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Abstract 

A simplified approach for model order reduction (MOR) idea is planned for better understanding and explanation of 

large- scale linear dynamical (LSLD) system. Such approaches are designed to well understand the description of the 

LSLD system based upon the Balanced Singular Perturbation Approximation (BSPA) approach. BSPA is tested for 

minimum / non-minimal and continuous/discrete-time systems valid for linear time-invariant (LTI) systems. The 

reduced-order model (ROM) is designed to preserved complete parameters with reasonable accuracy employing MOR. 

The Proposed approach is based upon retaining the dominant modes (may desirable states) of the system and eliminating 

comparatively the less significant eigenvalues. As the ROM has been derived from retaining the dominant modes of the 

large- scale linear dynamical stable system, which preserves stability. The strong aspect of the balanced truncation (BT) 

method is that the steady-state values of the ROM do not match with the original system (OS). The singular perturbation 

approximation approach (SPA) has been used to remove this drawback. The BSPA has been efficaciously applied on a 

large-scale system and the outcomes obtained show the efficacy of the approach. The time and frequency response of an 

approximated system has been also demonstrated by the proposed approach, which proves to be an excellent match as 

compared to the response obtained by other methods in the literature review with the original system. 

 

Keywords- MOR, Large-scale linear dynamical system, Balanced truncation method, Steady state value, Singular 

perturbation approximation. 

 

 

 

1. Introduction 
The major issue in any aspect of a higher dimension systems dynamic behaviour is all over and 

occurs in different fields, including some engineering applications, e.g. Electrical Power system, 

control engineering, system design, smart city, transportation device and ecological systems, etc. ( 

Sikander and Prasad, 2015; Sambariya and Sharma, 2016; Daraghmeh and Qatanani, 2018; Suman 

and Kumar, 2019). The complex large-scale mathematical system must contain a comprehensive 

description of the original system (Daraghmeh et al., 2019). This mainly consists of many forms of 

differential and algebraic equations (Sikander and Prasad, 2015; Kumar et al., 2019). Conventional 

numerical modelling procedures cannot maintain the various queries as per necessity in 

applications that are, where the large system must be frequently used to find the solution. It is quite 

common that after several days, one solution has not yet been obtained. The reduction of the large-

scale LTI system using MOR has proven to be quite promising to get a stable solution much more 

quickly. The MOR is a key branch of complex system and control concept, that studies the 

characteristics of LSLD systems in the need to reduce the trouble while retaining their input-output 

behaviour intact (Chaturvedi, 2018). The key objective of MOR is to replicate the significant 
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features of the actual system as closely as possible with the ROM comparison, indicating similar 

behaviours of the actual system. A ROM that precisely represents the prevailing characteristics of 

the structure under consideration is helpful and sometimes essential. Thus, an increasing essential 

exists for a systematic procedure to derive a lower order model, which may be called a ROM from 

the original system such that it preserves almost all essential properties of the system. 

 

Numerous MOR approaches offered have been mostly in two ways that are in the shape of time-

domain (TD) and frequency-domain (FD) (Sandberg and Rantzer, 2004). The TD is a form of state 

space as equation (2) and the FD method associated with transfer function matrix representation 

(3). They are divided into two basic groups of the system such as the single- input/ output (SISO) 

and multiple-input/output (MIMO) system (Narwal and Prasad, 2016). Reduction techniques that 

are used by the researchers have several advantages and disadvantages that are associated with 

them, as described in the literature search. Also, several common weaknesses along with the 

methods are that the ROM will become unstable even though the HOS remains stable (Gupta et al., 

2019). Moreover, the steady-state matching of the OS with its lower order representation fails most 

of the time. They are furthermore hampered as the typical high-frequency ranges have poor 

precision and may have non-minimal phase characteristics (Davison, 1966; Cao et al., 2019) has 

introduced the first method for MOR in 1966, which re-modified by (Chidambara, 1969; Shamash, 

