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Abstract 

Recently, multiple-point geostatistical simulation gained much attention for its role in spatial reservoir 

characterization/modeling in geosciences. Accurate lithofacies modeling is a critical step in the characterization of 

complex geological reservoirs. In this study, multiple-point facies geostatistics based on the SNESIM algorithm 

integrated with the seismic modeling technique is used as an efficient reservoir modeling approach for lithofacies 

modeling of the fluvial Tipam formation in the Upper Assam Basin, India. The Tipam formation acts as a potential 

reservoir rock in the Upper Assam Basin, India. Due to the basin geological complexity and limitation in seismic 

resolution, many discontinuities in depositional channels in this fluvial depositional environment have been identified 

using conventional lithofacies mapping. This study combines three techniques to reproduce continuity of the lithofacies 

for better reservoir modeling. The first is simultaneous prestack inversion for inverting prestack gathers with angle-

dependent wavelets into seismic attributes. A cross-plot of P-impedance and VP/VS ratio from well-log data was used to 

classify the different reservoir lithofacies such as hydrocarbon sand, brine sand, and shale. The second is the Bayesian 

approach that incorporates probability density functions (PDFs) of non -parametric statistical classification with 

seismic attributes for converting the seismic attributes into lithofacies volume and the probability volumes of each type 

lithofacies. The third technique is multiple-point geostatistical simulation (MPS) using the Single Normal equation 

Simulation (SNESIM) algorithm applied to training images and probability volumes as constraints for a better 

lithofacies model. These integrated study results proved that MPS could improve reservoir lithofacies characterization. 

 

Keywords- Prestack inversion, Bayesian classification, Multiple-point geostatistics. 

 

 

 

1. Introduction 
Interpretation of geological shapes and their lithofacies in a reservoir requires a reliable reservoir 

lithofacies model that is generated with high consistency by integrating the data from various 

sources (Doyen, 2007). Generally, seismic reflection data and wireline logs are required to 

identify the reservoir lithofacies (different types of depositional sediments) in many reservoirs. 
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The lithofacies characterization of a reservoir plays an essential role in identifying prospects 

essential for development studies. 

 

For many years, lithofacies models have been generated using seismic data and wireline log data 

by seismic interpretation techniques such as seismic inversion and rock physical studies (Teixeira 

et al., 2007). The spatial variability of lithofacies in a reservoir can be obtained by integrating 

wireline logs and seismic data. A widely recognized issue is the ambiguity generally associated 

with identifying lithology and fluid properties from seismic data (Sengupta and Bachrach, 2007). 

The main issues associated with seismic interpretation are their limited vertical resolution in 

geological and petro physical properties (Yu and Ma, 2011). The first source of ambiguity arises 

from the non-uniqueness of the solutions in seismic inversions in the relationship between the 

measured seismic amplitudes and elastic properties, as many alternative models can produce the 

same seismic response. The second source of ambiguity is the link between the elastic properties 

and petrophysical properties. In rock physics modeling, ambiguity analysis has an essential role 

in quantitative seismic interpretation (Avseth et al., 2005). However, traditional methods such as 

seismic inversion and rock physics analysis can understated geological shapes in many petroleum 

reservoirs, especially in complex reservoirs, leading to ambiguity in lithofacies interpretation. 

 

Statistical modeling methods such as pixel-based two-point simulation and object-based statistical 

simulation can also create lithofacies models (Deutsch and Wang, 1996; Deutsch and Journel, 

1997). However, their reservoir modeling application has been limited due to a lack of 

conditioning data with wireline logs/seismic data. In two-point geostatistics, lithofacies structures 

are characterized by using variograms. However, they cannot capture the curvilinear structures 

and shapes of geological depositions such as meanders, and moreover, the quantity of well-log 

data is insufficient to obtain a reliable variogram for 3D simulation.  On the other hand, object-

based techniques can reproduce lithofacies geometry but limit integrating secondary data and 

require high CPU usage. 

