Next Article in Journal
Interface Effects on He Ion Irradiation in Nanostructured Materials
Next Article in Special Issue
Special Issue: Materials for Nuclear Waste Immobilization
Previous Article in Journal
Real-Time Monitoring of Chemical Composition in Nickel-Based Laser Cladding Layer by Emission Spectroscopy Analysis
Previous Article in Special Issue
The Effect of Heavy Ion Irradiation on the Forward Dissolution Rate of Borosilicate Glasses Studied In Situ and Real Time by Fluid-Cell Raman Spectroscopy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization

by
Albina I. Orlova
1 and
Michael I. Ojovan
2,3,*
1
Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation
2
Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia
3
Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
*
Author to whom correspondence should be addressed.
Materials 2019, 12(16), 2638; https://doi.org/10.3390/ma12162638
Submission received: 31 May 2019 / Revised: 7 August 2019 / Accepted: 12 August 2019 / Published: 19 August 2019
(This article belongs to the Special Issue Materials for Nuclear Waste Immobilization)

Abstract

:
Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics. To produce ceramics, cold pressing and sintering (frittage), hot pressing, hot isostatic pressing and spark plasma sintering (SPS) can be used. The SPS method is now considered as one of most promising in applications with actual radioactive substances, enabling a densification of up to 98–99.9% to be achieved in a few minutes. Characteristics of the structures obtained (e.g., syngony, unit cell parameters, drawings) are described based upon an analysis of 462 publications.

1. Introduction

Crystalline ceramics, aiming to immobilize high-level radioactive waste (HLW), are important for the current stage of development of modern nuclear technology in the world.
The crystal-chemical principle is used to design multicomponent ceramics with needed structures. The approach to designing mineral-like crystalline materials is based upon the structural features of materials and isomorphism concept. The choice of the structural forms of compounds for discussion here was based upon the following criteria:
(1)
The ability of the structure to include various cations in different combinations and ratios.
(2)
Known high stability of structure to the action of the destructive factors of the environment during their prolonged exposure (“mineral-like” compounds preferred while “the nature suggests”) such as high temperatures, thermal “stresses”, radiation levels, the corrosive action of water and other chemical solutions. Criteria for the resistance of materials to such effects are justified by the features of the crystal structure of materials including small interatomic distances, and the possibility of their controlled variation in the desired direction when cations and/or anions of given sizes are included in the crystallographic positions. Most of the crystalline matrices discussed in the present work meet these criteria in full or in part. Herewith the classification criteria for crystalline ceramics were based on considering first simple and then more complex structures, e.g., starting with oxides (from simple oxides to complex oxides) and moving to salt compositions (from simple salt to complex ones).
The concept of immobilizing the radioactive elements of nuclear waste in an assemblage of mineral phases was originally introduced by Hatch [1] at Brookhaven National Laboratory in 1953. The feasibility of making a ceramic of natural, mineralogically-stable phases was demonstrated by McCarthy [2,3] and Roy [4] at the Pennsylvania State University between 1973 and 1976. Since that time, a number of other mineralogic-ceramic assemblages have been developed [5]. Among these are the Sandia titanate-based ceramic [6], the Australian ceramic “SYNROC” [7,8,9,10], the silicate-phosphate supercalcine ceramics [11], the alumina-based tailored ceramics [12,13] and the Pu pyrochlores [14,15]. The structural types of monazite, kosnarite (NZP), langbeinite and other ones were considered as matrices for the incorporation of simulated wastes containing f-elements and that also contain uni-, bi-, and trivalent elements involved in radiochemical processes [16,17,18,19,20,21,22,23,24,25,26,27]. Cold pressing and sintering, as well as hot isostatic pressing often result in ceramics containing an intergranular glassy phase with radionuclides preferentially migrating to the glassy phase [28,29,30,31,32,33,34,35,36]. The radionuclides that are incorporated in the intergranular glassy phase(s) will then have leaching rates at about the same order as those from a glassy waste-form.
Crystalline waste-forms synthesized at moderate temperatures such as within 700 to 750 °C have not been investigated as intensely as those formed at high temperatures [11], although crystalline waste-forms made from clay have been studied almost continuously since the 1953 work of Hatch [1,11]. Supercalcine ceramics synthesized at high temperatures often contained sodalite-cancrinite mineral assemblages. Roy [37] proposed in 1981 a low solubility phase assemblage as a waste-form [37] using a low temperature hydrothermal process. The assemblage consisted of micas, apatite, pollucite, sodalite-cancrinite and nepheline, many of which could be produced using various clay minerals such as kaolin, bentonite and illite mixed with radioactive waste. However there were no continuous commercial technologies available at that time that could process the waste/clay mixtures in a hydrothermal environment, and clay-based crystalline waste-forms were not pursued. The situation changed in 1999 when Studsvik had built in Erwin a commercial facility to continuously process radioactive wastes by pyrolysis at moderate temperatures in a hydrothermal steam environment [38,39]. This facility utilizes Fluidized Bed Steam Reforming (FBSR) technology to pyrolyze 137Cs- and 60Co-contaning spent organic ion exchange resins produced by commercial nuclear facilities. FBSR technology can also process a wide variety of solid and liquid radioactive wastes, including spent organic ion exchange resins, charcoal, graphite, sludge, oils, solvents and cleaning solutions with contaminations up to radiation levels reaching 4 Sv/h (400 R/hr). The waste organics are destroyed, creating steam and CO2. The clay serves in the FBSR process as a mineralizing agent, and feldspathoid minerals (sodalite, nosean and nepheline) are formed by the nanoscale reaction of waste components with clay. The phases formed act as hosts for waste contaminants such as Cl, I, F, 99Tc from SO4 alkali (Na, K, Cs) bearing wastes [40,41,42,43,44]. The mineralization occurs at moderate temperatures used within the range when most clays become amorphous at the nanoscale level, e.g., kaolin, bentonite (montmorillonite), and illite. The octahedral Al3+ cation in the clay structure is destabilized, and clays become amorphous as confirmed by X-ray diffraction (XRD) analysis, losing their hydroxyl (OH–) groups. The alkalis from waste act as activators of unstable Al3+ cations, and form new mineral phases catalyzing the mineralization. In the absence of steam many of these mineral phases can only be formed if temperatures are above 1200 °C.
Many of the compounds under consideration have structures similar to those of natural minerals (the so-called mineral-like compounds). Others of the discussed ones are not structural analogs of any known minerals (that its, of what is known today, as there are examples of compounds being developed for the radioactive waste immobilization that were obtained synthetically, and many years later a mineral was discovered, whose structural analog they became. For example, the mineral kosnarite KrZr2(PO4)3 was discovered in 1991, and then kosnarite-like compounds (for example, NZP and NASICON) were synthesized and investigated many years before the discovery of this mineral).
Ceramic waste-forms can range from single phase, i.e., UO2 and single phase solid solutions, i.e., (U, Th, Pu)O2, to multiphase ceramics formulated in a such way that each waste radionuclide can substitute on a given host lattice in the various phases used.

2. Theoretical Aspects of Substitution

The crystal-chemical substitutions in crystalline waste-forms must be electrically balanced [45,46] which is important when relying on the long range order (LRO) of crystals accounting for the size and coordination of the crystallographic site, which will act as host to a given radionuclide, or its decay product upon transmutation (see [15] for natural analogs). Moreover, if a monovalent cation transmutes to a divalent one, the substitutions must be coupled to retain the electrical balance of the host phase without destroying the integrity of the phase. It means that the lattice site must be of suitable size and have a bond coordination able to accept the cation resulting from transmutation. The bond system of a crystalline ceramic can only maintain its charge balance if:
(1)
Sufficient lattice vacancies exist in the structure or,
(2)
A variable valence cation such as Fe or Ti is present in a neighboring lattice site balancing the charge.
Both above ways assume that the variable valence cations do not change lattice sites, and that the charge balancing cations are in the nearby lattice sites of the same host phase. The lattice site must be of close size flexible enough to accommodate the transmuting cation. Better flexibility is characteristic to host phases with lattice sites having irregular coordination or are distorted, as shown in some examples below. The flexibility (solubility) of waste-form mineral phase(s) as hosts for a different valence substituted cation can be analyzed by performing coupled substitutions. When the number of cations changes during the substitution, a vacancy is either created or consumed, however the substitution must maintain electrical neutrality. These types of substitution are characteristic for polymorphic changes such as [47], where □ denotes a vacancy:
□ + Ba2+ → 2K+, or □ + Ca2+ → 2Na+, or □ + Na+ + 2Ca2+ → 3Na+ + Ca2+
In these coupled substitutions it is implicit that the exchanging cations occupy the same lattice sites, have the same coordination, and thus the crystallographic symmetry is maintained. These substitutions are typically written using Roman numerals that designate the number of oxygen atoms that coordinate around a given cation, e.g., VIIICa designates the octahedral VIII-fold coordination for the Ca2+ lattice site in oxyapatites:
3 Ca 2 + h o s t   p h a s e 2 Nd 3 +   +   s u b s t i t u t e d   p h a s e
Calcium-neodymium-coupled substitutions were proven successful in the apatite (Ca6[SiO4]3) structure, resulting in a completely substituted Nd42[SiO4]3, where 2/3 of the lattice sites have Nd3+ and 1/3 are vacant [45,46,47]. Ca2+ is normally in VIII-fold coordination in the apatite and has a 1.12 Å atomic radius [47,48,49,50]. The Nd3+ cation in VIII-fold coordination also has an atomic radius of 1.11 Å [50], which is very close to the Ca2+ atomic radius in VIII-fold coordination. It has been shown that the rare earth elements from La3+ through Lu3+ can substitute for Ca2+ and form oxyapatites, RE4.670.33[SiO4]3O [51]. It was also shown [3] that even more complex but coupled substitutions were possible in the oxyapatite structure, such as:
6 V I I I Ca 2 + h o s t   p h a s e 1.7 V I I I I Nd 3 +   +   1.7 V I I I I C s +   +   0.86 V I I I I Ce 4 +   +   0.86 V I I I I Sr 2 +   +   0 . 88   s u b s t i t u t e d   p h a s e
where the atomic radius, r, of Cs+ in VIII-fold coordination is 1.74 Å, Ce4+ in VIII-fold coordination is 0.97 Å, and Sr2+ in VIII-fold coordination is 1.26 Å. In this case small radii cations e.g., Ce4+ are mixed with larger radii cations such as Cs+, so that individual lattice sites can distort without perturbing the entire crystal structure of the host mineral. It should be noted that the exchanging cations are always in the same lattice site of the same host phase [3,45,46,51].
The substitutions such as those given above for the oxyapatites were also demonstrated to be possible in many other Ca-bearing mineral phases such as larnite (Ca2SiO4 or b-C2S), alite (calcium trisilicate or Ca3SiO5 or C3S), C3A (Ca3Al2O6) and C4AF (Ca4Al2Fe2O10), characteristic for cements [45,46]. This allowed Jantzen, et. al. [52,53] to make substitutions for Ca2+ in each phase (up to ~15 mole%) and prove possible the following additional substitutions:
Ca 2 + +   h o s t   p h a s e   2 Cs + s u b s t i t u t e d   p h a s e
2 Ca 2 + +   h o s t   p h a s e   Cs +   +   Sr 0.5 2 +   +   Nd 0.17 3 +   +   Ce 0.25 4 +   +   0 . 08   s u b s t i t u t e d   p h a s e
1 . 5 Ca 2 + +   Sr 4 + h o s t   p h a s e   Sr 2 +   +   Mo 5 +   +   0 . 5   s u b s t i t u t e d   p h a s e
4 Ca 2 + +   Fe 3 +   +   Al 3 + h o s t   p h a s e     0 . 66 Nd 3 +   +   Zr 4 +   +   Mo 4 +   +   Sr 2 +   +   Ba 2 +   +   1 . 33   s u b s t i t u t e d   p h a s e
4 I X Ca 2 + r ~ 1.18 A +   2 V I Fe 3 + r = 0.65 A h o s t   p h a s e     2 . 66 I X Nd 3 + r = 1.16 A   +   0 . 38 V I Ce 4 + r = 0.87 A   +   0 . 56 V I Zr 4 + r = 0.72 A   +   0 . 75 V I Fe 3 + r = 0.65 A   +   1 . 65   s u b s t i t u t e d   p h a s e
It should be noted that the number of lattice sites have to be equivalent on the left-hand side and right hand site of the above equations.
These types of crystal-chemical substitutions have been studied in several waste-forms including SYNROC (SYNthetic ROCk) titanate phases containing zirconolite (CaZrTi2O7), perovskite (CaTiO3), and hollandites (nominally Ba(Al,Ti)2Ti6O16) [54], and in high alumina-tailored ceramic phases such as magnetoplumbites. Notable that magnetoplumbites were also found as a minor component of SYNROC, which immobilizes waste with high contents of Al [55].
Hollandite is the Cs+ host phase in the SYNROC phase assemblages. Its structure can be written as BaxCsy(Al,Fe)2x+yTi8-2xyO16 where x + y must be <2 [56]. It has two types of octahedral sites, one of which accommodates trivalent cations like Al3+, Ti3+ and Fe3+, while the other accommodates Ti4+. The Cs+ is accommodated in tunnels that normally accommodate the Ba2+ cation, and Cs-Ba lattice sites are VIII-fold coordinated [54,56]. On synthesis the substitution orders and incommensurate superstructures result when Cs+ substitutes for Ba2+ [55]. Cs has been experimentally substituted for Ba when Fe3+ is substituted for Ti4+ in the VI-fold sites of hollandite. The species
C V I I I s 0.28 + B V I I I a 1.00 2 + A   s i t e A V I l 1.46 3 + F V I e 0.82 3 + B   s i t e T V I i 5.72 4 + C   s i t e O 16
has been synthesized by the sintering (frittage) of precursors in air at 1320 °C [56]. Ba–Al hollandite (Ba1.16Al2.32Ti5.68O16) was irradiated with 1–2.5 MeV electrons and β-irradiated up to summary doses of 4 × 108 to 7 × 109 Gy, after which it was found to contain Ti3+ centers and O2– superoxide ions that confirmed the mechanism of charge balance during transmutation [56]. Theoretically, the limiting value of Cs in hollandite is y = 0.81, which corresponds to a 9.54 wt% waste loading of Cs2O [57].