1974) was suggested the Pade approximation method but these reduction methods used by 

researchers have several pros and cons linked to them. One of the key disadvantages of the methods 

is that even though the actual system is stable, the ROM is unstable (Hwang and Wang, 1984; 

Gupta et al., 2019) Also, a variety of approaches have been suggested to approximate large scale 

system as ROMs, such as Routh approximations (Hutton and Friedland, 1975), stability equation 

method (Pal, 1983), Mihiailov stability criterion (Wan, 1981), Chebyshev polynomial techniques 

(Bistritz and Langholz, 1979; Singh et al., 2012), Routh stability array (Pal, 1979), factor division 

method (Lucas, 1986; Parmar et al., 2007), Hurwitz polynomial approximation (Qin and Cheng, 

2003), differentiation method (Bui-Thanh et al., 2008) and truncation method (Prasad et al.,1987) 

has been stated time to time for the desired response. (Shamash, 1981) have measured the outcome 

of ROM, with Markov parameter inclusive of the time moment matching to confirm the step 

response matching. Different methods are based on minimal realization (Lal et al., 1975) which 

have been suggested and that principle was extended by the Silvermans algorithm (Parthasarathy 

and Singh, 1975). Moreover, the principles of Markov parameters and time moments matching 

were used to get the ROMs for SISO systems and MIMO systems (Pal, 1983; Shamash, 1975). The 

main disadvantage of these methods, however, is the fact that a measure of approximate models 

produced for multi-systems can be equivalent to, or even more than, by which of the OS ( Pal and 

Ray, 1980). 

 

Moreover, several researchers introduced the modified version continued fraction method is 

reported in (Parthasarathy and Jayasimha, 1982) Routh-Pade approximation (Singh et al., 2008) 

and the new combined method is introduced by the author (Prajapati and Prasad, 2019a). The BT, 

reduced system obtained through a balanced realized model subsequently elimination of less 

controllable and less observable states. It has been found that the model so obtained does not retain 

the steady-state and DC gain of the LSLD system. (Fernando and Nicholson, 1982a) suggested that 

weak sub-system elimination can be utilized to preserve the DC gain of the balanced truncation 

method using the singular perturbation approximation approach (Glover, 1984; Al-Saggaf and 

Franklin, 1988; Liu and Anderson, 1989; Benner and Schneider, 2010; Tiwari and Kaur, 2018). 

The BT model has defined the DC gain of a minimal system using a SPA that can be used when 

the system is stable, minimally, and internally balanced to be reduced. In this paper, the investigator 
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has proposed a hybrid approach with BT and SPA approaches applicable to LSLD system with 

excellent DC gain matching. The benefit of the approach lies not only to the matching of steady 

state but its applicability to large-scale dynamical system as well, which has been confirmed over 

several test systems taken from literature. 

 

2. Proposed Methodology for System Reduction 

2.1 Problem Formulation 
Supposing an LTI SISO system having order ‘n’ is given as  

 

0

( )
( ) ( ), 0, (0)

( ) :

( ) ( ) ( ), 0

o oo o

o o

o o

dx t
A BA x t B u t t x x

d t
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
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      
    

                                              (1) 

 

where, 
nx , ,pu

qy  , with p inputs and q outputs, correspondingly  ( , , , )o o o oA B C D are 

constant matrices of proper size. the problem of statement for MOR of the higher-order system 

(HOS) with a comprehensive operational way has been introduced (Moore, 1981; Datta, 2004). 
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where m is less than n and numerator polynomial (ni) are constants coefficient and denominator 

polynomial (
id )  of the original system, correspondingly it is supposed that state of the system is 

such as all the roots lie in the left side of the s-map. 

 

The difficulty lies in finding an equation (6), which in some way has approximated the original 

system and preserves essential parameters of the original system. Such a solution corresponds as 

closely as possible to the solution of the system for a similar form of input (Antoulas et al., 2018). 

