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Abstract 

This study aims to explore the impact caused by change in viscosity and the roughness of a bearing surface on a 

ferrofluid lubrication of Shliomis model for short bearing. Based on this model and the Tipei (1962) model, a new 

resultant Reynolds equation has been found that shows thermal variation. The Christensen and Tonder models have 

been taken to derive the transverse roughness stochastically. An assumed mean has been taken for the probability 

density function with a non-zero value. This value is assigned to a random variable that measures the bearing’s surface 

roughness. This creates a more realistic situation that can have a lot of field applications. The model defines the 

problem mathematically while defining boundary conditions. It also uses the Simpson’s method to derive a conclusion. 

The results thus obtained are discussed in terms of pressure distribution and load bearing capacity. The graphical results 

obtained suggest that in the presence of magnetization, there is a significant enhance in the load bearing capacity. This 

positive effect can easily nullify the negative impact of the thermal effect. The short bearing approximation shown here 

is an example of the probable applications. Ferrofluids in the presence of magnetic fields significantly enhance the 

performance of a short bearing. 

 

Keywords- Ferrofluid, Thermal variation, Load carrying capacity. 

 

 

 

1. Introduction 
Analytical studies performed on hydrodynamic lubrication in a short-bearing non-porous system 

are very popular. Many famous books of the field (Hamrock, 1994; Bhat, 2003; Majumdar, 2008) 

discuss the Reynolds equation and try to derive an exact solution to it by using different basic 

film geometries. 

 

All the particles undergo a body force when subjected to a magnetic field, resulting in the drag to 

flow. Therefore, for industrial application, the study of lubrication with magnetic fluid is of 

primary importance. Some researchers (Deheri et al., 2016; Munshi et al., 2017; Patel et al., 2017; 

Vashi et al., 2018) have also used magnetic fluid as a lubricant in order to aid the tribological 

performance of a sliding interface. 
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Christensen and Tonder (1969a, b; 1971) used a stochastic concept and came up with a new 

model for lubricated surfaces with striated roughness using an averaging film. They derived the 

stochastic Reynolds’ equation and used the results to study the impact of surface roughness on the 

load bearing capacity in a rough bearing system. Shliomis (1974) analyzed the modes of creating 

magnetic colloids along with the stability concerns. Patel et al. (2010a) studied the efficiency and 

effectiveness of a short bearing with a smooth surface. Deheri and Patel (2011) and Patel et al. 

(2010b) studied the effectiveness of a short bearing with roughness having a mean zero. They 

worked with a variety of magnetic field magnitudes for their study. Shimpi and Deheri (2010) 

further worked on the results of (Deheri and Patel, 2011; Patel et al., 2010b) focusing on short 

bearings with non-zero mean with different form of magnetic field magnitude. Shimpi and Deheri 

(2012) worked on it by including a deformation effect as well. Patel and Deheri (2013a) further 

studied comparing two different types of porous structures. Patel and Deheri (2013b) extended 

the study of (Patel et al., 2010a) by adding the aspect of slip velocity. They concluded that 

optimal performance can only be achieved at minimum slip. It should be noted that the researches 

mentioned above used the Neuringer-Rosensweig model. Patel et al. (2015) conducted a different 

study by replacing the hydrodynamic bearing of the above-mentioned studies with hydromagnetic 

porous short bearing. Additionally, it is a commonly known fact that roughness impacts the load 

bearing capacity substantially.  

 

Transformation of heat problem has been investigated with non-Newtonian fluid by (Singh et al., 

2018). The positive and negative wall inclination design chart, demonstrate through (Gupta et al., 

2019).  Ramadevi et al. (2018) introduced a new arena in the respective field where the viscosity 

of fluid and partial slip velocity involved. The payload capacity of amphibious vehicle with 7kg 

conceptual designed by (Gokul Raj et al., 2019). Khamari et al. (2019) represented the impact 

toughness and microstructure comparison. 

 

A lot of research in the field of Tribology today also focuses on the impact caused by 

hydrodynamic lubrication. Most of the studies take viscosity to be a constant value even though it 

is a function of temperature as well as pressure. The change in viscosity caused due to 

temperature is very crucial in a majority of the practical applications where the lubricants are 

expected to perform under different values of temperature (Freeman, 1962). Tipei (1962) 

performed an experimental study which suggested that the viscosity-temperature relationship is 

substitutable by a establishing a relationship between the viscosity and the film thickness. The 

study also suggested that least film thickness is associated with highest temperature. The study by 