 

In this study, a reservoir modeling approach is employed that focuses on addressing these 

challenges using a three-step approach to aid the geoscientist's quest to predict a more accurate 

lithofacies model by reproducing the curvilinear characteristics (e.g., channels, cross-bedding). It 

can overcome the limitations of existing geophysical interpretation techniques and statistical 

methods. This approach involved generating a lithofacies model of the Tipam formation of Upper 

Assam Basin using wireline logs and 3D prestack seismic data. The methodology of this study 

integrates the prestack inversion technique and, probabilistic modeling approach with the Single 

Normal Equation Simulation (SNESIM) algorithm based multiple-point geostatistics method 

(MPS). 

 

MPS based on the SNESIM algorithm has the benefits of both pixel and object algorithms in 

lithofacies model generation for complicated geological settings without an explicit non-gaussian 

model (Hashemi et al., 2014). It is a powerful technique that has proven to be very suitable for 

simulating the spatial distribution of lithofacies for complex structures (Strebelle, 2002). MPS can 

be used to model subsurface heterogeneity in complex reservoirs and work as an alternative 

method to conventional variogram-based approaches that are generally not well suited to simulate 

complex, curvilinear, continuous, or interconnected structures. The MPS procedure has proved 

that it is a plausible method for modeling and reproducing hydrogeological underground water 

channels with the Training image concept (Ti) (Strebelle and Journel, 2002). The concept of 

multiple-point geostatistics uses the training image (Ti) generated with previous information 
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about facies types and their proportion from the well litho-log and in accordance with the 

deposition environment. Ti is a strategic concept that is essentially a database of geological 

patterns/statistics and their associated facies to characterize geological heterogeneity (Fadlelmula 

et al., 2016). Ti provides multiple geostatistics to the SNESIM algorithm while simulation 

reproduces the lithofacies channels, which cannot be mapping by conventional modeling 

techniques. In this technique, no kriging or variogram is involved, but directly receive the 

probability facies/ patterns from Ti. Another advantage of the SNESIM algorithm is that it 

reduces the massive demand for memory requirements by avoiding the need to scan the training 

image for every node simulation, it scans the whole Ti at once as well as and all possible statistics 

stored as a search tree. This search tree reduces the high CPU usage during the simulation and has 

no limitations in integrating the secondary data (well-log data and seismic volumes) (Liu et al., 

2004). 

 

In this study, we focus on (1) reservoir elastic properties estimating from seismic data, (2) cross 

plot analysis to identify the lithofacies types, (3) generating probability lithofacies volumes using 

seismic elastic properties and cross plot analysis through the probabilistic modeling approach, 

subsequently used as soft data constraints in the SNESIM algorithm, and (4) applying multipoint 

geostatistics for simulation to reproduce the missing lithofacies and continuity of river deposits 

that were not mapped in the traditional reservoir modeling of meandering fluvial deposits. 

 

2. Geological Setting 
The Upper Assam Basin is a mature Petrolifeous sedimentary Basin located in the NE Indian 

subcontinent, covering 57000km2. It is part of the Assam-Arakan Basin, and extend up to the 

Arakan range, Myanmar. The basin limits are defined by the Naga Hills along the south-eastern 

boundary, the Eastern Himalayas in the north, and the Mikir Hills in the southwest (Sahoo and 

Gogoi, 2009). The Basin lies between two convergent margins and is categorized by a central 

NE-SW trending buried "basement ridge," which is a continuation of the exposed Precambrian 

basement of the Mikir Hills. Paleo-structural analysis indicates this ridge was initiated towards 

the close of deposition of Barail sediments (Lower Oligocene) and became more pronounced by 

the end of the deposition of Cenozoic sediments, ranging in age from Paleocene to the Middle-

Upper Miocene. Hydrocarbon deposits (oil and gas) are found in almost every stratigraphic 

horizon. Figure 1 represents the geological location of the study area. 

 

The Upper Assam Basin within the Upper Assam shelf from Miocene to Plio-Pleistocene has 

many petroleum fields. The important strata with hydrocarbon producing potential are the Tipam 

sandstone & the Girujan clay formation which belongs to the Miocene age, Barail formation of 

the Oligocene age, and Sylhet Limestone and Kopili formation from Eocene age. The Tipam and 

Barail formations are major hydrocarbon producing strata zones in this Basin. The study region is 

a sandstone deposit within the Upper Assam Basin, India. The Tipam formation is the most 

crucial lithological unit in this Basin. It is a thick accumulation of fluvial sandstone deposited in a 

fresh- to brackish water environment in the Miocene age almost throughout the entire Basin and 

acts as a good reservoir rock for hydrocarbon accumulation in several oil fields Upper Assam. 