 

The MOR problem consists of finding an approximate system of the reduced system described via 

0
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                                                 (4) 

 

where, r n , ( )G s
r

of the ROM in the form of a transfer function of HOS, is well-defined by  
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of order r, r is very less than n, which is approximates OS and ˆˆ ,i in d  are constants coefficient of 

numerator polynomial and denominator polynomial of the ROM. These parameters are to be 

obtained while MOR of an OS to ROM, such that the important properties of OS to preserved with 

less amount of error (Prajapati and Prasad, 2019b). 

 

2.2 Proposed Hybrid Technique for Approximation 
In this section, we address the order reducing procedure for higher-dimensional systems resulting 

in a hybrid approach using BT and balanced SPA. In the BT method, all balanced systems are 

separated into two parts as a slow and fast mode by defining the lower Hankel singular values 

(HSV) as fast mode, with the others defined as a slow mode. First, the derivative of all states equal 

to zero in fast mode can be obtained by defining a reduced system. The main aim of structure 

preservation in the ROM is to preserve dominant frequencies of the original system. Hence, to 

preserve dominant dynamic modes in the reduced system. 

 

2.3 The Steps of Order Reduction Algorithm using the Balanced Truncation Method 

to be Followed. 
Steps: In this step, both Grammians such as controllability and observability of the OS are 

determined as follows: 

Instead of calculating the two Grammian via integral equations, solve the Lyapunov equations (9) 

and (10) to obtain the controllability Grammian (
cP ) and observability Grammian (

oP ). 

 

If the eigenvalues of system matrix ‘
oA ’ are implicit to strictly in left half-map then (

cP ) and (
oP ) 

are defined as 

 

0
o o

o o

TA ATP e B B e d
c

 
                                                                                                                      (7) 

0
o

o o

TA T AP e C C e d
o

                                                                                                                                      (8) 

 

Assumption. The nth-order dimensional system is an asymptotically stable system and also 

minimal. Moreover, the state-space system equation (1) or the pair ( , )o oA B  states controllable if 

and only if the n × nm state controllability matrix and pair ( , )o oA C  are observable if the np×n 

observability matrix (Moore, 1981). 

 

By assumption, both Grammians P
c

 and P
o

 are a positive definite and unique symmetric matrix 

explanation to the couple of Grammians. Since their implementation is minimal. 

 These both Grammians satisfy the following linear Lyapunov equations (Gugercin and 

Antoulas, 2004; Imran et al., 2014). 

 

0T T

o c c o o oA P P A B B                                                                                                              (9) 

0T T

o o o o o oA P P A C C                                                                                                           (10) 
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 In control philosophy, eigenvalues express system stability, although HSV describes the 

“energy” of each state in the system. 

 Numerically we express as a stable state-space system equation (1), its HSV is well-defined as 

( )HSV i cP P  respectively. For simplicity, such singular values (SV) are generally ordered 

downward to truncate states that match smaller Hankel singular values as follows  

      1 2 3 4 1 0r r n              (Sikander and Prasad, 2017). 

 

 This is also a significant action of the minimality of realization of the original system is the 

diminishing positive number such that 

 

 1 2 3 4, , ,c o nP P Diagonal                                                                               (11) 

 

 The diagonal matrix ( ) if such a matrix realization exists (Lall et al., 2002; Gugercin and 

Antoulas, 2004; Segalman, 2007). 

 

( ) ( ) 2oG j                                                                                                                    (12) 

 

 Compute (Cholesky) factors (CF)  of the Grammians are often obtained by this factorization 

according to (Pernebo and Silverman, 1982; Datta, 2004). The lower triangular matrix (CF) 

Q
c

 and Q
o

 of both Grammians 
cP  and 

oP  is obtained as (Al-Saggaf and Franklin, 1988; Datta, 

2004). 

 
T

c c cP Q Q                                                                                                                                    (13) 

T

o o oP Q Q                                                                                                                                   (14) 

 Compute SVD, the 
T

o cQ Q  is singular value decomposition of Grammians, also known as  SVD 

of the system, found as follows (Datta, 2004). 