3. Synthesis of Ceramic Waste-forms

Research and development of ceramic materials based upon compounds on the base of the oxides and salt compositions were carried out for the immobilization of high-level wastes and the transmutation of minor actinides. Structures of such materials provide the incorporation of various cations and anions, either individually, or in various combinations and ratios. Structural forms in which can be implemented a wide isomorphism of cations and anions (including in different crystallographic positions) deserve special attention.
Among such structures the type NaZr2(PO4)3 (NZP) (analog—Mineral kosnarite) is regarded. NZP solid solutions may include more than half of the elements of Periodic Table of Elements in various combinations and ratios. The SYNROC developer calls them “near-universal solvent” [23], wherein this form of the consolidation of waste components is mono-phase in contrast to the multiphase SYNROC.
Ceramic materials are synthesized using the following methods: Pressing and sintering (frittage), hot isostatic or hot uniaxial pressing and other variants. Method Spark Plasma Sintering is the perspective for this aim. It provides a formation of virtually no porous ceramics having a relative density close to 99–100% for short time intervals (from 3 to 15 min). Reducing the porosity reduces the free surface, and therefore reduces the reaction surface and reactivity in heterogeneous systems with the participation of such materials. This in turn increases the heat, radiation and chemical stability of the ceramic.
Ceramic forms characteristics are presented here with their structures.

4. Crystalline Ceramic Phase:

4.1. Simple Oxides

1. Silica, SiO2 [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75], Figure 1.
Silicon dioxide, commonly known as silica (and/or quartz), is a prevalent element in the Earth’s crust, a mineral of most igneous and metamorphic rocks. The formula “SiO2” is commonly known as silicon dioxide. Silicon dioxide has a wide range of purposes, the main one being glass manufact-uring. In nature, silicon dioxide is commonly found as sand and quartz. Silica has polymorphism. It is stable under normal conditions of polymorphic modification—α-quartz (low temperature). Accordingly, β-quartz is called a high-temperature modification. Silica (α-quartz) possesses the rhombohedral structure, sp. gr. R3. Various elements with various oxidation states may attend in quartz: Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr and Te. Materials based on silicon oxide SiO2, Silica (quartz) were prepared in ceramic form by using methods: Hot isostatic pressing, laser sintering, cold pressing and sintering at 1500 °C, cold pressing and ultra-low temperature sintering at T = 554–600 °C (30 min) and Spark Plasma Sintering.
Materials on the base of Silica can serve as a matrix for the immobilization of radioactive Iodine I-129 (half-life T1/2 = 15.7 × 103 years).
2. Oxides Fluorite, XO2 [76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93], Figure 2.
ZrO2, UO2, ThO2, HfO2, PuO2, α-U2O3 and Np2O3 have the simple fluorite cubic structure, sp. gr. Fm3m. Fluorite has physical properties that allow it to be used for a wide variety of chemical, metallurgical and ceramic processes. The waste ceramics with high zirconia and alumina contents, and Y2O3-stabilized zirconia with fluorite structure, are the main host phases for actinide, rare earth elements, as well as Cs, Sr in high-level radioactive waste (HLW). Ceramics were made by HIP, HUP, press and sinter, melting and crystallization and by Spark Plasma Sintering with high relative density (up to 97–99%).

4.2. Complex Oxides

Many compounds with A2B2O7 stoichiometry adopt the pyrochlore structure. A derivative of the fluorite structure type, A2B2O7, where the A-site contains large cations (Na, Ca, U, Th, Y and lanthanides) and the B-site contains smaller, higher valence cations (Nb, Ta, Ti, Zr and Fe3+). Structure: Cubic, Sp. gr. F d 3 ¯ m, z = 8. Ceramics were prepared by cold pressing and sintering.
Murataite is a derivative of the isometric fluorite structure A6B12C5TX40-x, with multiple units of the fluorite unit cell; hosts U, Np, Pu, Am, Cm and REE, including Gd, a neutron absorber. It forms in solid solution with pyrochlore. Structure: Cubic, Sp. gr. F 4 3 ¯ m, z = 4. Ceramics were prepared by cold pressing and sintering.
Monoclinic CaZrTi2O7, has a fluorite-derived structure closely related to pyrochlore, where Gd, Hf, Ce, Th, U, Pu and Nb may be accommodated on the Ca/Zr-sites, as in the case of Ca(Zr,Pu)Ti2O7. Structure: Trigon., Pr. gr. C2/c. Ceramics were prepared by cold pressing and sintering.
6. Perovskite [110,134,140,151,152,153,154,155,156,157,158,159], Figure 6.
CaTiO3 has a wide range of compositions as stable solid-solutions; orthorhombic; consists of a 3-dimensional network of corner-sharing TiO6 octahedra, with Ca occupying the large void spaces between the octahedra (the corner-sharing octahedra are located on the eight corners of a slightly distorted cube). Plutonium, other actinides and rare-earth elements can occupy the Ca site in the structure, as in (Ca,Pu)TiO3. The octahedra can also tilt to accommodate larger cations in the Ca site. Structure: Cubic, sp. gr. Pm3m; rombohedral, Sp. gr. Pnma; may include: Ca, Y, REE, Ti, Zr, U and Pu. Ceramics were prepared by cold pressing and sintering, and by hot pressing enabling densities up to 90–98% of theoretical.
7. Hollandite [160,161,162,163,164,165,166,167,168,169], Figure 7.
Ba1.2(Al,Ti)8O16 tunnels between TiO6 octahedra to accommodate 133Ba, 137Cs and 90Sr. Structure: Tetragon, Sp. gr. I4/m, Z = 4 and monocl., Sp. gr. I2/m, z = 1; may include: Na, K, Cs, Mg, Ca, Ba, Al, Fe, Mn3+, Si, Ti and Mn4+. Ceramics were prepared by cold pressing and sintering.
(1)
[8]A3[6]B2[TiO4]3, e.g., [8](Ca,Gd, actinides)[6]Fe2[4]Fe3O12.
(2)
A3B2(XO4)3; distorted cubic structure; BO6 octahedra and XO4 tetrahedra establish a framework structure alternately sharing corners; A and B sites can host actinides, REs, Y, Mg, Ca, Fe2+, Mn2+ and X = Cr3+, Fe3+, Al3+, Ga3+, Si4+, Ge4+ and V5+. Structure: Cubic, Sp. gr. Ia3d, z = 8. Ceramics were prepared by cold pressing and sintering and using Spark Plasma Sintering with high relative density up to 98–99% of theoretical.
9. Crichtonite [131,195,196,197,198,199,200,201,202], Figure 9.
(Sr,Pb,La,Ce,Y)(Ti,Fe3+,Mn,Mg,Zn,Cr,Al,Zr,Hf,U,V,Nb,Sn,Cu,Ni)21O38. Sr, La, Ce, Y positions are indicated by the solid circles. Other cations are in the octahedral positions. Structure: Rombohedral, Sp. gr. R3. Ceramics were prepared by hot pressing.
10. Freudenbergite [153,155,203,204], Figure 10.
Na2Al2(Ti,Fe)6O16 a spinel-based phase suitable for incorporating Al-rich wastes from Al fuel cladding/decladding. The A site can accommodate Na and K while the different octahedral sites can accommodate Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si and Nb. Structure: Monocl., Sp. gr. C12/m1. Ceramics were prepared by cold pressing and sintering, ρ = 90%.
11. P-Pollucite [205,206,207,208,209,210,211,212,213,214,215], Figure 11.
The ability of the pollucite structure to include large 1-, 2- and 3-valent cations allows flexibility to select the desired model composition. When replacing the cations it will be becomes possible to use cheap components; the introduction of small cations increases the concentration of cesium in the composition of the mono-phase product. Structure: Cubic, sp. gr. I4132, z = 16; may include: Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V, Nb and Ta. Compounds are hydrolytically and radiation-wise stable. Ceramics were prepared by cold pressing and sintering and Spark Plasma Sintering with high relative density (at last those up to 98–99%).
12. Magnetoplumbites (aluminates) [13,55,216,217,218,219,220,221,222,223,224], Figure 12.
Nominally X(Al,Fe)12O19, where X = Sr, Ba, (Cs0.5 + La0.5) and (Na0.5 + La0.5). The X site is XII-fold coordinated and both Cs+/Ba2+-Fe3+/Fe2+ or Cs+/Ba2+-Ti4+/Ti3+ type substitutions can occur. Accommodating structures because they are composed of spinel blocks with both IV-fold and VI-fold coordinated sites for multivalent cations, and interspinel layers which have unusual V-fold sites for small cations. The interspinel layers also accommodate large cations of 1.15–1.84 Å, replacing oxygen in XII-fold sites in the anion close packed structure. The large ions may be monovalent, divalent, or trivalent with balancing charge substitutions either in the interspinel layer (Na0.5 + La0.5) or between the interspinel layer and the spinel blocks (Cs+/Ba2+–Fe3+/Fe2+ or Cs+/Ba2+–Ti4+/Ti3+). Structure: Hexagon., Sp. gr. P63/mmc, z = 2; may include: Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu, actinides, Si, Ti and Sn. Ceramics were prepared by cold pressing and sintering and by hot pressing.
13. Zircon/Thorite/Coffinite [83,110,140,225,226,227,228,229,230,231,232,233,234,235], Figure 13.
ZrSiO4/ThSiO4/USiO4; zircon is an extremely durable mineral that is commonly used for U/Pb age-dating, as high uranium concentrations (up to 20,000 ppm) may be present; the PuSiO4 end member is known, and Ce, Hf and Gd have been found to substitute for Zr. Structure: Tetragon. Sp. gr. I41/amd, z = 4; may include: REE, Th, U, Pu; Na, Mg, Ca, Mn, Co, Fe, Ti, P, V, Se and Mo. Ceramics were prepared by hot pressing, ρ = 99.1% and by Spark Plasma Sintering, ρ = 99%
14. Titanite (sphene) [104,110,236,237,238], Figure 14.
CaTiSiO5 [CaTiO(SiO4)]. Structure: Monocl. Sp. gr. P2I/a, Z = 4; may include: Mg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y, Zr, Th and F. Ceramics are known as a matrix for actinide immobilization, and were prepared by cold pressing and sintering.
15. Britholite (silicate apatite; also known as oxy-apatite in the literature) [3,46,51,239,240,241,242,243,244,245,246,247,248,249], Figure 15.
(REE,Ca)5(SiO4,PO4)3(OH,F); i.e., Ca2Nd8(SiO4)6O2, Ca2La8(SiO4)6O2; based on ionic radii of Nd3+, La3+ and Pu3+, an extensive range of solubility for Pu3+ substitution for the Nd or La, particularly on the 6h site, is expected. Since there is an extensive range in the Ca/RE ratio in these silicate apatites, a fair amount of Pu4+ substitution may be possible; La3+ through Lu3+ can substitute for Ca2+ and form oxyapatites, RE4.670.33[SiO4]3O; can also accommodate Cs, Sr, B, Th, U and Np. Structure: Monocl., Sp. gr. P21 and hexagon. Sp. gr. P63/m. Ceramics were prepared by cold pressing and sintering, ρ = 95%.

4.3. Framework Silicates

(Xx/n[(AlO2)x(SiO2)y] where X is the charge balancing counter-ion, n is the charge of the counter-ion, x is the number of charge-deficient alumina sites, and y is the number of charge-neutral silica sites. Zeolites are characterized by internal voids, channels, pores, and/or cavities of well-defined size in the nanometer range, ≈4–13 Å. The channels and/or cavities may be occupied by charge compensating ions and water molecules. Zeolites like Ag-Mordenite selectively sorbs I2 (129I); certain zeolites can be converted to condensed oxide ceramics by heating. This process is particularly attractive for waste-form synthesis because contaminants capture and immobilization is performed with minimal steps. Structure of Zeolite-A showing alternate Al and Si atom ordering but omitting the tetrahedral oxygens around each Al and Si may include Na, K, NH4+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE and Ti. 45 natural zeolites and 100 artificial ones are known. Ceramics were prepared by hot pressing.
(Ca,Na)2Al2Si4O12·2H2O; host for fission products such as 137Cs. Structure: Cubic, Sp. gr. Ia3d, z = 16; may include: Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V and Nb. Ceramics were prepared by Spark Plasma Sintering with high relative density (up to 96%).
18. Nepheline/Leucite [37,58,61,73,155,294,295,296,297], Figure 18.
NaAlSiO4 silica “stuffed derivative” ring type structure; some polymorphs have large nine-fold cation cage sites, while others have 12-fold cage-like voids that can hold large cations (Cs, K, Ca). Natural nepheline structure accommodates Fe, Ti and Mg. Two-dimensional representation of the structure of nepheline showing the smaller 8 oxygen sites that are occupied by Na and the larger 9 oxygen sites that are occupied by K and larger ions, such as Cs and Ca. Structure may include: Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn, Co, Ni, Al, Fe, Cr, Si, Ti and V. Structure: Hexagon. Sp. gr. P63, z = 2. Leucite. Structure: Tetragon. Sp. gr. I41/a and I41/acd; cubic, Sp. gr. Ia3d, z = 16.
19. Sodalite Group (name of mineral changes with anions sequestered in cage structure) [37,264,295,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313], Figure 19.
(1)
Sodalite Na8Cl2Al6Si6O24, also written as (Na,K)6[Al6Si6O24]·(2NaCl) to demonstrate that 2Cl and associated Na atoms are in a cage structure defined by the aluminosilicate tetrahedra of six adjoining NaAlSiO4, is a naturally occurring feldspathoid mineral. It incorporates alkali, alkaline earths, rare earth elements, halide fission products and trace quantities of U and Pu. Sodalite was and it is being investigated as a durable host for the waste generated from electro-refining operations deployed for the reprocessing of metal fuel. Supercalcines which are high temperature, silicate-based “natural mineral” assemblages proposed for HLW waste stabilization in the United States in 1973–1985, contained sodalites as minor phases retaining Cs, Sr and Mo, e.g., Na6[Al6Si6O24](NaMoO4)2. Sodalite structures are known to retain B, Ge, I, Br and Re in the cage-like structures. Structure of Sodalite showing (a) two-dimensional projection of the (b) three-dimensional structure and (c) the four fold ionic coordination of the Na site to the Cl-ion and three framework oxygen bonds. Structure: Cubic, Sp. gr. P 4 ¯ 3 n , z = 1; may include: Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 and CO3. Ceramics were prepared by cold pressing and sintering; by HIP.
(2)
Nosean, (Na,K)6[Al6Si6O24](Na2SO4)), silica “stuffed derivative” sodalite cage type structure host mineral for sulfate or sulfide species.
(3)
Hauyne, (Na)6[Al6Si6O24]((Ca,Na)SO4)1-2 sodalite family; can accommodate either Na2SO4 or CaSO4.
(4)
Helvite (Mn4[Be3Si3O12]S: Be (beryllium) can be substituted in place of Al and S2 in the cage structure along with Fe, Mn and Zn.
(5)
Danalite (Fe4[Be3Si3O12]S).
(6)
Genthelvite (Zn4[Be3Si3O12]S).
(7)
Lazurite, (Ca,Na)6[Al6Si6O24]((Ca,Na)S,SO4,Cl)x; can accommodate either SO4 or S2, Ca or Na and Cl.
20. Cancrinite [37,314,315,316,317,318,319], Figure 20.
Cancrinite is a complex carbonate and silicate of sodium, calcium and aluminum with the formula (Na,Ca,K)6[Al6Si6O24](( Na,Ca,K)2CO3)1.6·2.1H2O. It is classed as a member of the feldspathoid group of minerals. Cancrinite is unusual in that it is one of the few silicate minerals to have a carbonate ion (CO32−) present in its structure. Mineral cancrinite will also contain some percentages of sulfate ions (SO42−) and a chlorine ion (Cl). Structure: Hexagonal, Sp. gr. P63.
21. Crystalline SilicoTitanate (CST) [73,110,273,274,275,277,320,321,322,323,324], Figure 21.
[(Ca,N2a,K,Ba)AlSiO4 incorporates Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb and Ta. Crystal structure of Cs exchanged Nb–titanium silicate. Structure: Cubic, sp. gr. Pm3m up to 105 °C, after tetragon. Sp. gr. I4/mcm or P42/mcm. Ceramics were prepared by hot isostatic pressing.
22. Micas (Dehydroxylated) [37,325,326,327,328,329,330], Figure 22.
The following dehydroxylated micas have been synthesized phase pure: LiAl3Si3O11, NaAl3Si3O11, KAl3Si3O11, RbAl3Si3O11, CsAl3Si3O11, TlAl3Si3O11, Ca0.50.5Al3Si3O11, Sr0.50.5Al3Si3O11, Ba0.50.5Al3Si3O11 and La0.330.66Al3Si3O11. In the Cs mica up to 30 wt% Cs2O can be accommodated, in the Rb-mica up to 22 wt% Rb2O can be accommodated, and in the Ba-mica up to 19 wt% BaO can be accommodated. Mg, Fe2+, Fe3+, Mn, Li, Cr, Ti and V can substitute for VI-fold coordinated Al3+. Structure: Monoclinic. Sp. gr. C2/c.