The Tipam formation is subdivided into Upper, Middle, and Lower Tipam. The middle Tipam 

formation comprises a sand/shale alteration sequence, the Lower Tipam formation is mainly an 

Arenaceous sequence. The upper Tipam contains an arenaceous sequence (Mallick and Raju, 

1995). Figure 2 represents the stratigraphic sequence of the Upper Assam Basin. 
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Figure 1. Geological location and Tectonic map of the study area. 

 

 

 
 

Figure 2. Generalized stratigraphic sequence of the Upper Assam Basin. 
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3. Data Set: Wireline Logs and Seismic 
Log data from five wells and 3D prestack seismic section were used for the reservoir lithofacies 

model in the Tipam formation of Upper Assam Basin, India. The field data contain 3D prestack 

migrated gathers in the offset domain, a total of five wireline logging data, and pre interpreted 

horizons. The seismic data are zero phase and normal polarity (SEG convention), where an 

increase in acoustic impedance is displayed as a positive amplitude (black peaks) in the seismic 

cross-section. The study zone falls within 1600 ms-2300 ms in the time domain (in the seismic 

section). The seismic offset gathers converted into angle gathers after preconditioning which is 

required for prestack inversion. Compressional velocity (Vp), Shear velocity (Vs), and Density 

(Dn), Resistivity logs, Neutron porosity logs are available from five wells. Well#01 and, Well#03 

was used in inversion procedure and cross-plot analysis. Well#02, Well#04, and Well#05 were 

used for quality checks of prestack inversion results and Bayesian classification results. Figure 3 

shows raw seismic data in the offset domain (offset gathers), super gathers, and angle domain 

seismic data (angle gathers). 

 

 

 
 

Figure 3. Seismic migrated gathers, super gather, and angle gather. 
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4. Methodology 
Our methodology was divided into three steps: prestack seismic inversion, probability facies 

classification, and MPS algorithm. Simultaneous prestack inversion and rock physics analysis 

were the methods applied to seismic data before applying MPS (Mariethoz and Caers, 2014). 

Simultaneous prestack inversion was applied to 3D seismic angle gathers to generate seismic 

attributes (Hampson et al., 2005). Rock physics analysis via the probabilistic modeling approach 

is conducted to establish the link between seismic attributes and geological lithofacies identified 

from the cross-plot analysis (Sen, 2006). Finally, multiple-point geostatistics simulation with the 

SNESIM algorithm procedure was started with generating the Ti for providing the multiple 

patterns during the simulation (Mariethoz and Caers, 2014; Mariethoz, 2018). The outcomes of 

the rock physics analysis (lithofacies probability volumes) used in the MPS approach as soft 

conditioning and well-logging lithofacies came to the simulation as hard data. This MPS method 

overcomes the limitation of conventional statistical methods by inferring multivariate data 

patterns from the training image (Ti). The comprehensive workflow used in the current study is 

shown in Figure 4. 

 

 
 

Figure 4. The detailed workflow of the present methodology for improved lithofacies characterization. The 

main steps in this perspective are seismic inversion, Bayesian classification, and multiple-point 

geostatistics. 
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4.1 Estimation of Seismic Elastic Properties from Prestack Seismic Data 
As the first stage of the workflow, prestack seismic migrated angle gathers were converted into 

different geophysical attributes by model-based simultaneous prestack inversions (Russell et al., 

2013). Generally, the seismic inversion results are utilized to optimize seismic data and, identify 

prospects ('sweet spots') in field development studies. Elastic properties are essential for 

identifying litho-bodies in a reservoir. The seismic data was preconditioned to improve the signal-

to-noise ratio and converted into an angle domain (angle gathers) for the prestack inversion 

algorithm (Zhang et al., 2015). Two wavelet extraction methods were used to perform this 

procedure. First, statistical angle-dependent wavelets were extracted by the autocorrelation 

method for angle stacks (5°-15°), (15°-25°), and (25°-35°) of seismic prestack angle gathers at 

two well locations (Gunning and Glinsky, 2006). The well-log reflectivity convolved with these 

statistical wavelets for generation synthetic seismogram at well locations for correlating with real 

data. Using the synthetic seismogram, seismic to well-tie operation was conducted at each well 

location to relate well stratigraphic markers to stratigraphic markers of seismic data and correct 

the time to depth relation. Later, well-based angle-dependent wavelets were extracted by finding 

a time-domain operator which shaped the well-log reflectivity that convolved with the real 

seismic data at every well location (Hampson and Galbraith, 1981; Yi et al., 2013). Initial guess 

low-frequency models of P-impedance (ZP), S-impedance (ZS), density (Dn), and VP/VS ratio 

were generated for the seismic data from wireline logs and interpreted horizons. 