 

  *T

o cSVD Q Q U V                                                                                                                (15) 

 

where, U and V  are a vector, define as left and right singular. Also, unitary matrices (orthogonal). 

This system matric can be transformed into the balanced model by a similarity transformation 

matrices W, which can be achieved as follows (Datta, 2004; Gugercin, 2008;  Imran et al., 2014). 

ROM is (
1WAW 
,WB ,

1CW 
), where W is a transformation matrix 

 
1

2
cW Q V


                                                                                                                            (16) 

 

The original system has been completely balanced, which is partitioned as: 
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1

1( ) :Bal

WAW WB
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CW D





 
  
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                                                                                   (17) 

1
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Since partition, the balanced system ( , , , )B B B BA B C D , and the Grammian conformally given as 

 

 
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21 22 2
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1 2

, ,
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B B

A A B
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where, 11A  is part of a strong subsystem and 1 are ( )r r r n   matrixes. 

 

We call this reduced order model a balanced system approximation of direct-truncation (DT). There 

are some well-known results on approximation ( Liu and Anderson, 1989). 

 

Lemma A. (Pernebo and Silverman, 1982) 

 

The subsystem matrix ( , , )ii i iA B C is the minimal and internally balanced realization through 

Grammian ( 1,2)i i   (i = 1, 2). 

 

Lemma B. (Pernebo and Silverman, 1982) 

the subsystem matrix iiA  ( 1,2)i   is asymptotically stable if 1 and 2  has no common diagonal 

component. Furthermore, the subsystem 11 1 1( , , )A B C  for ( 1,2)i    is both completely controllable 

and observable (Fernando and Nicholson,1982a). 

 

Now, let us focus on applying of the SPA to the reduced model reduction of an LTI system 

(Fernando and Nicholson, 1982b). 

 

Equation (19) has been attained as a minimal realised model containing strong and weakly 

subsystems. Thus, the SPA may be effortlessly applied to subsystems of Equation (19). In the BT 

model, reduced (r) balanced states are retained which are completely controllable and observable 

so balanced states are preserved, and remaining weakly controllable and/or observable states are 

truncated. SPA is used to maintain the DC gain of the original system in the model (Safonov and 

Chiang, 1989; Kumar et al., 2012). The concerned researcher may referee to (Kokotovic et al., 

1976) for more indications of the method. 

 

As the balanced realised system determine, can be re-write in the form of given as 
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Again, re-write is equation form 

 

1
11 1 12 2 1 ( )

dx
A x A x B u eS

t
w r

d
lo                                                                                               (21) 

2
21 1 22 2 2 ( )

dx
A x A x B u Faster

dt
                                                                                          (22) 

 

where,   is a positive small perturbational parameter of singular perturbation approximation 

approach (Fernando and Nicholson, 1983; Gajic and Lelic, 2001). 

 

By comparing the derivative of the weakly subsystem to zero below, the BSPA model can be 

achieved (Kumar et al., 2012; Guiver, 2019). 

 

Now the final system ˆ ˆˆ ˆ( , , , )BSPA BSPA BSPA BSPAA B C D  conformally as in (23). 

 

1 1

11 12 22 21 1 12 22 2

1 1

1 2 22 21 2 22 2

ˆ ˆ
:

ˆ ˆ

BSPA BSPA

BSPA

BSPA BSPA
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A B A A A A B A A B
G

C C A A D C A BC D

 

 

        
    
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                                  (23) 

 

The various numerical tests to demonstrate the technique will be discussed in the preceding section. 

 

2.4 Error Investigation of Reduced-Order Models 
If the reduced system has been obtained from the original system, then the modeling error transfer 

function is well-defined via  ( ) ( ) ( )r o rE s G s G s  . 