4.4. Phosphates

CePO4 or LaPO4 are corrosion-resistant materials and can incorporate a large range of radionuclides including actinides and toxic metals into its structure. Monazite was proposed as a potential host phase for excess weapons plutonium and radionuclides, and toxic metals in glass ceramic waste-forms for low-level and hazardous wastes. Monazite structure (monazite mineral CePO4) has wide capacity isomorphous through which the cerium and phosphorus can be substituted for other elements, e.g.,: Ce → Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Am, Cm, Cf, Es, Ge, Zr, Th, Np, U and Pu; P → Cr, Si, Se, V, As and S. Alternating chains of PO4 tetrahedra and REO9 polyhedra. Structure: Monoclinic. Sp. gr. P21/n. Ceramics were prepared by cold pressing and sintering (ρ = 90–95%), hot pressing (ρ = 97%) and Spark Plasma Sintering with high relative density (up to 98–99%).
24. Xenotime [231,334,344,360,361,362,363], Figure 24.
YPO4. Structure: Tetragonal. Sp.gr. I41/amd, z = 4, C.N.Y-On, n = 8. Isomorph including: Be, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th and U. Ceramics were prepared by cold pressing and sintering.
Ca4-xRE6+x(SiO4)6-y(PO4)y(O,F)2 can be actinide-host phases in HLW glass, glass-ceramic waste-forms, ceramic waste-forms and cements. The actinides can readily substitute in apatite for rare-earth elements as in Ca2(Nd,Cm,Pu)8(SiO4)6O2, and fission products are also readily incorporated. However, the solubility for tetravalent Pu may be limited without other charge compensating substitutions.
Apatite has been proposed as a potential host phase for Pu and high-level actinide wastes. Structure: Hexagonal, Sp. gr. P63/m or monoclinic, Sp. gr. P21/b; may include: Na, K, Cs, Mg, Ca, Sr, Ba, Mn, Ni, Cd, Hg, Pb, Cr, Y, REE, Th, U, Si, P, V, As, S, F, Cl, OH and CO3. Ceramics were prepared by cold pressing and sintering, ρ = 95%; by HIP.
The first studies of materials with such a structure were carried out by the authors [379,380,381,382,383] in 1976–1987. They substantiated the crystal-chemical approach when choosing the composition of substances and their structural modifications with ion-transforming properties (Li+, Na+, etc.): NASICON, Langbeinite. Such materials have a frame structure: Na1 + xZr2SixP3-xO12, Na3M2 (PO4)3 (M = Sc, Cr, Fe), Na5Zr(PO4)3, LixFe2(WO4)3, LixFe2(MoO4)3. Elements in oxidation states 3–6 were introduced into the frame positions: Sc, Cr, Fe, Si, Zr, P, W and Mo. It was also the first time in 1987 that the rationale for the use of such structural analogs for the consolidation of HLW and transmutation of minoractinides [384] was presented. The development of such materials—Structural analogues of NASICON, NZP, Langbeinite—and their research, was continued in subsequent years.
NaZr2(PO4)3. The NZP structure can incorporate a complex variety of cations, including plutonium; a three dimensional network of corner-sharing ZrO6 octahedra and PO4 tetrahedra in which plutonium can substitute for Zr, as in Na(Zr,Pu)2(PO4)3. Complete substitution of Pu4+ for Zr has been demonstrated in NZP. Cs and Sr can substitute for Na, while fission products and actinides substitute for Zr in octahedral positions. P is tetrahedral. Phosphates with the mineral kosnarite structure (NaZr2(PO4)3 type, NZP) form a wide family. They can contain various cations in the oxidation state from 1+ to 5+. The structure consists of several positions and so many various cations can occupy it. These are MI = Li, Na, K, Rb, Cs; H, Cu(I) and Ag; MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn, Cd and Hg; MIII = Al, Ga, In, Sc, Y, La, Ce-Lu, Am, Cm, V, Cr, Fe, Sb and Bi; MIV = Ge, Sn, Ti, Zr, Hf, Mo, Ce, Th, U, Np and Pu; MV = Sb, Nb and Ta. Structure: Rhombohedral, Sp. gr. R 3 ¯ c , R3c, R3. This fact is extremely important, and can be useful for the synthesis of single-phase crystalline products of the solidification of radioactive waste whose cationic composition, as a rule, is extremely complicated. Ceramics were prepared by cold pressing and sintering (ρ = 80–98%), hot pressing (ρ = 96%) and Spark Plasma Sintering with high relative density (up to 98–99.9%).
27. Langbeinite [18,87,89,211,293,416,417,418,419,420], Figure 27.
Langbeinite is a potassium magnesium sulfate mineral with the formula: K2Mg2(SO4)3. It may include much of cesium and other large 1- and 2-valent elements. The structure is a framework type, also as for its kosnarite structure. Structure: Cubic, Sp. gr. P213; may include: Na, K, Rb, Cs, Tl, NH4, Mg, Sr, Ba, Pb, Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga, V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P, Nb, Ta and S. Ceramics were prepared by cold pressing and sintering, ρ = 88%.
28. Whitlockite [87,89,421,422,423,424,425,426,427,428,429,430,431,432], Figure 28.
Phosphates with the whitlockite structure (analog β-Ca3(PO4)2) were proposed as matrices for radioactive waste immobilization. Their origin is both biogenic and cosmogenic. Whitlockite samples from meteorites, rocks of the Moon, Mars and other cosmogenic bodies, preserve the crystalline form under the action of natural thermal “stress” and cosmic radiation. They contain small amounts of uranium and thorium, and it is presumed to contain plutonium. It is known to form isostructural compounds with H, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th and Pu. Thermal stability is up to 1200 °C, thermal expansion up to 1 × 10−5 deg−1 (25–1000 °C) are close to Synroc and zirconolite; hydrothermal stable – leach rates at 90 °C up to 10−5 g·sm−2·day−1, radiation stable. Structure: Trigonal, Sp. gr. R3c. Ceramics were prepared by cold pressing and sintering (ρ = 92–97%) and Spark Plasma Sintering with high relative density (up to 95–98%).
29. Thorium phosphate/Diphosphate (TPD) [155,244,336,337,433,434,435,436,437,438,439], Figure 29.
Th4(PO4)4P2O7; a unique compound for the immobilization of plutonium and uranium; partial substitution of Pu for Th has been demonstrated to up to 0.4 mole fraction, complete substitution is not possible. Structure: Orthorhombic, Sp. gr. Pbcm, Pcam, z = 2; may include: U, Np, Pu, Am and Cm. Ceramics were prepared by cold pressing and sintering (ρ = 87–93%).

4.5. Tungstate, Molybdates

Materials with the structure of the scheelite mineral (calcium tungstate CaWO4) based on individual molybdates and tungstates and solid solutions may contain elements in oxidation degrees from 1+ to 7+: Li, Na, K, Rb, Cs and Tl; Ca, Sr, Ba, Mn and Cu; Fe, Ce, La–Lu and Y; Th, U, Np and Pu; Nb, Ta-in Ca-positions and Mo, W, Re, I, V and Ge in W-positions. The structural analog CaWO4 crystallizes in the tetragonal structure, Sp. gr. I4/c. The structure is constructed of CaO8 polyhedral and WO4 tetrahedrals connected through common oxygen vertices. For some compounds ceramics were prepared by the Spark Plasma Sintering (SPS) method, with a relative density of 92%.

5. Summary of Crystalline Ceramic Waste-forms

Crystalline materials including oxides-simple and complex, salts-silicates, phosphates, tungstates with various compositions and different structural modifications (30 structure forms) intended for nuclear waste immobilization were developed using various approaches and accounting for criteria of enough high durability (see e.g., [15,238,458,459,460]) requested for nuclear wasteforms. These are presented in Table 1.
Many of the compounds listed here have been studied and continue to be actively investigated by researchers led by the co-author of this work (Prof Orlova), including those with structures of garnet [185,189,190,191,192,193,194], P-pollucite [205,206,207,208,209,210,211,212,213,214,215], pollucite [214,215,293], monazite [141,352], sodium zirconium phosphate (NZP) [21,209,383,384,388,392,393,394,396,405,407,408,409,412,413,414,415,416,417,418,419], langbeinite [416,417,418,419], whitlockite [87,89,424,425,426,427,428,429,430] and scheelite [89,445,446]. Overall crystalline ceramics are characterized as much more durable compared with glasses of the same chemical composition e.g., the chemical durability of isomorph glasses is one to two orders of magnitude lower [458,459,460]. Nevertheless, the degree of the development of crystalline ceramics remains at the level of laboratory investigations rather than industrial use, except for SYNROC polyphase crystalline ceramic that is at the stage of the planned start of utilization by industry. Practically all structural forms developed (Table 1) are at the stage of obtaining compounds and their studies at the laboratory scale. The references [15,458,459,460] are also providing data on the acceptability of ionic size variability within the structure, and on chemical and radiation durability.
From the analysis of the presented data of various compounds with various compositions and structural forms it is clear that researchers in the field of materials for nuclear waste immobilization have many variants available for work. While materials are mineral-like the principle ”from nature to nature” can be realized. Although many structures were included herewith, some could be missed, for example brannerite [15,99], which is currently considered for actinide immobilization [461]. Among most investigated structures one can note oxide ceramics. Some of crystalline ceramics such as monazite were synthesized using real (radioactive) actinides [15,235], whereas most of researchers use surrogate (non-radioactive) cations for investigations.

6. Conclusions

  • Ceramic waste-forms for nuclear waste immobilization are investigated in different countries with a focus on improving environmental safety during storage, transport and disposal.
  • Inorganic compounds of oxide and salt character, having structural analogs with natural minerals, are being studied as most perspective materials for the immobilization of radioactive waste.
  • Approaches based on crystallochemistry principles are used when choosing the most favorable structural forms. They are based on the materials science concept “composition-structure-method of synthesis-property” accounting for the real task to be achieved. The basic principle is the isomorphism of cations and anions in compounds when choosing a real structure. Possible isomorphic substitutions in both cationic and anionic structural sites were considered in the works analyzed.
  • Crystalline ceramic waste-forms are intended to increase the environmental safety barrier when isolating radioactive materials (containing both actinides and fission products) from the biosphere. Among the methods of obtaining ceramic waste-forms, special attention in recent years is paid to sintering methods which ensure the formation of ceramics that, first, are almost non-porous e.g., have a relative density of up to 99.0–99.9% of theoretical, and, second, can be obtained within a small processing time e.g., within a few minutes (i.e., 2–3 min). These requirements are met by high-speed electric pulse sintering processes e.g., so-called Spark Plasma Sintering (SPS), although hot pressing enables the synthesis of very dense ceramics as well.
Professor Albina Orlova is working in the field of new inorganic materials used in nuclear chemistry for the rad-waste immobilization of dangerous isotopes, for actinide transmutation, as well for construction materials. She uses the structure properties and physico-chemical principles for the elaboration of new ceramics with mineral-like crystal forms.
Professor Michael Ojovan is known for the connectivity-percolation theory of glass transition, the Sheffield model (two-exponential equation) of viscosity of glasses and melts, condensed Rydberg matter, metallic and glass-composite materials for nuclear waste immobilization, and self-sinking capsules to investigate Earth’s deep interior.

Author Contributions

A.I.O. conceived the study, both A.I.O. and M.I.O. equally contributed to final paper preparation.

