged n times

1 2 3 4 5

In-sample

Univariate 13.8 13.6 13.4 13.2 13.2 13.2
Orthonormal 18.0 17.8 17.5 17.5 17.5 17.5
OLS 21.3 21.0 20.8 20.8 20.9 20.9

Out-of-sample

Univariate 1.3 1.5 1.4 1.3 1.3 1.3
Orthonormal 3.4 3.4 3.1 3.1 3.1 3.1
OLS 4.0 4.3 4.2 4.2 4.2 4.2

In Table A.VI we consider the effect of hedging on the models with the full set of 34 factors,
both in sample (top panel) and out of sample (bottom panel). The Table reports annualized
maximum squared Sharpe ratio of the mean-variance optimal portfolio constructed from 34
unhedged (first column) or DMRS-hedged (up to five times) factors. Rows correspond to
three types of factors we discuss in Section V.A.

A.2. Dimensionality reduction

In Table A.VII we investigate whether the performance of latent factors can be improved by
using our hedging procedure. Because latent factors are designed to explain as much variation
in realized returns as possible, for a given number of factors, we would expect the violations
of the conditions of Proposition 2 to be quantitatively less important for latent factor models
with a sufficient number of factors. The table presents results for the four type of latent
factors models we considered previously (shown in their respective panels). For each type,
the first row in a panel shows maximum squared Sharpe ratios from unhedged models with
1..12 factors (rows), the three subsequent rows show results from hedging the latent-factor
model’s implied weights using our hedging procedure up to three times. ∗ and ∗∗ indicate
significance of the squared Sharpe ratio difference between the given model and the unhedged
benchmark (first row) at the 5% and 1% levels, respectively.

We find that hedging can improve the performance of latent factor models, especially the
ones that are not OLS transformed, such as the SCS model. The improvements for PPCA are
also sizeable and statistically significant in this dataset. For OLS transformed models such
as IPCA, improvements are more muted and largely insignificant for models with a sufficient
number of factors. Table A.VIII shows that these findings translate to out-of-sample data.

As expected, the GLS version of IPCA factors is more efficient than standard IPCA and
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TABLE A.VII: In-sample hedging of latent factor models.
The table shows the effect of hedging on four latent factor models (panels). The first row in each
panel shows annualized in-sample maximum squared Sharpe ratios of the model with n = 1..12 factors
(columns). The three subsequent rows hedge this model iteratively. ∗ indicate p < 0.05 of a one-sided
test of the squared Sharpe ratio difference of the given model relative to the unhedged benchmark
(first row). ∗∗ indicate p < 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

SCS

Unhedged 0.2 0.6 0.9 1.2 3.1 3.1 3.1 4.4 4.7 4.7 7.9 8.1
Hedged 1x 0.1 0.6 1.3 1.7 7.4∗∗ 7.5∗∗ 7.6∗∗ 9.1∗∗ 9.2∗∗ 9.3∗∗ 10.9∗∗ 10.9∗∗

Hedged 2x 0.1 0.6 1.2 1.8∗ 7.6∗∗ 7.8∗∗ 7.9∗∗ 9.6∗∗ 9.7∗∗ 9.8∗∗ 11.4∗∗ 11.5∗∗

Hedged 3x 0.1 0.6 1.3∗ 1.8∗ 7.6∗∗ 7.8∗∗ 7.8∗∗ 9.6∗∗ 9.7∗∗ 9.8∗∗ 11.5∗∗ 11.6∗∗

IPCA

Unhedged 0.3 1.3 4.1 4.5 7.0 7.7 11.9 12.6 13.7 14.4 14.8 15.3
Hedged 1x 0.4 1.4 4.6 5.1 6.8 7.7 12.7 13.4 15.1 15.8 16.0 16.2
Hedged 2x 0.3 1.4 5.0∗ 5.6∗ 7.4 8.2 13.3 13.7 15.1 15.9 16.0 16.3
Hedged 3x 0.4 1.5 4.9 5.6∗ 7.4 8.2 13.4 13.7 15.1 15.8 15.9 16.2

PPCA

Unhedged 0.3 0.3 0.7 2.5 8.3 8.3 8.7 12.0 12.0 13.2 13.2 13.3
Hedged 1x 0.3 0.3 1.1∗ 3.9∗∗ 12.4∗∗ 12.7∗∗ 13.0∗∗ 14.5∗∗ 15.0∗∗ 15.8∗∗ 16.0∗∗ 16.0∗∗

Hedged 2x 0.3 0.3 1.1 4.1∗∗ 12.6∗∗ 12.9∗∗ 13.3∗∗ 14.8∗∗ 15.0∗∗ 15.7∗ 16.0∗∗ 16.1∗∗

Hedged 3x 0.4 0.3 1.1∗ 4.1∗∗ 12.6∗∗ 12.8∗∗ 13.2∗∗ 14.8∗∗ 15.0∗∗ 15.6∗ 16.0∗∗ 16.0∗∗

IPCA (GLS)

Unhedged 0.6 1.3 11.1 10.9 12.0 12.9 16.4 16.8 16.7 16.5 16.3 16.4
Hedged 1x 0.6 1.3 11.1 10.8 12.0 12.8 16.5 16.9 16.8 16.5 16.3 16.3
Hedged 2x 0.6 1.3 11.0 10.7 11.9 12.8 16.5 17.0 16.9 16.6 16.4 16.4
Hedged 3x 0.6 1.3 11.0 10.7 11.9 12.8 16.5 16.9 16.8 16.5 16.3 16.4
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TABLE A.VIII: Out-of-sample hedging of latent factor models.
The table shows the effect of hedging on four latent factor models (panels). The first row in each
panel shows annualized out-of-sample maximum squared Sharpe ratios of the model with n = 1..12
factors (columns). The three subsequent rows hedge this model iteratively. Out-of-sample results are
based on a split sample estimation before/after 2005.