 

 
 

Figure 5. An arbitrary line section of seismic-derived elastic properties (P-Impedance (ZP) & VP/VS ratio) 

along with the well locations. 

 

 

The simultaneous prestack inversion procedure uses these initial models for perturbing iterations 

with a selected deterministic wavelet to obtain the elastic properties (ZP, ZS, Dn & VP/VS ratio) 

by achieving a good match between synthetic and real data. The entire seismic inversion 

approach involves wavelet estimation, well to seismic ties, generating an initial guess model, and 

seismic inversion based on the reformulated Aki-Richards equation. The prestack inversion was 

conducted for angle range 5°-35° of seismic data. Figure 5 shows an arbitrary line of ZP & 

VP/VS ratio from prestack inversion analysis via all five wells. The simultaneous prestack 

inversion results have been cross verified with well-logging data, including the wells that have 
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not been involved in the inversion process. The good match between the seismic elastic properties 

and the well elastic properties indicates the quality of inversion results. 

 

4.2 Generating the Probability Lithofacies Volumes Using Logging Data and 

Seismic Data 
The Bayesian approach generates spatial distributions (Probability volumes) by establishing a 

link between seismic-derived elastic properties and well-derived lithofacies (Avseth, 2000). A 

cross-plot analysis was conducted using the two wells to define the different lithofacies such as 

shale (green), water-bearing sand zone (yellow), and prospective-bearing sand represents HC 

zone (red) with different ranges of P-Impedance (ZP) & VP/VS ratio (Rasaq et al., 2015). The 

range values of the ZP and VP/VS ratio are shown in Table 1. Lithofacies log for each wellbore 

location can be estimated from these cross-plot ranges. Figure 6 shows the cross-plot of the three 

lithofacies and corresponding well litho-logs (Well#01 & Well#03). 

 
Table 1. Elastic properties values for classification of Lithofacies. 

 

S.No. Name of lithofacies Elastic properties ranges (P-impedance, VP/VS Ratio & Poisson's Ratio) 

1 Hydrocarbon sand 

• P-Impedance:3800-12400  

• VP/VS Ratio:1.15-1.82 
• Poisson's Ratio:0.05-0.28 

2 Brine sand 

• P-Impedance:3500-14900 

• VP/VS Ratio:1.85-2.12 
• Poisson's Ratio:0.28-0.34 

3 Shale 

 • P-Impedance:3500-14900 

• VP/VS Ratio:2.14-3.1 
• Poisson's Ratio:0.34-0.44 

 

 

 
 

Figure 6. Cross-plot using wireline log data for lithology log: H C (Red), Sand (Yellow) & Shale (Green) 

& Lithologs of Well#01 & Well#03. 
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After cross-plot analysis, a multivariate Probability Density Function (PDF) was prepared based 

on non-parametric statistical classification using kernel analysis in the cross-plot space 

(Loftsgaarden and Quesenberry, 1965). Generally, in rock physics modeling, PDFs are generated 

using the parametric method. Practical application of the calculation of PDFs using the parametric 

method is complicated with geophysical data points. It is challenging to assume the parametric 

family of probability distributions for this kind of data, and precisely estimating the assumed 

distribution parameters from data is not possible (Ocampo-Duque et al., 2013). A notable 

disadvantage in the parametric statistical classification is the lack of flexibility. Each assumed 

distributor's parameters enforce restrictions on the shapes that function may have (Qin et al., 

2011). A parametric distribution model may work well for the same kind of geological 

distribution. A reservoir mostly has ideal characteristics compared with other reservoirs. So, it is 

challenging to estimate the appropriate parameters in parametric statistical classification. For the 

kernel analysis, facies proportions for hydrocarbon-bearing sand, water-bearing sand, and shale 

were estimated from logging data (Węglarczyk, 2018). These proportions of each facies were 

used in the MPS procedure for generating the Training Image (Ti). Subsequently, these PDFs 

were used as a priori information in a Bayesian classification to estimate the posterior lithofacies 

probability from the inverted elastic attributes (Avseth and Mukerji, 2002). Figure 7 shows the 

PDFs generated from non-parametric kernel analysis. 