Funding

This research was funded by Russian Science Foundation grant number RSF-16-13-10464 (Scientific Supervisor A.I. Orlova).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hatch, L.P. Ultimate Disposal of Radioactive Wastes. Am. Sci. 1953, 41, 410–421. [Google Scholar]
  2. McCarthy, G.J. Quartz-Matrix Isolation of Radioactive Wastes. J. Mater. Sci. 1973, 8, 1358–1359. [Google Scholar] [CrossRef]
  3. McCarthy, G.J.; Davidson, M.T. Ceramic Nuclear Waste Forms: I. Crystal Chemistry and Phase Formation. Bull. Am. Ceram. Soc. 1975, 54, 782–786. [Google Scholar]
  4. Roy, R. Rationale Molecular Engineering of Ceramic Materials. J. Am. Ceram. Soc. 1977, 60, 350–363. [Google Scholar] [CrossRef]
  5. Jantzen, C.M.; Lee, W.E.; Ojovan, M.I. Radioactive waste (RAW) conditioning, immobilization, and encapsulation processes and technologies: overview and advances. In Radioactive Waste Management and Contaminated Site Clean-Up. Processes, Technologies and International Experience; Lee, W.E., Ojovan, M.I., Jantzen, C.M., Eds.; Woodhead Published Limited: Oxford, UK; Cambridge, UK; Philadelphia, PA, USA; New Delhi, India, 2013; Chapter 6; pp. 171–272. [Google Scholar] [Green Version]
  6. Schoebel, R.O. Stabilization of High Level Waste in Ceramic Form. Bull. Am. Ceram. Soc. 1975, 54, 459. [Google Scholar]
  7. Ringwood, A.E.; Oversby, V.M.; Kesson, S.E. SYNROC: Leaching Peformance and Process Technology. In Proceedings of the Seminar on Chemistry and Process Engineering for High Level Liquid Waste Solidification, Jülichw, Germany, 1–5 June 1981; pp. 495–506. [Google Scholar]
  8. Ringwood, A.E. Safe Disposal of High Level Nuclear Reactor Wastes: A New Strategy; Australian Nuclear University Press: Canberra, Australia, 1978; pp. 1–64. [Google Scholar]
  9. Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.O.; Major, A. The SYNROC Process: A Geochemical Approach to Nuclear Waste Immobilization. Geochem. J. 1979, 13, 141–165. [Google Scholar] [CrossRef]
  10. Vance, E.R.; Moricca, S.A.; Stewart, M.W.A. Progress at ANSTO on a synroc plant for intermediate-level waste from reactor production of 99Mo. Adv. Sci. Technol. 2014, 94, 111–114. [Google Scholar] [CrossRef]
  11. McCarthy, G.J.; Pepin, J.G.; Pfoertsch, D.E.; Clarke, D.R. Crystal Chemistry of the Synthetic Minerals in Current Supercalcine-Ceramics; U.S. DOE Report CONF-790420; Battelle Pacific Northwest Labs.: Richland, WA, USA, 1979; pp. 315–320. [Google Scholar]
  12. Lutze, W.; Ewing, R.C. Radioactive Waste Forms for the Future; North-Holland Publishers: Amsterdam, The Netherlands, 1988; p. 778. [Google Scholar]
  13. Jantzen, C.M.; Flintoff, J.; Morgan, P.E.D.; Harker, A.B.; Clarke, D.R. Ceramic Nuclear Waste Forms. In Proceedings of the Seminar on Chemistry and Process Engineering for High-Level Liquid Waste Solidification, Jülichw, Germany, 1–5 June 1981; Volume 2, pp. 693–706. [Google Scholar]
  14. Raison, P.E.; Haire, R.G.; Sato, T.; Ogawa, T. Fundamental and Technological Aspects of Actinide Oxide Pyrochlores: Relevance for Immobilization Matrices; MRS Online Proceedings Library Archive: Warrendale, PA, USA, 1999; p. 556. [Google Scholar]
  15. Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilization; Imperial College Press: London, UK, 2010. [Google Scholar]
  16. Dacheux, N.; Clavier, N.; Podor, R. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability. Am. Miner. 2013, 98, 833–847. [Google Scholar] [CrossRef]
  17. Clavier, N.; Podor, R.; Dacheux, N. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
  18. Orlova, A.I.; Lizin, A.A.; Tomilin, S.V.; Lukinykh, A.N. On the Possibility of Realization of Monazite and Langbeinite Structural Types in Complex Americium and Plutonium Phosphates. Synthesis and X-ray Diffraction Studies. Radiochemistry 2011, 53, 63–68. [Google Scholar] [CrossRef]
  19. Alamo, J.; Roy, R. Revision of Crystalline Phases in the System ZrO2-P2O5. Commun. Am. Ceram. Soc. 1984, 67, C80–C82. [Google Scholar] [CrossRef]
  20. Hawkins, H.T.; Spearing, D.R.; Veirs, D.K.; Danis, J.A.; Smith, D.M.; Tait, C.D.; Runde, W.H. Synthesis and Characterization of Uranium(IV)-Bearing Members of the [NZP] Structural Family. Chem. Mater. 1999, 11, 2851–2857. [Google Scholar] [CrossRef]
  21. Orlova, A.I. Isomorphism in Crystalline Phosphates of the NaZr2(PO4)3 structural type and Radiochemical Problems. Radiochemistry 2002, 44, 423–445. [Google Scholar] [CrossRef]
  22. Volkov, Y.F.; Tomlin, S.V.; Orlova, A.I.; Lizin, A.A.; Spirjakov, V.I.; Lukinikh, A.N. Actinide Phosphates AIM2IV(PO4)3 (MIV = U, Np, Pu; AI = Na, K, Rb) with rombohedral structure. Radiochemistry 2003, 46, 319–328. [Google Scholar] [CrossRef]
  23. Gregg, D.J.; Karatchevtseva, I.; Triani, G.; Lumpkin, G.R.; Vance, E.R. The thermophysical properties of calcium and barium zirconium phosphate. J. Nucl. Mater. 2013, 441, 203–210. [Google Scholar] [CrossRef]
  24. Gregg, D.J.; Karatchevtseva, I.; Thorogood, G.J.; Davis, J.; Bell, B.; Jackson, M.; Dayal, P.; Ionescu, M.; Triani, G.; Short, K.; et al. Ion Beam Irradiation Effects in Strontium Zirconium Phosphate with NZP-structure type. J. Nucl. Mater. 2014, 446, 224–231. [Google Scholar] [CrossRef]
  25. Orlova, A.I.; Koryttseva, A.K.; Loginova, E.E. A Family of Phosphates of Langbeinite Structure. Crystal-Chemical Aspect of Radioactive Waste Immobilization. Radiochemistry 2011, 53, 51–62. [Google Scholar] [CrossRef]
  26. Orlova, A.I. Chemistry and structural chemistry of anhydrous tri- and tetravalent actinide orthophosphates. In Structural Chemistry of Inorganic Actinide Compounds; Chapter 8; Krivovichev, S.V., Burns, P.C., Tananaev, I.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 315–340. [Google Scholar]
  27. Huittinen, N.; Scheinost, A.C.; Ji, Y.; Kowalski, P.M.; Arinicheva, Y.; Wilden, A.; Neumeier, S.; Stumpf, T. A spectroscopic and computational study of Cm3+ incorporation in lanthanide phosphate rhabdophane (LnPO4·0.67H2O) and monazite (LnPO4). Inorg. Chem. 2018, 57, 6252–6265. [Google Scholar] [CrossRef]
  28. Clarke, D.R. Preferential Dissolution of an Intergranular Amorphous Phase in a Nuclear Waste Ceramic. J. Am. Ceram. Soc. 1981, 64, 89–90. [Google Scholar] [CrossRef]
  29. Cooper, J.A.; Cousens, D.R.; Hanna, J.A.; Lewis, R.A.; Myhra, S.; Segall, R.L.; Smart, R.S.C.; Turner, P.S.; White, T.J. Intergranular Films and Pore Surfaces in Synroc C: Structure, Composition, and Dissolution characteristics. J. Am. Ceram. Soc. 1986, 69, 347–352. [Google Scholar] [CrossRef]
  30. Buykx, W.J.; Hawkins, K.; Levins, D.M.; Mitamura, H.; Smart, R.S.C.; Stevens, G.T.; Watson, K.G.; Weedon, D.; White, T.J. Titanate Ceramics for the Immobilization of SodiumBearing High-Level Nuclear Waste. J. Am. Ceram. Soc. 1988, 71, 768–788. [Google Scholar] [CrossRef]
  31. Dickson, F.J.; Mitamura, H.; White, T.J. Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization. J. Am. Ceram. Soc. 1989, 72, 1055–1059. [Google Scholar] [CrossRef]
  32. Buykx, W.J.; Levins, D.M.; Smart, R.S.C.; Smith, K.L.; Stevens, G.T.; Watson, K.G.; Weedon, D.; White, T.J. Interdependence of Phase Chemistry, Microstructure, and Oxygen Fugacity in Titanate Nuclear Waste Ceramics. J. Am. Ceram. Soc. 1990, 73, 1201–1207. [Google Scholar] [CrossRef]
  33. Buykx, W.J.; Levins, D.M.; St Smart, R.C.; Smith, K.L.; Stevens, G.T.; Watson, K.G.; White, T.J. Processing Impurities as Phase Assemblage Modifiers in Titanate Nuclear Waste Ceramics. J. Am. Ceram. Soc. 1990, 73, 217–225. [Google Scholar] [CrossRef]
  34. Mitamura, H.; Matsumoto, S.; Hart, K.P.; Miyazaki, T.; Vance, E.R.; Tamura, Y.; Togashi, Y.; White, T.J. Aging Effects on Curium-Dopped Titantate Ceramics Containing Sodium-Bearing High-Level Nuclear Waste. J. Am. Ceram. Soc. 1992, 75, 392–400. [Google Scholar] [CrossRef]
  35. Zhang, Z.; Carter, M.L. An X-Ray Photoelectron Spectroscopy Investigation of Highly Soluble Grain-Boundary Impurity Films in Hollandite. J. Am. Ceram. Soc. 2010, 93, 894–899. [Google Scholar] [CrossRef]
  36. Harker, A.B.; Clarke, D.R.; Jantzen, C.M.; Morgan, P.E.D. The Effect of Interfacial Material on Tailored Ceramic Nuclear Waste Form Dissolution, Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems; Pask, J., Evans, A., Eds.; Plenum Press: New York, NY, USA, 1981; Volume 14, pp. 207–216. [Google Scholar]
  37. Roy, R. Hydroxylated Ceramic Waste Forms and the Absurdity of Leach Tests. In Proceedings of the International Seminar on Chemistry and Process Engineering for High-Level Liquid Waste Solidification, Julich, India, 1–5 June 1981; pp. 576–602. [Google Scholar]
  38. Mason, J.B.; Oliver, T.W.; Carson, M.P.; Hill, G.M. Studsvik Processing Facility Pyrolysis/Steam Reforming Technology for Volume and Weight Reduction and Stabilization of LLRW and Mixed Wastes; American Institute of Chemical Engineers: New York, NY, USA, 1999. [Google Scholar]
  39. Mason, J.B.; McKibbin, J.; Ryan, K.; Schmoker, D. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes; THOR Treatment Technologies, LLC.: Richland, WA, USA, 2003. [Google Scholar]
  40. Jantzen, C.M.; Lorier, T.H.; Marra, J.C.; Pareizs, J.M. Durability Testing of Fluidized Bed Steam Reforming (FBSR) Waste Forms WM06 Paper № 6373; WWM Symposia: Phoenix, AZ, USA, 2006. [Google Scholar]
  41. Jantzen, C.M.; Lorier, T.H.; Pareizs, J.M.; Marra, J.C. Fluidized Bed Steam Reformed (FBSR) Mineral Waste Forms: Characterization and Durability Testing; MRS Online Proceedings Library Archive: Warrendale, PA, USA, 2007; pp. 379–386. [Google Scholar]
  42. Jantzen, C.M. Mineralization of Radioactive Wastes By Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing; U.S. DOE Report WSRC-STI-2008-00268; Westinghouse Savannah River Company, Savannah River Site: Aiken, SC, USA, 2008. [Google Scholar]
  43. Jantzen, C.M.; Crawford, C.L.; Burket, P.B.; Daniel, W.G.; Cozzi, A.D.; Bannochie, C.J. Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) as a Supplementary Treatment for Hanford’s Low Activity Waste (LAW) and Secondary Wastes (SW); Waste Management WM11, Paper № 11593; WM Symposia: Phoenix, AZ, USA, 2011. [Google Scholar]
  44. Jantzen, C.M.; Crawford, C.L.; Burket, P.R.; Bannochie, C.J.; Daniel, W.G.; Nash, C.A.; Cozzi, A.D.; Herman, C.C. Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) with Actual Hanford Low Activity Wastes: Verifying FBSR as a Supplemental Treatment; WM12 Paper № 12317; WM Symposia: Phoenix, AZ, USA, 2012. [Google Scholar]
  45. Jantzen, C.M.; Glasser, F.P. Crystallochemical Stabilization of Radwaste Elements in Portland Cement Clinker. In Proceedings of the International Symposium on Ceramics in Nuclear Waste Management; CONF-790420, Cincinnati, OH, USA, 30 April–2 May 1979; pp. 342–348. [Google Scholar]
  46. Jantzen, C.M.; Glasser, F.P. Stabilization of Nuclear Waste Constituents in Portland Cement. Am. Ceram. Soc. Bull. 1979, 58, 459–466. [Google Scholar]
  47. Bragg, L.; Claringbull, G.F.; Taylor, W.H. Crystal Structures of Minerals; G. Bell & Sons: London, UK, 1965; p. 409. [Google Scholar]
  48. Shannon, R.D.; Prewitt, C.T. Effective Ionic Radii in Oxides and Fluorides. Acta Cryst. 1969, B25, 925–946. [Google Scholar] [CrossRef]