1 2 3 4 5 6 7 8 9 10 11 12

SCS

Unhedged 0.1 0.2 0.4 0.5 0.4 0.3 0.3 0.6 0.8 0.8 1.6 1.5
Hedged 1x 0.0 0.1 0.4 0.4 0.9 0.7 0.7 1.3 1.4 1.4 2.7 2.7
Hedged 2x 0.0 0.1 0.5 0.5 1.1 1.0 0.9 1.6 1.6 1.6 2.9 2.9
Hedged 3x 0.0 0.2 0.6 0.5 1.0 0.9 0.9 1.6 1.6 1.6 3.0 3.0

IPCA

Unhedged 0.3 0.1 0.7 0.8 1.0 1.1 2.1 2.2 2.6 3.1 3.5 3.8
Hedged 1x 0.2 0.1 0.3 0.4 0.5 0.8 2.1 2.5 3.6 4.3 4.3 4.3
Hedged 2x 0.1 0.1 0.3 0.5 0.8 1.2 2.8 2.9 4.1 4.5 4.2 4.3
Hedged 3x 0.3 0.1 0.3 0.5 0.9 1.1 2.7 2.8 4.0 4.4 4.2 4.2

PPCA

Unhedged 0.2 0.2 0.4 1.0 1.6 1.3 1.2 3.0 2.4 3.2 3.1 3.1
Hedged 1x 0.1 0.1 0.6 1.0 2.9 2.3 2.3 3.4 3.6 4.0 4.0 4.0
Hedged 2x 0.0 0.1 0.6 0.9 3.0 2.4 2.6 3.6 3.6 4.0 4.1 4.1
Hedged 3x 0.2 0.1 0.6 0.9 2.9 2.3 2.5 3.6 3.6 4.0 4.1 4.1

IPCA (GLS)

Unhedged 0.4 0.2 2.7 2.2 2.8 2.8 4.7 4.8 3.8 3.8 3.8 3.7
Hedged 1x 0.4 0.2 2.7 2.2 2.9 2.8 4.8 4.9 4.0 3.9 3.8 3.7
Hedged 2x 0.4 0.2 2.7 2.1 2.8 2.7 4.7 4.8 3.9 3.9 3.7 3.6
Hedged 3x 0.4 0.2 2.7 2.1 2.8 2.8 4.7 4.8 3.9 3.9 3.7 3.6
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does not benefit from hedging.

B. An alternative dataset

In this section we use a different dataset with a much wider selection of characteristics.
The data is based on Wharton Research Data Services “Backtester Plus” dataset from the
Factors by WRDS suite. It contains 134 signals based on CRSP Stocks, Compustat, IBES,
OptionMetrics, Thomson Reuters, and WRDS SEC Analytics databases. The entire list of
factors is available on the WRDS website.

We rank-transform and standardize stock characteristics from this dataset and merge
them with daily stock returns from CRSP. The sample is from January 1975 to December
2020. We apply several filters to preserve characteristics with maximum data availability.
In particular, we remove binary characteristics and any characteristics for which more than
25% of the observations in the panel of firms are missing. We remove any time periods in the
early part of the sample for which less than 500 firms are available. We also remove firms
whose past market caps do not exceed 0.01% of the aggregate stock market capitalization
(e.g., firms with market capitalizations less than $4 billion on a $40 trillion aggregate stock
market valuation).

Importantly, instead of filling in any missing characteristics with their cross-sectional
means as we did in our main exercise, we impute characteristic values using an advanced
imputation method based on Huang and Kozak (2023). 20

The resulting dataset contains 107 months of monthly characteristics and daily returns
on 4,825 stocks.

Figures A.5 and A.6 below report results for this dataset.

20. They develop a Bayesian tensor model to impute missing or infrequently observed financial data on
firm characteristics. One of the advantages of their setup is that they model and use the time-series and
cross-sectional dependencies of firm characteristics in a unified and flexible way, which significantly improves
imputation accuracy and allows for statistical inference via multiple imputation by averaging over random
samples of missing characteristics drawn from the joint probability distribution they estimate.
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Figure A.5: In-sample maximum squared Sharpe ratio improvement due to iter-
ative hedging of OLS factors. The plot shows improvement, in %, of annualized average
in-sample maximum squared Sharpe ratio from hedged OLS factors relative to unhedged fac-
tors, for all models with a constant and 1–15 additional factors. We hedge the factors up to
three times. We also report performance of the GLS factors which use the sample conditional
covariance matrix of individual stock returns estimated using the rolling PCA procedure out-
lined in Section V.B. For each number of factors on the x-axis, results are averaged across
10,000 models with this number of factors randomly drawn from the set of all factors.
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Figure A.6: In-sample maximum squared Sharpe ratio of hedged OLS factors.
The plot shows annualized average in-sample maximum squared Sharpe ratios of unhedged
and hedged OLS factors, as well as GLS factors. We hedge the factors up to three times.
The latter use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section V.B. For each number of factors on the
x-axis, results are averaged across 10,000 models with this number of factors randomly drawn
from the set of all factors.

67