Sinha et al. (1981) focused on lubrication of an extremely small and an infinitely long short 

journal bearing. The results proved that changes in viscosity reduce the load and friction 

coefficient. In this modern age, various research and articles is in existence which can help a 

researchers as well as in the field of research for different kind of bearing using Shliomis model 

such as, (Lin et al., 2013a) in long journal bearing, (Lin et al., 2013b) in short journal bearing 

considering non-newtonian fluid, (Huang and Wang, 2016) in short bearing while using different 

forms of viscosity, (Lin, 2016) in short journal bearing considering longitudinal roughness and 

various forms of viscosity.  The impact of thermal effect on Journal bearing is studied by a lot of 

researchers using a number of different parameters. For example, (Reddy et al., 2012) used 

couple stress fluid, (Kumar et al., 2013) studied the model using two layer fluid considering 

cavitation, (Siddangouda et al., 2013) studied roughness, (Naduvinamani et al., 2014) used 

Micropolar fluid and different forms of transverse and longitudinal roughness, (Patel et al., 2018) 

used Neuringer-Rosensweig model taking into account smooth roughness. 
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By reviewing literature concerning ferrofluid flow, one can understand that Shliomis model 

displays better results than Neuringer-Rosensweig model. Thus, this study is focused on 

scrutinizing the performance of thermal effect on ferrofluid lubrication using short bearing based 

on Shliomis model. 

 

2. Analysis 
The Figure 1 shows the geometrical design of the system and its configurations. U  denotes the 

uniform velocity of the system in the direction x . 

 

 

 
 

Figure 1. Configuration of the bearing system (Patel and Deheri, 2013a) 

 

 

 

The thickness h  is, 

 

sh h h                                                                                                                                         (1) 

 

where h  is taken as (Patel and Deheri, 2013a): 
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In this case, c  is the highest possible deviation from the average width of the film. ,   and   

are considered in view of relationship 

 
2 2 3( ), ( ) , ( )s s sE h E h E h                                                                                            (3) 

 

where ( )E  denotes the expectancy operator known by 

( ) ( ) ( )

c

s s

c

E f h dh


                                                                                                                        (4) 

 

Actually, magnetic fluids or the ferrofluids have a constant nature and are the type of colloidal 

suspensions that possess extremely superior magnetic particles in a viscous fluid. We can use an 

external magnetic field to position, limit or monitor these fluids as required. This, in turn, 

increases the fluid’s effective viscosity. This research has substantially contributed to the increase 

application of these magnetic fluids in bearing systems as lubricating agents. An important point 

here is that most of the studies based on Neuringer-Rosensweig model have concluded that the 

vector of magnetization is parallel to the applied magnetic field. Since Shliomis model considers 

particle rotation, it overcomes this limitation.  

 

Shliomis (1974) proposed that a change in applied magnetic field can have a two-way implication 

on the particles in a magnetic fluid. Either, the rotation of such particles is impacted or the 

magnetic moment in them changes. B  (Brownian relaxation time parameter) is used to derive the 

particle rotation and S  (relaxation time parameter) suggests the intrinsic process of rotation. 

Considering a steady flow while overlooking the second derivatives and inertial of S , the revised 

flow equation becomes, 
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and 
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The following can be derived by combining all the mentioned equations 
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Langevin’s parameter 1   is used for the strong magnetic field, the above equation changes to 

 

 0
B

M
M H H

H
   

 
                                                                                                          (13) 

 

with 

 

6

1 cothBnk T




 



                                                                                                                  (14) 

 

where 

0

0

1
coth , Bk T

M n H


 
  

 
   

 
                                                                                               (15) 

 

For a deferment of spherical particles: 
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With uniform magnetic field  00, ,0H H , (11) to (13) develop into the following (Majumdar, 

2008) 
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and 
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where (referring to Shliomis, 1974) 
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and 
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The above equation denotes thermal variation considering the viscosity-temperature, when the 

viscosity 0  at 0h h , whereas q , the thermal factor, usually maintain the value between 0 and 1 

according to the nature of the lubrication (Tipei, 1962). 

 

Solving equation (17) under no slip boundary conditions (Majumdar, 2008); 
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Putting the velocity components expression into continuity equation (18) and integrating under 

the conditions bv v  at 0y   and av v  at y  h  gives rise to; 
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In reference to experiment through the utilization of relation (Majumdar, 2008) 
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One obtains for constant velocities 
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where 
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The generalized Reynolds’ equation (24) turns in the state of equilibrium, which brings 

(Majumdar, 2008) 
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Modified two dimensional Reynolds’ equation, for the incompressible lubricant is  
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In the x -direction, the flow because of pressure gradient in the variation of pressure can be 

avoided when the bearing is short. In this case, the one dimensional equation (27) lead to: 
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which is the Reynolds’ equation (Basu et al., 2005; Majumdar, 2008; Shimpi and Deheri, 2010) 

modified according to the general hydrodynamic lubrication assumptions. 

 

According to the stochastically average process of (Shimpi and Deheri, 2010), (28) becomes: 
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where 
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The ensuing dimensionless quantities are used, 
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The related pressure limit settings are (Deheri and Patel, 2011) 

 

0p   at 
1

2
Z    and 

d
0

d

p

Z
  at 0Z                                                                                        (32) 

 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 4, 982–997, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.4-078 

989 

With the aid of (32) the pressure distribution in dimensionless form overcome with 
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The bearing ability of dimensionless type (Patel and Deheri, 2013a) is obtained 
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where the load bearing capacity is calculated using 
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B
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3. Results and Discussion  
Equation (33) shows that the pattern of pressure distribution when in a dimensionless form. 