  49. Shannon, R.D.; Prewitt, C.T. Revised Values of Effective Ionic Radii. Acta Cryst. 1970, B26, 1046–1048. [Google Scholar] [CrossRef]
  50. Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
  51. Felsche, J. Rare Earth Silicates with the Apatite Structure. J. Solid State Chem. 1972, 5, 266–275. [Google Scholar] [CrossRef]
  52. Jantzen, C.M.; Glasser, F.P.; Lachowsli, E.E. Radioactive Waste-Portland Cement Systems: I. Radionuclide Distribution. J. Am. Ceram. Soc. 1984, 67, 668–673. [Google Scholar] [CrossRef]
  53. Jantzen, C.M.; Glasser, F.P.; Lachowsli, E.E. Radioactive Waste-Portland Cement Systems: II. Leaching Characteristics. J. Am. Ceram. Soc. 1984, 67, 674–678. [Google Scholar] [CrossRef]
  54. Ringwood, A.E.; Kesson, S.E. Immobilization of High-Level Wastes in Synroc Titanate Ceramic. In Proceedings of the International Symposium on Ceramics in Nuclear WaMc Management, CONF-790420, Cincinnati, OH, USA, 30 April–2 May 1979; pp. 174–178. [Google Scholar]
  55. Cooper, J.A.; Cousens, D.R.; Lewis, R.A.; Myhra, S.; Segall, R.L.; Smart, R.S.C.; Turner, P.S.; White, T.J. Microstructural Characterization of Synroc C and E by Electron Microscopy. J. Am. Ceram. Soc. 1985, 68, 64–70. [Google Scholar] [CrossRef]
  56. Aubin, V.; Caurant, D.; Gourier, D.; Baffier, N.; Advocat, F.; Bart, F.; Leturcq, G.; Costantini, J.M. Synthesis, Characterization and Study of the Radiation Effects on Hollandite Ceramics Developed for Cesium Immobilization. Mater. Res. Soc. Symp. Proc. 2004, 807, 315–320. [Google Scholar] [CrossRef]
  57. Hart, K.P.; Vance, E.R.; Day, R.A.; Begg, B.D.; Angel, P.J. Immobilization of Separated Tc and Cs/Sr in SYNROC. Mater. Res. Soc. Symp. Proc. 1996, 412, 281–287. [Google Scholar] [CrossRef]
  58. Buerger, M.J.; Klein, G.E.; Hamburger, G.E. Structure of Nepheline. Geol. Soc. Am. Bull. 1946, 57, 1182–1183. [Google Scholar]
  59. Buerger, M.J.; Klein, G.E.; Hamburger, G.E. The structure of nepheline. Am. Mineral. 1947, 32, 197. [Google Scholar]
  60. Simmons, W.B.; Peacor, D.R. Refinement of the crystal structure of a volcanic nepheline. Am. Mineral. 1972, 57, 1711–1719. [Google Scholar]
  61. Rossi, G.; Oberti, R.; Smith, D.C. The crystal structure of a K-poor Ca-rich silicate with the nepheline framework, and crystal-chemical relationships in the compositional space (K,Na,Ca,_)8(Al,Si)16O32. Eur. J. Mineral. 1989, 1, 59–70. [Google Scholar] [CrossRef]
  62. Tait, K.T.; Sokolova, E.V.; Hawthorne, F.C.; Khomyakov, A.P. The crystal chemistry of nepheline. Can. Mineral. 2003, 41, 61–70. [Google Scholar] [CrossRef]
  63. Hassan, I.; Antao, S.M.; Hersi, A.A.M. Single-crystal XRD, TEM, and thermal studies of the satellite reflections in nepheline. Can. Mineral. 2003, 41, 759–783. [Google Scholar] [CrossRef]
  64. Gatta, G.D.; Angel, R.J. Elastic behavior and pressure-induced structural evolution of nepheline: Implications for the nature of the modulated superstructure. Am. Mineral. 2007, 92, 1446–1455. [Google Scholar] [CrossRef]
  65. Angel, R.J.; Gatta, G.C.; Ballaran, T.B.; Carpenter, M.A. The mechanism of coupling in the modulated structure of nepheline. Can. Mineral. 2008, 46, 1465–1476. [Google Scholar] [CrossRef]
  66. Antao, S.M.; Nepheline, H.I. Structure of three samples from the Bancroft area, Ontario,obtained using synchrotron high-resolution powder x-ray diffraction. Can. Mineral. 2010, 48, 69–80. [Google Scholar] [CrossRef]
  67. Chapman, K.W.; Chupas, P.J.; Nenoff, T.M. Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation. J. Am. Chem. Soc. 2010, 132, 8897–8899. [Google Scholar] [CrossRef]
  68. Matyas, J.; Fryxell, G.; Busche, B.; Wallace, K.; Fifield, L. Functionalised silica aerogels: Advanced materials to capture and immobilise radioactive iodine. In Ceramic Engineering and Science Proceedings; American Ceramic Society, Inc.: Columbus, OH, USA, 2011; pp. 23–32. [Google Scholar]
  69. Riley, B.J.; Chun, J.; Ryan, J.V.; Matyáš, J.; Li, X.S.; Matson, D.W.; Sundaram, S.K.; Strachan, D.M.; Vienna, J.D. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Adv. 2011, 1, 1704–1715. [Google Scholar] [CrossRef]
  70. Yang, J.H.; Cho, Y.-J.; Shin, J.M.; Yim, M.-S. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. J. Nucl. Mater. 2015, 465, 556–564. [Google Scholar] [CrossRef]
  71. Subrahmanyam, K.S.; Sarma, D.; Malliakas, C.D.; Polychronopoulou, K.; Riley, B.J.; Pierce, D.A.; Chun, J.; Kanatzidis, M.G. Chalcogenide Aerogels as Sorbents for Radioactive Iodine. Chem. Mater. 2015, 27, 2619–2626. [Google Scholar] [CrossRef]
  72. Matyas, J.; Canfield, N.; Silaiman, S.; Zumhoff, M. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams. J. Nucl. Mater. 2016, 476, 255–261. [Google Scholar] [CrossRef] [Green Version]
  73. Vienna, J.D.; Kroll, J.O.; Hrma, P.R.; Lang, J.B.; Crum, J.V. Submixture Model to Predict Nepheline Precipitation in Waste Glasses. Int. J. Appl. Glass Sci. 2017, 8, 143–157. [Google Scholar] [CrossRef]
  74. Asmussen, R.M.; Matyáš, J.; Qafoku, N.P.; Kruger, A.A. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. J. Hazard. Mater. 2018. [Google Scholar] [CrossRef]
  75. Asmussen, R.M.; Ryan, J.V.; Matyas, J.; Crum, J.V.; Reiser, J.T.; Avalos, N.; McElroy, E.M.; Lawter, A.R.; Canfield, N.C. Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials 2019, 12, 686. [Google Scholar] [CrossRef]
  76. Burghatz, M.; Matzke, H.; Leger, C.; Vambenepe, G.; Rome, M. Inert Matrices for the Transmuation of Actinides; Fabrication, Thermal Properties and Radiation Stability of Ceramic Materials. J. Nucl. Mater. 1998, 271, 544–548. [Google Scholar]
  77. Sickafus, K.E.; Hanrahan, R.J.; McClellan, K.J.; Mitchell, J.N.; Wetteland, C.J.; Butt, D.P.; Chodak, P.; Ramsey, K.B.; Blair, T.H.; Chidester, K.; et al. Burn and Bury Option for Plutonium. Bull. Am. Ceram. Soc. 1999, 78, 69–74. [Google Scholar]
  78. Gong, W.L.; Lutze, W.; Ewing, R.C. Zirconia Ceramics for Excess Weapons Plutonium Waste. J. Nucl. Mater. 2000, 277, 239–249. [Google Scholar] [CrossRef]
  79. Zacate, M.O.; Minervini, L.; Bradfield, D.J.; Grimes, R.W.; Sickafus, K.E. Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ion. 2000, 128, 243–254. [Google Scholar] [CrossRef]
  80. Sickafus, K.E.; Minervini, L.; Grimes, R.W.; Valdez, J.A.; Ishimaru, M.; Li, F.; McClellan, K.J.; Hartmann, T. Radiation tolerance of complex oxides. Science 2000, 259, 748–751. [Google Scholar] [CrossRef]
  81. Burakov, B.; Anderson, E.; Yagovkina, M.; Zamoryanskaya, M.; Nikolaeva, E. Behavior of 238Pu-Doped Ceramics Based on Cubic Zirconia and Pyrochlore under Radiation Damage. J. Nucl. Sci. A Technol. 2002, 3, 733–736. [Google Scholar] [CrossRef]
  82. Poinssot, C.; Ferry, C.; Kelm, M.; Grambow, B.; Martinez-Esparza, A.; Johnson, L.; Andriambololona, Z.; Bruno, J.; Cachoir, C.; Cavedon, J.M.; et al. Final Report of the European Project: Spent Fuel Stability under Repository Conditions; 2005; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/038/37038431.pdf?r=1&r=1 (accessed on 19 August 2019).
  83. Rendtorff, N.M.; Grasso, S.; Hu, C.; Suarez, G.; Aglietti, E.F.; Sakka, Y. Zircon–zirconia (ZrSiO4–ZrO2) dense ceramic composites by spark plasma sintering. J. Eur. Ceram. Soc. 2012, 32, 787–793. [Google Scholar] [CrossRef]
  84. Truphémus, T.; Belin, R.C.; Richaud, J.-C.; Reynaud, M.; Martinez, M.-A.; Félines, I.; Arredondo, A.; Miard, A.; Dubois, T.; Adenot, F.; et al. Structural studies of the phase separation in the UO2–PuO2–Pu2O3 ternary system. J. Nucl. Mater. Vol. 2013, 432, 378–387. [Google Scholar] [CrossRef]
  85. Burakov, B.E.; Yagovkina, M.A. A study of accelerated radiation damage effects in PuO2 and gadolinia- stabilized cubic zirconia, Zr0.79Gd0.14Pu0.07O1.93, doped with 238Pu. J. Nucl. Mater. 2015, 467, 534–536. [Google Scholar] [CrossRef]
  86. Diaz-Guillen, J.A.; Dura, O.J.; Diaz-Guillen, M.R.; Bauer, E.; Lopez de la Torre, M.A.; Fuentes, A.F. Thermophysical properties of Gd2Zr2O7powders prepared by mechanical milling: Effect of homovalent Gd3+ substitution. J. Alloys Compd. 2015, 649, 1145–1150. [Google Scholar] [CrossRef]
  87. Orlova, A.I.; Chuvildeev, V.N. Chemistry, Crystal Chemistry and SPS technology for elaboration of perspective materials for nuclear wastes and minor actinides consolidation. J. Nucl. Energy Sci. Rower Gener. Technol. 2017, 6, 36. [Google Scholar]
  88. Zhang, L.; Shelyug, A.; Navrotsky, A. Thermochemistry of UO2-ThO2 and UO2-ZrO2 Fluorite Solid Solutions. J. Chem. Thermodyn. 2017, 114, 48–54. [Google Scholar] [CrossRef]
  89. Orlova, A.I.; Chuvildeev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Potanina, E.A.; Mikhailov, D.A.; Golovkina, L.S.; Malanina, N.A.; Tokarev, M. Next Generation Ceramic Materials for Consolidation of radioactive alpha-wastes using the Innovative Technology Spark Plasma Sintering for their preparation. In Proceedings of the 3rd World Congress on Materials Science & Engineering, Barcelona, Spain, 24–26 August 2017. [Google Scholar]
  90. Zubekhina, B.Y.; Burakov, B.E. Plutonium leaching from polycrystalline and monocrystalline PuO2. Radiochim. Acta 2018, 106, 119–123. [Google Scholar] [CrossRef]
  91. Shelyug, A.; Palomares, R.I.; Lang, M.; Navrotsky, A. Energetics of defect production in fluorite-structured CeO2 induced by highly ionizing radiation. Phys. Rev. Mater. 2018, 2, 093607. [Google Scholar] [CrossRef]
  92. Zhang, L.; Dzik, E.; Sigmon, G.; Szymanowski, J.; Navrotsky, A.; Burns, P. Experimental Thermochemistry of Neptunium Oxides: Np2O5 and NpO2. J. Nucl. Mater. 2018, 501, 398–404. [Google Scholar] [CrossRef]
  93. Yavo, N.; Sharma, G.; Kimmel, G.; Lubomirsky, I.; Navrotsky, A.; Yeheskel, O. Energetics of Bulk Lutetium Doped Ce1-xLuxO2-x/2 Compounds. J. Am. Ceram. Soc. 2018, 101, 3520–3526. [Google Scholar] [CrossRef]
  94. Chakoumakos, B.C. Systematics of the Pyrochlore Structure Type. Ideal A2B2X6Y. J. Solid State Chem. 1984, 53, 120–129. [Google Scholar] [CrossRef]
  95. Chakoumakos, B.C.; Ewing, R.C. Crystal Chemical Constraints on the Formation of Actinide Pyrochlores. In Materials Research Society Symposium Proceedings. In Scientific Basis for Nuclear Waste Management; Jantzen, C.M., Stone, J.A., Ewing, R.C., Eds.; Materials Research Society: Pittsburgh, PA, USA, 1985; pp. 641–646. [Google Scholar]
  96. Castro, A.; Rasines, I.; Turrillas, X.M. Synthesis, X-ray diffraction study, and ionic conductivity of new AB2O6 pyrochlores. J. Solid State Chem. 1989, 80, 227–234. [Google Scholar] [CrossRef]
  97. Sobolev, I.A.; Stefanovsky, S.V.; Omelianenko, B.I.; Ioudintsev, S.V.; Vance, E.R.; Jostsons, A. Comparative Study of Synroc-C Ceramics Produced by Hotpressing and Inductive Melting. Mater. Res. Soc. Symp. Proc. 1997, 465, 371–378. [Google Scholar] [CrossRef]
  98. Yudintsev, S.V.; Yudintseva, T.S. Nonstoichiometry of pyrochlore Ca(U,Pu)Ti2O7 and problem of brannerite (U,Pu)Ti2O6 in ceramic for actinide immobilization. In Proceedings of the 8th International Conference on Radioactive Waste Management and Environmental Remediation, Bruges, Belgium, 30 September–4 October 2001; ASME: New York, NY, USA, 2011; Volume 2, pp. 547–552. [Google Scholar]