 

The actual infinity norm ( H


) error bound in 
th

r a ROM may be calculated by taking H


 of ( )rE s

. The actual and theoretical infinity error bounds are given by ( )rE s


and 
1

2
n order of system

i

i r




 

 

respectively, Furthermore, the actual amount of error bound is continuously less than or equal to 

the theoretical amount of error bound. Bound of the system. (Datta, 2004; Antoulas, 2005). Thus, 

 
1

( ) ( ) ) 2(r o r

n

i

i r

E s G s G s 
 

 

     it is also known as a Priori Error bound. 
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Also, the comparison of the response has been carried out on the basis of the unit step response. 

The performance of ROM obtained is also compared on the basis of measured by calculating the 

performance indices, the accurateness of the proposed approach is known as the integral square 

error (ISE) between the transient sections of the actual system and the reduced-order model. The 

proposed scheme is used to achieve the best values of the coefficients in Equation 6. , for reduce 

model, by diminishing the performance indices ISE, also, to evaluate the performance of the 

reduced model in comparison with the original system and the reduced systems in terms of integral 

absolute error (IAE) (Singh et al., 2004; Sikander and Prasad, 2015; Tiwari and Kaur, 2018) 

described by the following equation 

 

2

1 2

0

[ ( ) ( )]ISE y t y t dt



    and    1 2

0

( ) ( )IAE y t y t dt



  . 

 

3. Numerical Experiments 
Test System 1: Consider a FOM model for successfully applied the proposed reduction method. It 

is a large-scale dynamical system of a benchmarks problem of order 1006, This test illustration is 

taken from (Chahlaoui and Van Dooren, 2002; 2005). 

 

The state-space matrices form is given by 

where, 
,1iei

 is the vector with each entry equal to 1: 

 

 

oA

1

1 100 1 2002
, , ,

1 2100 1 200 1
3

4

1 400 10 6
, (1,2, ,1000), ,

3 4400 1 1000

A

A
A A

A

A

e TA A diag B C B
o o oe
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 
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       

         
 
  

   

         
     

                                              (24) 

 

 

Figure 1 and Figure 3 have been shown, both responses, time, and frequency of the OS. The bar 

graph of HSV have been calculated and also plotted in Figure 2. This bar graph displays the 

optimum reduction order. The number of singular values that dominate non-zero is assumed to be 

that as an order of the original system. The first- eight singular values here are important, and then 

the ninth singular values quickly decay. Consequently, the order of reduction has been preferred as 

an eighth order. 
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Figure 1. Time response of the OS 
 

Figure 2. Bar chart Hankel singular value plot of the OS 

 

Figure 3. Frequency response of the OS 
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Figure 4. Time response of ROM with OS 
 

Figure 5. Time response of ROM with OS for one second 
 

Figure 6. Frequency response of ROM with OS 
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The ROM matrices obtained are given as 

 
-5.87-1.03e-25i -1.23+1.31e-25i -80.3-2.24e-26i -0.359+7.43e-26i 69.9-1.92e-27i 180+3.28e-26i -5.83+7.32e-28i 3.06-1.87e-27i

-1.23+8.4e-26i -0.256-2.11e-25i -362-4.84e-26i -0.0749-6.28e-26i 44.5-4.59e-26i 8

Â
BSPA



1.9-3.47e-26i  -1.22+4.13e-27i 0.64-2.81e-27i

80.3-1.5e-26i 362+4.44e-26i -0.000375-2.85e-25i -12.9+1.17e-25i 0.000464+1.29e-25i 0.00149+1.47e-25i -0.0509+8.32e-28i 0.0255-1.07e-27i

-0.359-2.57e-26i -0.0749-4.99e-26i 12.9-8.48e-26i -0.022-4.45e-26i 155+3.73e-27i 50.5+1.41e-26i -0.356+2.04e-28i 0.187-2.83e-28i

-69.9-5.52e-27i  -44.5-1.17e-28i 0.000464-1.58e-25i -155-1.01e-26i -0.000573+1.92e-26i -0.00184+3.97e-26i 0.0628-8.1e-29i -0.0314-9.26e-29i