 

 

 
 

Figure 7. The PDFs generated from non-parametric kernel analysis. 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 6, No. 3, 805-823, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.3.048 

814 

 
 

Figure 8. QC measures at well locations (Well#1 and Well#3). 

 

 

A confusion matrix was used to conduct the QC of different kernels. The confusion matrix 

measures the mismatch between actual lithofacies (litho-log generated by the cross plot) and 

estimated Bayesian lithofacies from seismic attributes at well location (Nieto et al., 2013). The 

diagonal values of the confusion matrix should be large values for the quality of prediction 

lithofacies and visual inspection on comparison of the actual litho log with the predicted litho log 

from Bayesian classification. Figure 8 shows the QC measure applied to the Bayesian results 

using the confusion matrix at well locations. 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 6, No. 3, 805-823, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.3.048 

815 

 
 

Figure 9. Hydrocarbon probability volume, sand probability volume & shale probability volume. 

 

 

 

 

The Bayesian theory is a statistical procedure. Bayesian decision theory provides the primary 

methodology for classification problem. After proper QC measures of non-parametric PDF at 

well locations, the Bayesian classification can be applied to the total seismic volume to generate 

probability volumes for each lithofacies and most lithofacies volume (Loftsgaarden and 

Quesenberry, 1965; Gramacki, 2018). Using Baye's theorem, the prior knowledge of each 

lithofacies PDF incorporates seismic attributes to produce the most probability lithofacies 

volumes (Fukunaga, 1990; Duda et al., 1998). These most probability volumes are used in the 

MPS procedure as soft data constraints. Figure 9 shows the probability volumes of each 

lithofacies identified in the cross-plot analysis. 
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4.3 Estimation of Lithofacies Model Using Single Normal Equation Simulation 

(SNESIM) of Multiple-Point Geostatistics 
The MPS procedure involves, two key steps: the first is constructing a searching tree, and the 

second is the simulation part (Remy et al., 2009). The main steps of the SNESIM algorithm 

process are as follows 

 

(i) Create the Ti with the help of previous geological depositional knowledge with the exact 

proportion gained from the cross-plot analysis at least 1.5 times the simulation grid. 

(ii) Scan the Ti with the search template (3 x 3), identify all possible physical 

patterns/statistics values at a central node, and construct a searching tree as a database. 

(iii) Create a simulation grid. 

(iv) Hard data (well litho-logs) placed in the simulation grid act as defined facies (Hard data 

conditioning). 

(v) Define the random path visiting all locations to simulate. 

(vi) Find the conditional data event devj(u). 

(vii) Retrieve the conditional probability distribution from training image P(Z(u)=k|devs(u)). 

(viii) The soft data (probability volumes of each facies) are integrated with conditional 

probability distribution in simulation. 

(ix) A simulated value is drawn from that conditional probability (Realization). 

 

4.3.1 Generation of Training Image & Construction of a Search Tree 
As per the geological knowledge of the study area, Ti is generated with parametric shapes given 

to each facies using the SGeMS software (Fadlelmula et al., 2016). The geological study suggests 

that the study area is a part of basin hinge lines with normal faults transacted by reverse faults that 

preceded the major thrust. The geological interpretation has suggested that the area of study is the 

vast sedimentation of the Brahmaputra River, having large, braided channels with many 

meandering channels (Sahoo and Gogoi, 2009). A Ti can be generated with three facies 

representing shale, water-bearing sand, hydrocarbon-bearing sand based on geological knowledge 

of the study area, and proportions of lithofacies from the cross-plot analysis. The un-conditional 

realizations of object-based algorithms were used to generate Ti with sinusoidal channels (sand), 

elliptical shape geometries (HC), and the remaining area used as background (shale). Both 

lithofacies can be arranged according to geology depositional direction. Figure 10 shows the 

generated Ti using parametric shapes. 