  99. Kar, T.; Choudhary, R.N.P. Structural, dielectric and electrical conducting properties of CsBʹBʺO6 (Bʹ = Nb, Ta; Bʺ = W, Mo) ceramics. Mater. Sci. Eng. 2002, B90, 224–233. [Google Scholar] [CrossRef]
  100. Ewing, R.C.; Weber, W.J.; Lian, J. Pyrochlore (A2B2O7): A Nuclear Waste Form for the Immobilization of Plutonium and “Minor” Actinides, (Focus Review). J. Appl. Phys. 2004, 95, 5949–5971. [Google Scholar] [CrossRef]
  101. Whittle, K.R.; Lumpkin, G.R.; Ashbrook, S.E. Neutron diffraction and MAS NMR of Cesium Tungstate defect pyrochlores. J. Solid State Chem. 2006, 179, 512–521. [Google Scholar] [CrossRef]
  102. Thorogood, G.J.; Saines, P.J.; Kennedy, B.J.; Withers, R.L.; Elcombe, M.M. Diffuse scattering in the cesium pyrochlore CsTi0.5W1.5O6. Mater. Res. Bull. 2008, 43, 787–795. [Google Scholar] [CrossRef]
  103. Fukuda, K.; Akatsuka, K.; Ebina, Y.; Ma, R.; Takada, K.; Nakai, I.; Sasaki, T. Exfoliated Nanosheet Crystallite of Cesium Tungstate with 2D Pyrochlore. Structure: Synthesis, Characterization, and Photochromic Properties. ACS Nano 2008, 2, 1689–1695. [Google Scholar] [CrossRef]
  104. Lukinykh, A.N.; Tomilin, S.V.; Lizin, A.A.; Yudintsev, S.V. Radiation and Chemical durability of Actinide Crystalline Matrices, In Book of Abstracts. In Proceedings of the III International Pyroprocessing Research Conference, Dimitrovgrad, Russia, 29 November–3 December 2010; Volume 42. [Google Scholar]
  105. Laverov, N.P.; Yudintsev, S.V.; Livshits, T.S.; Stefanovsky, S.V.; Lukinykh, A.N.; Ewing, R.C. Synthetic Minerals with the Pyrochlore and Garnet Structures for Immobilization of Actinide-Containing Wastes. Geochem. Int. 2010, 48, 1–14. [Google Scholar] [CrossRef]
  106. Laverov, N.P.; Urusov, V.S.; Krivovichev, S.V.; Pakhomova, A.S.; Stefanovsky, S.V.; Yudintsev, S.V. Modular Nature of the Polysomatic Pyrochlore-Murataite Series. Geol. Ore Depos. 2011, 53, 273–294. [Google Scholar] [CrossRef]
  107. Hartmann, T.; Alaniz, A.; Poineau, F.; Weck, P.F.; Valdes, J.A.; Tang, M.; Jarvinen, G.D.; Czerwinski, K.R.; Sickafus, K.E. Structure studies on lanthanide technetium pyrochlores as prospective host phases to immobilize 99 technetium and fission lanthanides from effuents of reprocessed used nuclear fuels. J. Nucl. Mater. 2011, 411, 60–71. [Google Scholar] [CrossRef]
  108. Krivovichev, S.V.; Urusov, V.S.; Yudintsev, S.V.; Stefanovsky, S.V.; Karimova, O.V.; Organova, N.N. Crystal Structure of Murataite Mu-5, a Member of the Murataite-Pyrochlore Polysomatic Series. In Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2012; pp. 293–304. [Google Scholar]
  109. Gregg, D.J.; Zhang, Y.; Middleburgh, S.C.; Conradson, S.D.; Lumpkin, G.R.; Triani, G.; Vance, E.R. The incorporation of plutonium in lanthanum zirconate pyrochlores. J. Nucl. Mater. 2013, 443, 444–451. [Google Scholar] [CrossRef]
  110. Nash, K.L.; Lumetta, G.J.; Vienna, J.D. Irradiated nuclear Fuel management: resource versus waste. In Radioactive Waste Management and Contaminated Siite Clean-up. Processes, Technologies and International Experience; Lee, W.E., Ojovan, M.I., Jansen, M.C., Eds.; Woodhead Publishing Limited: Oxford, UK; Cambridge, UK; Philadelphia, PA, USA; New Delhi, India, 2013; Chapter 5; pp. 145–170. [Google Scholar]
  111. Yudintsev, S.V.; Stefanovsky, S.V.; Nikonov, B.S. A Pyrochlore based matrix for isolation of the REE-actinide fraction of wastes from spent nuclear fuel reprocessing. Dokl. Earth Sci. 2014, 454, 54–58. [Google Scholar] [CrossRef]
  112. Jafar, M.; Sengupta, P.; Achary, S.N.; Tuagi, A.K. Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)Sm2Ti2O7 (pyroclore) system. J. Eur. Ceram. Soc. 2014, 34, 4373–4381. [Google Scholar] [CrossRef]
  113. Jafar, M.; Sengupta, P.; Achary, S.N.; Tuagi, A.K. Phase Evolution and Microstructural Studies in CaZrTi2O7 —Nd2Ti2O7 System. J. Am. Ceram. Soc. 2014, 97, 609–616. [Google Scholar] [CrossRef]
  114. Hollmann, D.; Merka, O.; Schwertmann, L.; Marschall, R.; Wark, M.; Brückner, A. Active Sites for Light Driven Proton Reduction in Y2Ti2O7 and CsTaWO6 Pyrochlore Catalysts Detected by In Situ EPR. Top. Catal. 2015, 58, 769–775. [Google Scholar] [CrossRef]
  115. Kim, J.; Shih, P.-C.; Tsao, K.-C.; Pan, Y.-T.; Yin, X.; Sun, C.-J.; Yang, H. High-Performance Pyrochlore-Type Yttrium Ruthenate. Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. J. Am. Chem. Soc. 2017, 139, 12076–12083. [Google Scholar] [CrossRef]
  116. McMaster, S.A.; Ram, R.; Faris, N.; Pownceby, M.I. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix-A review. J Hazard Mater. 2018, 360, 257–269. [Google Scholar] [CrossRef]
  117. Kim, J.; Shih, P.-C.; Qin, Y.; Al-Bardan, Z.; Sun, C.-J.; Yang, H. A Porous Pyrochlore Y2[Ru1.6Y0.4]O7- δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angew. Chem. Int. Ed. 2018, 57, 13877–13881. [Google Scholar] [CrossRef]
  118. Morgan, P.E.D.; Ryerson, F.J. A new “Cubic” Crystal Compound. J. Mater. Sci. Lett. 1982, 1, 351–352. [Google Scholar] [CrossRef]
  119. Sobolev, I.A.; Stefanovsky, S.V.; Ioudintsev, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Mokhov, A.V. Study of Melted Synroc Doped with Simulated High-level Waste. Mater. Res. Soc. Symp. Proc. 1997, 465, 363–370. [Google Scholar] [CrossRef]
  120. Stefanovsky, S.V.; Yudintsev, S.V.; Nikonov, B.S.; Mokhov, A.V.; Perevalov, S.A.; Stefanovsky, O.I.; Ptashkin, A.G. Phase Compositions and Leach Resistance of Actinide-Bearing Murataite Ceramics. Mater. Res. Soc. Symp. Proc. 2006, 893, 0893-JJ05-23. [Google Scholar] [CrossRef]
  121. Lian, I.; Yudintsev, S.V.; Stefanovsky, S.V.; Kirjanova, O.I.; Ewing, R.C. Ion Induced Amorphization of Murataite. Mater. Res. Soc. Symp. Proc. 2002, 713, 455–460. [Google Scholar] [CrossRef]
  122. Urusov, V.S.; Organova, N.I.; Karimova, O.V.; Yudintsev, S.V.; Stefanovsky, S.V. Synthetic “Murataits” as Modular Members of Pyrochlore-Murataite Polysomatic Series. Dokl. Earth Sci. 2005, 401, 319–325. [Google Scholar]
  123. Stefanovsky, S.V.; Yudintsev, S.V.; Nikonov, B.S.; Stefanovsky, O.I. Rare Earth-Bearing Murataite Ceramics. Mater. Res. Soc. Symp. Proc. 2007, 985, 175–180. [Google Scholar] [CrossRef]
  124. Stefanovsky, S.V.; Ptashkin, A.G.; Knyazev, O.A.; Dimitriev, S.A.; Yudintsev, S.V.; Nikonov, B.S. Inductive Cold Crucible Melting of Actinide-bearning Murataite-based Ceramics. J. Alloys Compd. 2007, 444, 438–442. [Google Scholar] [CrossRef]
  125. Stefanovsky, S.V.; Yudintsev, S.V.; Perevalov, S.A.; Startseva, I.V.; Varlakova, G.A. Leach Resistance of Murataite-based Ceramics Containing Actinides. J. Alloys Compd. 2007, 444, 618–620. [Google Scholar] [CrossRef]
  126. Stefanovsky, S.V.; Ptashkin, A.G.; Knyazev, O.A.; Zen’kovskaja, M.S.; Stefanovsky, O.I.; Yudintsev, S.V.; Nikonov, B.S.; Lapina, M.I. Melted Murataite Ceramics Containing Simulated Actinide/Rere Earth Fraction of High Level Waste. In Proceedings of the WM2008 Conference, Phoenix, AZ, USA, 24–28 February 2008. [Google Scholar]
  127. Krivovichev, S.V.; Yudintsev, S.V.; Stefanovsky, S.V.; Organova, N.I.; Karimova, O.V.; Urusov, V.S. Murataite–Pyrochlore Series: A Family of Complex Oxides with Nanoscale Pyrochlore Clusters. Angew. Chem. Int. Ed. 2010, 49, 9982–9984. [Google Scholar] [CrossRef]
  128. Laverov, N.P.; Yudintsev, S.V.; Stefanovskii, S.V.; Omel’yanenko, B.I.; Nikonov, B.S. Murataite Matrices for Actinide Wastes. Radiochemistry 2011, 53, 229–243. [Google Scholar] [CrossRef]
  129. Pakhomova, A.S.; Krivovichev, S.V.; Yudintsev, S.V.; Stefanovsky, S.V. Synthetic Murataite-3c, a complex form for long-term immobilization of nuclear waste: crystal structure and its comparison with natural analogue. Z. Kristallogr 2013, 228, 151–156. [Google Scholar] [CrossRef]
  130. Poglyad, S.S.; Pryzhevskaya, E.A.; Lizin, A.A.; Tomilin, S.V.; Murasova, O.V. On possibility of the murataite fusion temperature lowering for radioactive waste immobilization. J. Phys. Conf. Ser. 2018, 1133, 012019. [Google Scholar] [CrossRef]
  131. Lizin, A.A.; Tomilin, S.V.; Poglyad, S.S.; Pryzhevskaya, E.A.; Yudintsev, S.V.; Stefanovsky, S.V. Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel. J. Radioanal. Nucl. Chem. 2018, 318, 2363–2372. [Google Scholar] [CrossRef]
  132. Clinard, F., Jr.; Hobbs, L.W.; Land, C.C.; Peterson, D.E.; Rohr, D.L.; Roof, R.B. Alpha Decay Self-irradiation Damage in 238Pu-substituted Zirconolite. J. Nucl. Mater. 1982, 105, 248–256. [Google Scholar]
  133. Clinard, F., Jr.; Peterson, D.E.; Rohr, D.L.; Hobbs, L.W. Self-irradiation Effects in 238Pu-substituted Zirconolite: I. Temperature Dependence of Damage. J. Nucl. Mater. 1984, 126, 245–254. [Google Scholar]
  134. Boult, K.A.; Dalton, J.T.; Evans, J.P.; Hall, A.R.; Inns, A.J.; Marples, J.A.C.; Paige, E.L. The Preparation of fully-active Synroc and its radiation stability–Final Report October 1988; UKAEA: Harwell, UK, 1988.
  135. Vance, E.R.; Ball, C.J.; Day, R.A.; Smith, K.L.; Blackford, M.G.; Begg, B.D.; Angel, P.J. Actinide and Rare Earth Incorporation in Zirconolite. J. Alloys Compd. 1994, 213–214, 406–409. [Google Scholar] [CrossRef]
  136. Vance, E.R.; Angel, P.J.; Begg, B.D.; Day, R.A. Zirconolite-Rich Titanate Ceramics for High-Level Actinide Wastes. In Scientific Basis for Nuclear Waste Management XVII; van Konynenburg, R., Barkatt, A.A., Eds.; Materials Research Society: Pittsburgh, PA, USA, 1994; pp. 293–298. [Google Scholar]
  137. Zhang, Y.; Stewart, M.W.A.; Li, H.; Carter, M.L.; Vance, E.R.; Moricca, S. Zirconolite-rich Titanate Ceramics for Immobilization of Actinides–Waste form/HIP Can Interactions and Chemical Durability. J. Nucl. Mater. 2009, 395, 69–74. [Google Scholar] [CrossRef]
  138. Whittle, K.R.; Hyatt, N.C.; Smith, K.L.; Margiolaki, I.; Berry, F.J.; Knight, K.E.; Lumpkin, G.R. Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. Am. Mineral. 2012, 97, 291–298. [Google Scholar] [CrossRef]
  139. Bohre, A.; Avasthi, K.; Shrivastava, O.P. Synthesis, Characterization, and Crystal Structure Refinement of Lanthanum and Yttrium Substituted Polycrystalline 2M Type Zirconolite Phases: Ca1-xMexZrTi2O7 (Me = Y, La and x = 0.2). J. Powder Technol. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
  140. Lumpkin, G.R.; Gao, Y.; Giere, R.; Williams, C.T.; Mariano, A.N.; Geisler, T. The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineral. Mag. 2014, 78, 1071–1095. [Google Scholar] [CrossRef] [Green Version]
  141. Deschanels, K.; Seydonx-Guillaume, A.M.; Morgin, V.; Mesbah, A.; Tribet, M.; Moloney, M.P.; Serruys, Y.; Peuget, S. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study. J. Nucl. Mater. 2014, 448, 184–194. [Google Scholar] [CrossRef]
  142. Zhang, K.; Wen, G.; Zhang, H.; Teng, Y. Self-propagating high-temperature synthesis of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability. J. Eur. Cream. Soc. 2015, 35, 3085–3093. [Google Scholar] [CrossRef]
  143. Zhang, K.; Wen, G.; Jia, Z.; Teng, Y.; Zhang, H. Self-Propagating High-Temperature Synthesis of Zirconolite Using CuO and MoO3 as the Oxidants. Int. J. Appl. Ceram. Technol. 2015, 12, E111–E120. [Google Scholar] [CrossRef]