  -180+6.62e-27i  -81.9-4.72e-27i 0.00149-5.16e-26i -50.5-2.58e-26i -0.00184+1.25e-26i -0.0059+6.91e-27i 0.202-1.4e-27i -0.101+1.16e-27i

-5.83-3.5e-28i -1.22+2.09e-27i 0.0509+7.41e-27i -0.356-1.36e-27i -0.0628-2.33e-28i -0.202-1.12e-27i -36-1.85e-28i 25.7+1.57e-28i

3.06+7.83e-28i 0.64-1.6e-27i -0.0255-6.29e-27i 0.187+1.22e-27i 0.0314+6.87e-28i  0.101+1.01e-27i 25.7+1.45e-28i -21.7-1.19e-28i



 B̂ = 5.34e-27-24.2i  -5.84e-27-5.06i  1.17e-26+0.194i   6.81e-28-1.48i  2.67e-27-0.239i  1.16e-28-0.768i  1.6e-29-12.6i   -2.37e-29+6.44i

ˆ  C = 4.55e-28+24.2i    1.51e-27

T
BSPA

BSPA


 
 
 
 
 
 
 
 
 
 
  

 

 

+5.06i  -3.38e-27+0.194i  -1.39e-27+1.48i   3.15e-27-0.239i   1.51e-27-0.768i  -2.37e-28+12.6i    1.95e-28-6.44i

ˆ 1-1.12e-28i     D
BSPA



 

 

The eigenvalues of the original system are given as ( )oA  is given by 

 

 ( ) 1, 2,..., 1000, 1 100 , 1 200 , 1 400A j j j
O

           . 

 

Figure 4 and Figure 6 is shown both responses, time and frequency of the original system with a 

ROM and also compared. It is seen that the ROM obtained by the BSPA approach, offers close 

approximation to the system under consideration. Furthermore, another time response of the OS 

and ROM for one second has been also shown in Figure 5. It is the magnification (zoom) of both 

systems response to views the transient behaviour comparison. Further another frequency response 

of the ROM with the OS is also depicted in Figure 6. It is again evidently demonstrating that the 

ROM to be a close representation of the OS. 

 

Also, the infinity norm of the modelling error has been computed to show the effectiveness of the 

method. It is depicted in Table 1. It is understood that the actual error values are lower than the 

theoretical error values which may due to the underdamped nature of the system or due to poor 

transient response in an attempt to remove the steady-state error. Also, to achieve exact 

approximation and confirms the efficacy of the method. In addition, the response is also compared 

on the basis of performance indices as shown in Table 2 using the proposed approach, the ISE and 

IAE value is found the lowest value than another method. performance indices have been calculated 

to show the efficacy of the BSPA approach. 

 

Test System 2: We now consider a Continuous-LTI and stable system of a simple mechanical 

system of 6th order .for comparison purposes, this test system is taken from (Gawronski and Juang, 

1990). 

 

   

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-5.4545 4.5455 0 -0.0545 0.0455 0

10 21 11 0.1000 -0.2100 0.1100

0 5.5000 -6.5000 0 0.0550 -0.0650

0 0 0 0.0909 0.4 -0.5 , 2 2 3 0 0 0

O

T

O O

A

B C

 
 
 
 

  
 
 
 
 

  
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Hankel singular values of the OS are 

 ( ) 15.8456 15.7084 0.9097 0.8874 0.6271  0.5961OA  . 

 

The ROM matrices found are given as 

 

 

   

0.003786 0.8738ˆ
0.8738 0.003812

ˆ 0.3464 0.3461 ,

ˆ ˆC =  0.3464 0.3461 , -0.1066

BSPA

T

BSPA

BSPA BSPA

A

B

D

  
  

   


   


  



 

 

Bar chart HSV for the original system has been calculated and depicted in Figure 8. Which is show 

the optimal order reduction. Relatively, the number of non-zero dominant singular values non-zero 

dominant is regarded as the model of the reduction scheme. The first-second singular values are 

most significant here and afterward, the third singular values have decayed suddenly, becoming 

insignificant. So, the order of reduction is obvious as the second order. 