 

First, in the scanning of Ti, ti (p) is specified as a value of Ti where p ϵ Gti and Gti is the regular 

Cartesian grid discretizing the Ti. Generally, ti (p) can be a continuous, categorical, or vectorial 

variable. 

 

 =0 if at ti (p) represents shale (background), 

Ti =1 if at ti (p) represents brine sand, 

 =2 if at ti (p) represents prospective sand (HC). 

 

The search template TD consists of a value at central node p and its S nearby nodes Pα (α=1,2,3… 

S) to capture patterns inside the Ti. Pα is specified as Pα =p+iα (α=1,2, 3…S), where iα is the 

vector depicting the search template (Tahmasebi and Sahimi, 2016). The search template scans 

the training image (Ti) to identify the central value patterns (p). the data pattern Pat (p) is a multi-

variant vector, lithofacies value specified at the central node of the template. 
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Pat (p) = {t(p); t(p + iα), α = 1,2,3 … S} (1) 

 

All these patterns and their possibility categories are stored in the form search tree before 

simulation. 

 

 
 

Figure 10. Training image: background represents shale (blue), sinusoidal litho body represents sand 

(green), and elliptical shape (hydrocarbon). 

 

 

4.3.2 Generating of Realization (Lithofacies Model) Using the SNESIM Algorithm 
In the simulation part, a 3D simulation grid is constructed, and petrophysical data assigned to the 

closet grid of the wellbore locations. The SNESIM algorithm relies on the idea of simulating each 

cell value (facies number) or petrophysical property sequentially along a random path, and the 

simulation of nodes/cells is constrained by cells earlier simulated and hard data (well data) and 

seismic lithofacies probability volumes(Strebelle, 2002). 

 

The search template TD visits every node of the simulation grid, and the TD is used for retrieving 

the conditional data event devs (p) at each simulation node u, which is defined as 

 

 devs(p) = {z(l)(p + i1) … . . z(l)(p + is)} (2) 

 

Where z (l) (p + is) is an informed nodal value (lithofacies number) in lth SNESIM realization, that 

value could be either a previously simulated value or an original hard datum value. Any number 

of uninformed nodal values can be centered at u among the S possible locations of the template 

TD. Next, the number of replica data patterns are identified from the search tree as data event devs 

(p). The probability values patterns are retrieved from the search tree, and the value is simulated 

and assigned a new conditional probability value from it with constraints of soft data (probable 

volumes) (Hansen et al., 2018). Then the conditional probability function at every node of the 
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simulation grid is calculated for each facies. If the availability of the number of replicates from 

the search is less than Cmin (the minimum number of replicates), the search is repeated. This 

procedure works till n ≥ Cmin. 

 

The conditional probability distribution (cpdf) is predicted for a lithofacies value at the template's 

central node. 

 

F(p: k|devs(p) = {P(Z(p) = k|devs(p)) ≈
Ck(devs(p))

C(devs(p))
 (3) 

 

where, 

devs (p)- identified data event with central node value. 

C(devs(p))- number of statistics similar to devs(p) from the search tree. 

Ck(devs(p))-number of statistics of center value equal to k. 

 

Integration of seismic probabilities of lithofacies with simulation is explained by (Journel, 2002). 

Figure 11 shows the 15th & 22nd realization of the simulation. 

 

 

  
 

Figure 11. Realization using the SNESIM algorithm of the MPS: 15th realization & 22nd realization. 

 

 

5. Results and Discussion 
In this study, we used a multipoint geostatistical simulation methodology, which allows the 

incorporation of seismic volumes and wireline data for reproducing the continuity of the 

lithofacies in the reservoir model of Upper Assam, India. Integrating prior information, such as 

wireline log data and seismic probability volumes, constrained the simulation, and allowed for a 

better lithofacies model, and comparison of the results with the Bayesian lithofacies model. The 

MPS results presented here are an averaged map of the lithofacies produced by averaging the 25 

realizations. Figure 12 shows a comparison of a 3D horizontal slice of the lithofacies volume and 

the MPS lithofacies at 1870-85ms (1815-25m). As per reservoir geology, the Tipam formation is 

a massive sandstone depositional environment created by rivers processes. 
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Figure 12. The comparison of the 3D slices of the Bayesian classification (left) and MPS simulation (right)  

at 1870-85 ms (1815-25 m). 1to identify the development of the HC lithofacies (Arrow marks). 