  144. Wen, G.; Zhang, K.; Yin, D.; Zhang, H. Solid-state reaction synthesis and aqueous durability of Ce-doped zirconolite-rich ceramics. J. Nucl. Mater. 2015, 466, 113–119. [Google Scholar] [CrossRef]
  145. Popa, K.; Cologna, M.; Martel, L.; Staicu, D.; Cambriani, A.; Ernstberger, M.; Raison, P.E.; Somers, J. CaTh(PO4)2 cheralite as a candidate ceramic nuclear waste form: Spark plasma sintering and physicochemical characterization. J. Eur. Ceram. 2016, 36, 4115–4121. [Google Scholar] [CrossRef]
  146. Wen, J.; Sun, C.; Dholabhai, P.P.; Xia, Y.; Tang, M.; Chen, D.; Yang, D.Y.; Li, Y.H.; Uberuaga, B.P.; Wang, Y.Q. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A2Ti2O7 (A = Gd, Ho and Lu). Acta Mater. 2016, 110, 175–184. [Google Scholar] [CrossRef]
  147. Clark, B.M.; Sundaram, S.K.; Misture, S.T. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi2O7). Sci. Rep. 2017, 7, 5920. [Google Scholar] [CrossRef]
  148. Sun, S.K.; Stennett, M.C.; Corkhill, C.L. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition. J. Nucl. Mater. 2018, 500, 11–14. [Google Scholar] [CrossRef]
  149. McCaughherty, S.; Crosvenor, A.P. Low-temperature synthesis of CaZrTi2O7 zirconolite-type materialss using ceramic, coprecipitation, and soil-gel methods. J. Mater. Chem. C 2019, 7, 177–187. [Google Scholar] [CrossRef]
  150. Zhang, K.; Yin, D.; Xu, K.; Zhang, H. Self-Propagating Synthesis and Characterization Studies of Gd-Bearing Hf-Zirconolite Ceramic Waste Forms. Materials 2019, 12, 178. [Google Scholar] [CrossRef]
  151. Boult, A.; Dalton, J.T.; Evans, J.P.; Hall, A.R.; Inn, A.J.; Marples, J.A.C.; Paige, E.L. The Preparation of Fully-active Synroc and its Radiation Stability. Rep. Aere-R. 1987, 13, 318. [Google Scholar]
  152. Vance, E.R.; Carter, M.L.; Zhang, Z.; Finnie, K.S.; Thomson, S.J.; Begg, B.D. Uranium valences in perovskite, CaTiO3. In Environmental Issues and Waste Management Technologies in the Ceramic & Nuclear Industries IX; The American Ceramic Society: Westeville, OH, USA, 2004; Volume 155, pp. 3–10. [Google Scholar]
  153. Bozadjiev, L.; Georgiev, G.; Parashkevov, D. Synthesis of perovskites and perovskite based technical stones. In National Conference “GEOSCIENSES 2006”; Bulgarian Geophysical Society: Sofia, Bulgaria, 2006; pp. 127–129. [Google Scholar]
  154. Bowles, J.F.W.; Howie, R.A.; Vaughan, D.J.; Zussman, J. Rock-Forming Minerals, V5A: Non-Silicates: Oxides, Hydroxides and Sulphides; The Geological Society: London, UK, 2011; p. 920. [Google Scholar]
  155. Stewart, M.W.A.; Vance, E.R.; Moricca, S.A.; Brew, D.R.; Cheung, C.; Eddowes, T.; Bermudez, W. Immobilisation of Higher Activity Wastes from Nuclear Reactor Production of 99Mo. Sci. Technol. Nucl. Install. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
  156. Ghosh, B.; Dutta, A.; Shannigrahi, S.; Sinha, T.P. Combined XPS and first principles study of double-perovskite Ca2GdTaO6. J. Mater. Sci. 2014, 49, 819–826. [Google Scholar] [CrossRef]
  157. Bohre, A.; Avasthi, K.; Shrivastava, O.P. Structure Refinement of Polycrystalline Orthorombic Calcium Titanate Substituted by Lanthanum: Ca1-xLnxTiO3 (x = 0.1–0.4). Crystallogr. Rep. 2014, 59, 944–948. [Google Scholar] [CrossRef]
  158. Livshits, T.S.; Zhang, J.; Yudintsev, S.V.; Stefanovsky, S.V. New titanate matrices for immobilization of REE-actinide high level waste. J. Radioanal. Nucl. Chem. 2014, 304, 47–52. [Google Scholar] [CrossRef]
  159. Mahadik, P.S.; Sengupta, P.; Halder, R.; Abraham, G.; Dey, G.K. Perovskite-Ni composite: A potential route for management of radioactive metallic waste. J. Hazard. Mater. 2015, 287, 207–216. [Google Scholar] [CrossRef]
  160. Carter, M.L.; Vance, E.R.; Mitchell, D.R.G.; Hanna, J.V.; Zhang, Z.; Loi, E. Fabrication, Characterization, and Leach Testing of Hollandite, (Ba,Cs)(Al,Ti)2Ti6O16. J. Mater. Res. 2002, 17, 2578–2589. [Google Scholar] [CrossRef]
  161. Carter, M.L.; Vance, E.R.; Li, H. Hollandite-rich Ceramic Melts for the Immobilization of Cs. Mater. Res. Soc. Proc. 2004, 807, 249–254. [Google Scholar] [CrossRef]
  162. Whittle, K.R.; Ashbrook, S.; Redfem, S.; Lumpkin, G.R. Structural Studies of Hollandite-Based Radioactive Waste Forms Structural Studies of Hollandite-Based Radioactive Waste Forms. Mater. Res. Soc. Symp. Proc. 2004, 87, 1–7. [Google Scholar]
  163. Nishiyama, N.; Rapp, R.P.; Irifune, T.; Sanehira, T.; Yamazaki, D.; Funakoshi, K. Stability and P-V-T equation of state KAlSi3O8-hollandite determined by in situ X-Ray observations and implications for dynamics of subducted continental crust material. Phys. Chem. Miner. 2005, 32, 627–637. [Google Scholar] [CrossRef]
  164. Addelouas, A.; Utsunomiya, S.; Suzuki, T.; Grambow, B.; Advocat, T.; Bart, F.; Ewing, R.C. Effect of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77Ti5.90O16. Am. Mineral. 2008, 93, 241–247. [Google Scholar] [CrossRef]
  165. Shluk, L.; Niewa, R. Crystal Structure and Magnetic Properties of the Novel Hollandite Ba1.3Co1.3Ti6.7O16. Z. Naturforsch. 2011, 66b, 1097–1100. [Google Scholar] [CrossRef]
  166. Shabalin, B.; Titov, Y.; Zlobenko, B.; Bugera, S. Ferric Titanous Hollandite Analogues – Matrices for Immobilization of Cs-Containing Radioactive Waste: Synthesis. Mineral. J. 2013, 35, 12–18. [Google Scholar]
  167. Chen, T.-Y.; Maddrell, E.R.; Hyatt, N.C.; Hriljac, J.A. A potential wasteform for Cs immobilization: synthesis, structure determination, and aqueous durability of Cs2TiNb6O18. Inorg. Chem. 2016, 55, 12686–12695. [Google Scholar] [CrossRef] [PubMed]
  168. Zhao, M.; Xu, Y.; Shuller-Nickles, L.; Amoroso, J.; Frenkel, A.I.; Li, Y.; Gong, W.; Lilova, K.; Navrotsky, A.; Brinkman, K.S. Compositional control of radionuclide retention in hollandite-based ceramic waste forms for Cs immobilization. J. Am. Ceram. Soc. 2018, 102, 4314–4324. [Google Scholar] [CrossRef]
  169. Grote, R.; Zhao, M.; Shuller-Nickles, L.; Amoroso, J.; Gong, W.; Lilova, K.; Navrotsky, A.; Tang, M.; Brinkman, K.S. Compositional control of tunnel features in hollandite-based ceramics: Structure and stability of (Ba,Cs)1.33(Zn,Ti)8O16. J. Mater. Sci. 2018, 54, 1112–1125. [Google Scholar] [CrossRef]
  170. Geller, S.; Miller, C.E. Silicate garnet yttrium-iron garnet solid solution. Am. Mineral. 1959, 44, 1115–1120. [Google Scholar]
  171. Ito, J.; Frondel, C. Synthesis zirconium and titanium garnets. Am. Mineral. 1967, 52, 773–781. [Google Scholar]
  172. Rickwood, P.C. On recasting analyses of garnet into end-member molecules. Contrib. Mineral. Petrol. 1968, 18, 175–198. [Google Scholar] [CrossRef]
  173. Novak, G.A.; Gibbs, G.V. The crystal chemistry of the silicate garnets. Am. Mineral. 1971, 56, 791–825. [Google Scholar]
  174. Dowty, E. Crystal chemistry of titanian and zirconian garnet: I. Review and spectral studies. Am. Mineral. 1971, 56, 1983–2009. [Google Scholar]
  175. Kanke, Y.; Navrotsky, A. A calorimetric study of the lanthanide aluminum oxides and the lantha-nide gallium oxides: Stability of the perovskites and the garnets. J. Solid State Chem. 1998, 141, 424–436. [Google Scholar] [CrossRef]
  176. Burakov, B.E.; Anderson, E.B.; Zamoryanskaya, M.V.; Petrova, M.A. Synthesis and Study of 239Pu-Doped Gadolinium-Aluminum Garnet. In Material Research Society Symposium Proceedings Scientific Basis for Nuclear Waste Management XXIII; Materials Research Society: Warendalle, PA, USA, 2000; Volume 608, pp. 419–422. [Google Scholar]
  177. Yudintsev, S.V. Incorporation of U, Th, Zr, and Gd into the Garnet-structured Host. In Proceedings of the 8th International Conference on Radioactive Waste Management and Environmental Remediation, The American Society of Mechanical Engineers, Bruges, Belgium, 30 September–4 October 2001. [Google Scholar]
  178. Yudintsev, S.V.; Lapina, M.I.; Ptashkin, A.G. Accommodation of uranium into the garnet structure. MRS Symp. Proc. 2002, 713, 477–480. [Google Scholar] [CrossRef]
  179. Utsunomiya, S.; Wang, L.M.; Yudintsev, S.; Ewing, R.C. Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 2002, 303, 177–187. [Google Scholar] [CrossRef]
  180. Yudintsev, S.V. A Structural-chemical Approach to Selecting Crystalline Matrices for Actinide Immobilization. Geol. Ore Depos. 2003, 45, 151–165. [Google Scholar]
  181. Utsunomiya, S.; Yudintsev, S.V.; Ewing, R.C. Radiation effects in ferrate garnet. J. Nucl. Mater. 2005, 336, 251–260. [Google Scholar] [CrossRef]
  182. Maslakov, K.I.; Teterin, U.A.; Vukchevich, L.; Udintseva, T.C.; Udintsev, S.V.; Ivanov, K.E.; Lapina, M.I. Issledovanie obraztsov keramiki (Ca2.5Th0.5)Zr2Fe3O12, (Ca1.5GdTh0.5)(ZrFe)Fe3O12 i (Ca2.5Ce0.5)Zr2Fe3O12 so strukturoi granata. Radiohimiya 2007, 49, 31–37. [Google Scholar]
  183. Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R. Transparent Yttrium Aluminium Garnet Obtained by Spark Plasma Sintering of Lyophilized Gels. J. Nanomater. 2009, 2009, 1–5. [Google Scholar] [CrossRef]
  184. Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N.; Livshits, T.S. Radiation Resistance and Chemical of Yttrium Aluminium Garnet. Radiochemistry 2011, 53, 186–190. [Google Scholar] [CrossRef]
  185. Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. Ceramics based on Yttrium Aluminium Garnet Containing Nd and Sm obtained by Spark Plasma Sintering. Adv. Ceram. Sci. Eng. 2013, 2, 261–265. [Google Scholar]
  186. Hanc, E.; Zając, W.; Lu, L. On fabrication procedures of Li-ion conducting garnets. J. Solid State Chem. 2017, 248, 51–60. [Google Scholar] [CrossRef]
  187. Yamada, H.; Ito, T.; Basappa, R.H.; Bekarevich, R.; Mitsuishi, K. Influence of strain on local structure and lithium ionic conduction in garnet-type solid electrolyte. J. Power Sources 2017, 368, 97–106. [Google Scholar] [CrossRef]
  188. Selvi, M.M.; Chakraborty, D.; Venkateswaran, C. Magnetodielectric coupling in multiferroic holmium iron garnets. J. Magn. Magn. Mater. 2017, 423, 39–45. [Google Scholar] [CrossRef]
  189. Golovkina, L.; Orlova, A.; Boldin, M.; Sakharov, N.; Chuvil’deev, V.; Nokhrin, A.; Konings, R.; Staicu, D. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides. J. Nucl. Mater. 2017, 489, 158–163. [Google Scholar] [CrossRef]
  190. Golovkina, L.S.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Orlova, A.I.; Chuvil’deev, V.N.; Murashov, A.A.; Sakharov, N.V. Preparation of Fine-Grained Y2.5Nd0.5Al5O12 + MgO composite ceramics for Inert Matrix Fuels by Spark Plasma Sintering. Inorg. Mater. 2018, 54, 1291–1298. [Google Scholar] [CrossRef]
  191. Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Chuvil’deev, V.N.; Sakharov, N.V.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grained ceramic-metal composites YAG: Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. J. Nucl. Mater. 2018, 511, 109–121. [Google Scholar] [CrossRef]
  192. Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Chuvil’deev, V.N.; Sakharov, N.V.; Belkin, O.A.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Mater. Chem. Phys. 2018, 214, 516–526. [Google Scholar] [CrossRef]
  193. Golovkina, L.S.; Orlova, A.I.; Chuvil’deev, V.N.; Boldin, M.S.; Lantcev, E.A.; Nokhrin, A.V.; Sakharov, N.V.; Zelenov, A.Y. Spark Plasma Sintering of high-density fine-grained Y2.5Nd0.5Al5O12 + SiC composite ceramics. Mater. Res. Bull. 2018, 103, 211–215. [Google Scholar] [CrossRef]