 

 

 
Figure 7. Time response of mechanical OS 
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Figure 8. The bar chart in Hankel singular value plot of mechanical OS 
 

 
Figure 9. Time response of ROM with OS for 200s (time) 

 

Figure 10. Frequency response of the ROM with mechanical OS 
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Figure 7 and Figure 10 have shown both responses, time, and frequency of the reduced-order model 

with the original system and also compared. Respectively and it is understood that the response of 

ROM approximates the results of the OS very closely with no steady-state error in time response 

and exactly matches in frequency response. Furthermore, another time response of the OS and 

ROM for 200s second has been also shown in Figure 9. It is the magnification (zoom) of both 

systems response to views the transient behaviour comparison. It is again evidently Demonstrating 

that the reduced system to be a close characteristic with all essential parameters of the original 

system. Also, the infinity norm ( H
) of the modelling error has been computed to show the 

effectiveness of the method. It is tabulated in Table 1. It is observed that the actual value of error 

bound is lower than the theoretical value of error bound which may due to the underdamped nature 

of the system or due to poor transient response in an attempt to eliminate the steady-state error. 

Also, to achieve exact approximation and confirms the efficacy of the method. In addition, the 

response is also compared on the basis of performance indices as shown in Table 2 using the 

proposed approach, the ISE and IAE value is found the lowest value than another method. 

performance indices have been calculated to show the efficacy and accuracy of the proposed 

approach. 

 

 

4. Result and Discussion 
In this discussion, the time and frequency responses of the ROM with OS are shown in the above 

figures. All mathematical experiments have been performed using Matrix Laboratory R2019a 

(Academic use).  The time and frequency responses of the OS and ROM in Figures of the for-Test 

systems. This proposed method is excellent in comparison to the use of the BT method and other 

methods. The infinity norm of the modelling error has been also computed and results are depicted 

in Table 1. it is seen that to an excellent precise approximation with a minor error of the OS with 

the ROM. again, it is observed that the actual value of error bound is obtained lower than the 

theoretical value of error bound which may due to the underdamped nature of the system or due to 

poor transient response in an attempt to remove the steady-state error. In addition, the closeness 

and accuracy of the response have been measured through Performance Indices, presented in Table 

2. The ISE and IAE value by the proposed approach is much lower than those compared with BT 

methods. This shows the superiority of the proposed approach. 

 

 
Table 1. Error bound for different reduction methods for test systems 

Computations 

H
 Norm Values 

Test system 1 Test system 2 

BT Proposed Method BT Proposed Method 

( )oG s


H
Norm 102.3342 31.5554 

Theoretical H Norm:  

1

2
n

i

i r


 

   1.00407 

For n=8 

6.0407 

For n=2 

Actual infinity norm ( H
)  

( ) ( )o rG s G s


 Error Bound in 

Modeling 

1.00390 0.841 1.8007 0.0012 

Actual Relative Error Bound: 

( )o

Actual Error Bound

G s


 0.00981 0.0082181 0.05706 0.0000380 
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Table 2. Performance analysis of proposed with other existing reduction methods for test system 

 

 

5. Conclusion 
In this paper, a new proposed approach of ROM of large-scale dynamic LTI systems, based upon 

BSPA methodology has been presented. It is superior to all of the traditional techniques or other 

approaches. This way weakness has been eliminated by the SPA from BT. The proposed 

approaches are the result of the hybridization of BT and the SPA method. This method has been 

used to effectively present a few test systems of the large-scale dynamic LTI systems. Furthermore, 

the time-frequency response of the proposed approach based on BSPA to gives ROM more precise 

and exact approximation than other approaches. In additional, comparing the error standard with 

existing works demonstrates the precision, reliability and enhanced efficiency of the presented 

system. This approach is more effective when successfully applied to a large-scale system. 
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