Additionally, the bearing system’s capacity can be derived using Eq. (36) in a non-dimensional 

form. When  , the parameter of roughness is assumed to be 0, this investigation diminishes to 

the study of a Ferrofluid based short bearing. If the magnetization constant is also considered 0, 

the study becomes a performance analysis of the system as suggested by (Basu et al., 2005). 1/3 

rule as given by Simpson having a step size of 0.2 is helpful in calculating the Eq. (36) for 

altering the measure of magnetization parameter  , thermal factor Q , aspect ratio m , roughness 

parameters , ,   . 

 

The final values of W using different parameters are plotted graphically. The Figures 2(a-f) 

display the changes in W  corresponding to different values of  . They suggest that 

magnetization leads to a substantial increase in W . It is noticed as of Figure 2(c) that the amount 

of minimum W  derived is 0.0183 at higher value of   with regards to τ. From Figures 3(a-e) it 

can be suggested that with an increase in W , Q  shifts from 0 to 1. Figures 4(a-d) display the 

impact of aspect ratio on W  and suggests that aspect ratio causes a sharp increase in W . The 

decrease in the value of W  in Figures 5(a-c) displays the unfavorable impact of standard 

deviation on a bearing system’s performance. Figures 6(a-b) establish an inverse relationship 

between variance and W  suggesting that positive variance reduces W  while negative variance 

increases it. Under the impact of skewness, W changes according to Figure 7. 
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(c)   
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(f) B  

 

Figure 2. Profile of load bearing capacity with regards to   
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Figure 3. Profile of load bearing capacity with regards to Q   
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(a)   

 

 
(b)   
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Figure 4. Profile of load bearing capacity with regards to m   
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(a)   

 

 
(b)   

 
(c) B  

Figure 5. Profile of load bearing capacity with regards to    

 

 

 

 

 

 

 
(a)   

 
(b) B  

 

Figure 6. Profile of load bearing capacity with regards to    
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Figure 7. Profile of load bearing capacity with regards to   and B  

 

 

4. Conclusion 
The Shliomis model of ferrofluid and the stochastic theory by Christensen have been used as the 

basis of this study to analyze the impact of changes in ferrofluid lubrication viscosity in the case 

of short bearings. The pressure distribution and the bearing system’s capacity were analyzed 

numerically. The results obtained lead to the following conclusion: 

 

 Thermal effect has a negative impact on a system’s load bearing capacity.  

 Magnetic strength in appropriate measures can be used to nullify the impact of the thermal 

effect.  

 A left-ward skewed surface roughness increases the bearing capacity and a right-ward skewed 

surface roughness decreases the bearing capacity. 

 This study is insightful since it ensures a higher freedom of magnitude than (Verma, 1986) 

and (Prajapati, 1994). 

 The decrease in the bearing system’s capacity due to roughness standard deviation can be 

nullified by  . 

 When used magnetic fields, ferrofluid increase the capacity of short bearings in contrast to 

the systems functioning with conventional bearing. 

 

This study provides new insights on improving bearing system’s capacity. Additionally, the 

findings of this study support the theory stating that a bearing system’s life can be starkly 

improved by controlling the loss of lubricants. 
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Nomenclature 
B  breadth of the bearing 

h  film thickness (mm) 

h  mean film thickness (mm) 

sh  deviation from mean level 

1h  maximum film thickness 

2h  minimum film thickness 

h  non dimensional film thickness 

H  magnitude of H  

0H  constant magnetic field 

I  
sum of moments of inertia of the 

particle per unit volume 

Bk  Boltzmann constant 

L  length of the bearing ( B L ) 
m  aspect ratio 

M  magnetization vector 

0M  equilibrium magnetization 

n  number of particles per unit 
p  pressure in the film region 

p  non-dimensional film pressure 

q  fluid velocity 

S  internal angular momentum vector 

T  temperature (K) 

, ,u v w  
the velocities components in ,x y  

and z  directions 

, ,a a au v w  
the velocities components of upper 

surfaces in ,x y  and z  directions 

, ,b b bu v w  
the velocities components of lower 

surfaces in ,x y  and z  directions 

V  volume of the particle 

W  load capacity (N) 

W  non-dimensional load capacity 

,x z  
the bearing width and length 

coordinates  
y  fluid film thickness coordinate 
  variance (mm) 

  non- dimensional variance 

  skewness (mm3) 

  skewness in dimensionless form 

0  viscosity of the main liquid 

  magnetic moment of a particle 

0  permeability of the free space 


 lubricant density 

  standard deviation (mm) 

  dimensionless standard deviation 

  
volume concentration of the 

particles  nV  

  magnetization parameter 

  fluid vorticity 
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