 

 

 

Figure 5 shows that, well#02 and well#03 are 15km apart in this study region, and this clearly 

indicates the hydrocarbon phase in the Tipam zone at depth range 1815m-1825m (the 

corresponding slice in Figure 12). The wellbore data (Well-2 & Well-3) clearly shown in this 

interval represents the hydrocarbon sand phase of the Tipam formation in this reservoir. But the 

continuity of the zone is missing between these wells. The SNESIM algorithm has reproduced the 

continuity of lithofacies between the two wells. In the conventional modeling techniques miss the 

continuity of hydrocarbon sand (left side). The development of hydrocarbon lithofacies by the 

SNESIM algorithm is shown in Figure 12 (right side). The same improvement in brine-sand can 

be observed in Figure 12 (red arrows). 

 

Figure 13 shows the improvement in lithofacies observed in the lithofacies from Bayesian 

classification in comparison with MPS simulation at 2050ms-2075ms. This zone is a vast fluvial 

depositional environment with many meandering channels. As observed in Figure 13, the 

meandering channel has no proper continuity, but it was developed in MPS model results (Figure 

13 (right)). 
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Figure 13. The comparison of the 3D slices of the Bayesian classification and MPS simulation to identify 

the development of the brine sand lithofacies (Arrow marks). 
 

 

Figures 14 show the comparison of confusion matrices of predicted lithofacies of both 

methodologies (Bayesian and MPS) with true lithofacies (well litho-log generated by cross-plot 

analysis) at two wells. It clearly shows improvement in the diagonal elements in the MPS 

simulation confusion matrix compared to the Bayesian simulation. The quantitative 

representation of the correlation of predicted lithofacies with true lithofacies in the MPS 

simulation is relatively better than the Bayesian correlation. The predicted lithofacies has been 

compared with true lithofacies in this methodology relatively better than Bayesian correlation. 

 

 
Figure14. The comparison of a confusion matrix for improvement of the lithofacies for two well (Well#01 

& Well#03). 

 

The prediction quality of this methodology's confusion matrix is superior that of the confusion 

matrix of the Bayesian classification. The percentages of the diagonal elements of the confusion 

matrix have increased due to a reduction in the mismatch between true lithofacies from well log 

data and lithofacies results from the MPS method. From these confusion matrices, we find that 

the present methodology warrants reliable lithofacies prediction. The MPS simulation results 

substantiated that the SNESIM algorithm successfully reproduced the missing lithofacies, which 
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could not be characterized in the conventional Bayesian classification. With real data, the present 

methodology provides promising alternative to improve lithofacies characterization. Therefore, 

this study's integrated workflow proved that it could provide a better controlled and reliable 

lithofacies characterization. 

 

6. Conclusions 
In this work, we integrated seismic modeling techniques with the SNESIM algorithm of MPS. 

The methodology was successfully applied to prestack seismic data and wireline log data from 

the Upper Assam. When comparing the MPS results with Bayesian classification results, the 

SNESIM algorithm results show improvement and continuity in the reservoir's lithofacies. The 

main stages for developing an updated lithofacies model is involved generating elastic properties 

from the prestack seismic data using the simultaneous prestack seismic inversion, cross-plot 

analysis to identify lithofacies types based on P-impedance and VP/VS ratio, conversion of 

seismic elastic volumes into lithofacies by creating a link between the seismic elastic volumes 

and lithofacies identification by cross-plotting. The training image (Ti) was generated for the 

facies identified in cross-plot analysis with geological knowledge of the depositional 

environment. Finally, the simulation part used the SNESIM algorithm with the assist of multi-

statistics from Ti and constrain by soft data (lithofacies probabilities) and hard data to reproduce 

the geological facies. The MPS results were compared with the Bayesian method results. The 

methodology has been proven an effective technique for improved reservoir characterization. We 

have combined these approaches to generate a facies model that improves the consistency and 

continuity of lithofacies in fluvial reservoir scenarios. The quantitative improvement of the MPS 

results was cross-verified by the confusion matrix. 
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