  194. Golovkina, L.; Orlova, A.; Boldin, M.; Lantsev, E.; Sakharov, N.; Zelenov, A.; Chuvil’deev, V. Composite Ceramics Based on Garnet-type Oxide Y2.5Nd0.5Al5O12 and Silicon Carbide. Mater. Res. Bull. 2018, 4, 518–524. [Google Scholar]
  195. Gong, W.L.; Ewing, R.C.; Wang, L.M.; Xie, H.S. Crichtonite Structure Type (AM21O38 and A2M19O36) as a Host Phase in Crystalline Waste Form Ceramics. Scientific Basis for Nuclear Waste Management XVIII. T. Murakami and R.C. Ewing, Eds. Proc. Mater. Res. Soc. 1995, 353, 807–815. [Google Scholar] [CrossRef]
  196. Grey, I.E.; Lloyd, D.J.; White, J.S., Jr. The Structure of Crichtonite and its Relationship to Senaite. Am. Mineral. 1976, 61, 1203–1212. [Google Scholar]
  197. Wulser, P.-A.; Meisser, N.; Brugger, J.; Schenk, K.; Ansermet, S.; Bonin, M.; Bussy, F. Cleusonite, (Pb,Sr)(U4+,U6+)(Fe2+,Zn)2(Ti,Fe2+,Fe3+)18(O,OH)38, a new mineral species of the crichtonite group from the western Swiss Alps. Eur. J. Mineral. 2005, 17, 933–942. [Google Scholar] [CrossRef]
  198. Mills, S.J.; Bindi, L.; Cadoni, M.; Kampf, A.R.; Ciriotti, M.E.; Ferraris, G. Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,□)18O38, a new member of the crichtonite group. Eur. J. Mineral. 2012, 24, 1061–1067. [Google Scholar] [CrossRef]
  199. Rastsvetaeva, R.K.; Aksenov, S.M.; Chukanov, N.V.; Menezes, L.A.D. Crystal Structure of Almeidaite, a New Mineral of the Crichtonite Group. Dokl. Chem. 2014, 455, 53–57. [Google Scholar] [CrossRef]
  200. Biagioni, C.; Orlandi, P.; Pasero, M.; Nestola, F.; Bindi, L. Mapiquiroite, (Sr,Pb)(U,Y)Fe2(Ti,Fe3+)18O38, a new member of the crichtonite group from the Apuan Alps, Tuscany, Italy. Eur. J. Mineral. 2014, 26, 427–437. [Google Scholar] [CrossRef]
  201. Menezes Filho, L.A.D.; Chukanov, N.V.; Rastsvetaeva, R.K.; Aksenov, S.M.; Pekov, I.V.; Chaves, M.L.S.C.; Richards, R.P.; Atencio, D.; Brandao, P.R.G.; Scholz, R.; et al. Almeidaite, Pb(Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2, a new crichtonite-group mineral, from Novo Horizonte, Bahia. Braz. Mineral. Mag. 2015, 79, 269–283. [Google Scholar] [CrossRef]
  202. Rezvukhin, D.I.; Malkovets, V.G.; Sharygin, I.S.; Kuzmin, D.V.; Gibsher, A.A.; Litasov, K.D.; Pokhilenko, A.P.; Sobolev, N.V. Inclusions of Crichtonite Group Minerals in Pyropes from the Internatsionalnaya Kimberlite Pipe. Dokl. Akad. Nauk. 2016, 466, 714–717. [Google Scholar] [CrossRef]
  203. Ishiguro, T.; Tanaka, K.; Marumo, F.; Ismail, M.G.M.U.; Hirano, S. Somiya, Freudenbergite. Acta Cryst. 1978, B34, 255–256. [Google Scholar] [CrossRef]
  204. Vance, E.R.; Angel, P.J.; Cassidy, D.J.; Stewart, M.W.A.; Blackford, M.G.; McGlinn, P.A. Freudenbergite: A Possible Synroc Phase for Sodium-Bearing High-Level Waste. J. Am. Ceram. Soc. 1994, 77, 1576–1580. [Google Scholar] [CrossRef]
  205. Ren, X.; Komarneni, S.; Roy, D.M. Novel CsAl2PO6 of pollucite structure: synthesis and characterization. Mater. Res. Bull. 1990, 25, 665–670. [Google Scholar] [CrossRef]
  206. Komarneni, S.; Menon, V.C.; Li, Q.H.; Roy, R.; Ainger, F. Microwave-hydrothermal processing of BiFeO3 and CsAl2PO6. J. Am. Ceram. Soc. 1996, 75, 1409–1412. [Google Scholar] [CrossRef]
  207. Aloy, A.S.; Kol’tsova, T.I.; Trofimenko, A.V.; Tutov, A.G. New compound with pollucite structure forming in process of synthesis and crystallization of cesium-alumphosphate glasses. Radiochemistry 2000, 42, 273–274. [Google Scholar]
  208. Hirst, J.P.; Claridge, J.B.; Rosseinsky, M.J.; Bishop, P. High temperature synthesis of a noncentrosymmetric site-ordered cobalt aluminophosphate related to the pollucite structure, The Royal Society of Chemistry. Chem. Commun. 2003, 6, 684–685. [Google Scholar] [CrossRef]
  209. Orlova, A.I. Crystal Chemical View on Elaboration of Ecology Safe Materials for Immobilization of Alkaline elements of Radwaste. In III International Pyroprocessing Research Conference; NIIAR: Dimitrovgrad, Russia, 2010; pp. 27–28. [Google Scholar]
  210. Loginova, E.E.; Orlova, A.I.; Mikhailov, D.A.; Troshin, A.N.; Borovikova, E.Y.; Samoilov, S.G.; Kazantsev, G.N.; Kazakova, A.Y.; Demarin, V.T. Phosphorus-Containing Compounds of Pollucite Structure and Radiochemical Problems. Radiochemistry 2011, 53, 593–603. [Google Scholar] [CrossRef]
  211. Orlova, A.I.; Volgutov, V.Y.; Mikhailov, D.A.; Troshin, A.N.; Golovkina, L.S.; Skuratov, V.A.; Kirilkin, N.S.; Chuvil’diev, V.N.; Nokhrin, A.V.; Boldin, M.S.; et al. Mineral like compounds with NZP and Pollucite structures: synthesis of high density ceramic and radiation testing. In European Congress on Advanced Materials and Processes; EUROMAT 2011; FEMS: Montpellier, France, 2011. [Google Scholar]
  212. Yanase, I.; Saito, Y.; Kobayashi, H. Synthesis and thermal expansion of (V, P, Nb)-replaced pollucite. Ceram. Int. 2012, 38, 811–815. [Google Scholar] [CrossRef]
  213. Orlova, A.I.; Troshin, A.N.; Mikhailov, D.A.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Nokhrin, A.V.; Skuratov, V.A.; Kirilkin, N.S. Phosphorus-Containing Cesium Compounds of Pollucite Structure. Preparation of High-Density Ceramic and Its Radiation Tests. Radiochemistry 2014, 56, 98–104. [Google Scholar] [CrossRef]
  214. Klapshin, Y.P. Chemical and Phase Transformations during the Synthesis of Cs[MgR0.5P1.5O6] (R = B, Al, Fe) Complex Oxides from Metal Chlorides. Russ. J. Inorg. Chem. 2018, 63, 1156–1163. [Google Scholar] [CrossRef]
  215. Klapshin, Y.P. Chemical and Phase Transformations during the Synthesis of Cs[MgR0.5P1.5O6] (R = B, Al, Fe) Complex Oxides from Metal Nitrates. Russ. J. Inorg. Chem. 2018, 63, 1381–1388. [Google Scholar] [CrossRef]
  216. Townes, W.D.; Fang, J.H.; Perrotta, A.J. The Crystal Structure and Refinement of Ferromagnetic Barium Ferrite, BaFe12O19. Z. Kristallogr. 1967, 125, 437–449. [Google Scholar] [CrossRef]
  217. Morgan, P.E.D.; Clarke, D.R.; Jantzen, C.M.; Harker, A.B. High Alumina Tailored Nuclear Waste Ceramics. J. Am. Ceram. Soc. 1981, 64, 249–258. [Google Scholar] [CrossRef]
  218. Harker, A.B.; Jantzen, C.M.; Clarke, D.R.; Morgan, P.E.D. Tailored Ceramic Nuclear Waste Forms: Preparation and Characterization. In Science Basis for Nuclear Waste Management, III; Moore, J.G., Ed.; Plenum Press: New York, NY, USA, 1981; pp. 139–146. [Google Scholar]
  219. Morgan, P.E.D.; Cirlin, E.H. The Magnetoplumbite Crystal Structure as a Radwaste Host. J. Am. Ceram. Soc. 1982, 65, C114–C115. [Google Scholar] [CrossRef]
  220. Jantzen, C.M.; Clarke, D.R.; Morgan, P.E.D.; Harker, A.B. Leaching of Polyphase Nuclear Waste Ceramics: Microstructural and Phase Characterization. J. Am. Ceram. Soc. 1982, 65, 292–300. [Google Scholar] [CrossRef]
  221. Bansal, N.P.; Zhu, D. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings. Surf. Coat. Technol. 2008, 202, 2698–2703. [Google Scholar] [CrossRef] [Green Version]
  222. Men, D.; Patel, M.K.; Usov, I.O.; Pivin, J.C.; Porter, J.R.; Mecartney, M.L. Radiation Damage of LaMgAl11O19 and CeMgAl11O19 Magnetoplumbite. J. Am. Ceram. Soc. 2013, 96, 3325–3332. [Google Scholar]
  223. Rakshit, S.K.; Parida, S.C.; Lilova, K.; Navrotsky, A. Thermodynamic studies of CaLaFe11O19(s). J. Solid State Chem. 2013, 2, 68–74. [Google Scholar] [CrossRef]
  224. Angle, J.P.; Nelson, A.T.; Men, D.; Mecartney, M.L. Thermal measurements and computational simulations of three-phase (CeO2–MgAl2O4–CeMgAl11O19) and four-phase (3Y-TZP–Al2O3– MgAl2O4–LaPO4) composites as surrogate inert matrix nuclear fuel. J. Nucl. Mater. 2014, 454, 69–76. [Google Scholar] [CrossRef]
  225. Ewing, R.C.; Lutze, W.; Weber, W.J. Zircon: A host-phase for the disposal of weapons plutonium. J. Mater. Res. 1995, 10, 243–246. [Google Scholar] [CrossRef]
  226. Shi, Y.; Huang, X.; Yan, D. Fabrication of Hot-Pressed Zircon Ceramics: Mechanical Properties and Microstructure. Ceram. Int. 1997, 23, 457–462. [Google Scholar] [CrossRef]
  227. Meldrum, A.; Boatner, L.A.; Ewing, R.C. A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral. Mag. 2000, 64, 185–194. [Google Scholar] [CrossRef]
  228. Burakov, B.E.; Anderson, E.B.; Zamoryanskaya, M.V.; Yagovkina, M.A.; Strykanova, E.E.; Nikolaeva, E.V. Synthesis and Study of 239Pu-Doped Ceramics Based on Zircon, (Zr,Pu)SiO4, and Hafnon, (Hf,Pu)SiO4. In Material Research Society Symposium Proceedings Scientific Basis for Nuclear Waste Management XXIV; Materials Research Society: Warrendale, PA, USA, 2001; Volume 663, pp. 307–313. [Google Scholar]
  229. Hanchar, J.M.; Burakov, B.E.; Anderson, E.B.; Zamoryanskaya, M.V. Investigation of Single Crystal Zircon, (Zr,Pu)SiO4, Doped with 238Pu. In Scientific Basis for Nuclear Waste Management XXVI, Materials Research Society Symposium Proceedings; Finch, R.J., Bullen, D.B., Eds.; Materials Research Society: Warrendale, PA, USA, 2003; Volume 757, pp. 215–225. [Google Scholar]
  230. Geisler-Wierwille, T.; Burakov, B.E.; Zirlin, V.; Nikolaeva, L.; Pöml, P. A Raman spectroscopic study of high-uranium zircon from the Chernobyl “Lava”. Eur. J. Mineral. 2005, 17, 883–894. [Google Scholar] [CrossRef]
  231. Burakov, B.E.; Domracheva, Y.V.; Zamoryanskaya, M.V.; Petrova, M.A.; Garbuzov, V.M.; Kitsay, A.A.; Zirlin, V.A. Development and synthesis of durable self-glowing crystals doped with plutonium. J. Nucl. Mater. 2009, 385, 134–136. [Google Scholar] [CrossRef]
  232. Rendtorff, N.M.; Grasso, S.; Hu, C.; Suarez, G.; Aglietti, E.F.; Sakka, Y. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering. Ceram. Int. 2012, 38, 1793–1799. [Google Scholar] [CrossRef]
  233. IAEA. Radiation Protection and NORM Residue Management in the Zircon and Zirconia Industries; Safety Reports Series 51; IAEA: Vienna, Austria, 2007; 149p. [Google Scholar]
  234. Pöml, P.; Burakov, B.; Geisler, T.; Walker, C.T.; Grange, M.L.; Nemchin, A.A.; Berndt, J.; Fonseca, R.O.C.; Bottomley, P.D.W.; Hasnaoui, R. Micro-analytical uranium isotope and chemical investigations of zircon crystals from the Chernobyl “lava” and their nuclear fuel inclusions. J. Nucl. Mater. 2013, 439, 51–56. [Google Scholar] [CrossRef]
  235. Ojovan, M.I.; Burakov, B.E.; Lee, W.E. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation. J. Nucl. Mater. 2018, 501, 162–171. [Google Scholar] [CrossRef]
  236. Hayden, L.A.; Watson, E.B.; Wark, D.A. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 2008, 155, 529–540. [Google Scholar] [CrossRef]
  237. Park, T.J.; Li, S.; Navrotsky, A. Thermochemistry of glass forming Y-substituted Sr-analogues of titanite (SrTiSiO5). J. Mater. Res. 2009, 24, 3380–3386. [Google Scholar] [CrossRef]
  238. Scanu, T.; Guglielmi, J.; Colomban, P. Ion exchange and hot corrosion of ceramic composites matrices: A vibrational and microstructural study. Solid State Ion. 1994, 70–71, 109–120. [Google Scholar] [CrossRef]
  239. Weber, W.J. Radiation-induced Swelling and Amorphization in Ca2Nd8(SiO4)6O2. Radiat. Eff. Defects Solids 1983, 77, 295–308. [Google Scholar] [CrossRef]
  240. Fahey, J.A.; Weber, W.J.; Rotella, F.J. An X-ray and Neutron Powder Diffraction Study of the Ca2+xNd8−x(SiO4)6O2−0.5x System. J. Solid State Chem. 1985, 60, 145–158. [Google Scholar] [CrossRef]
  241. Weber, W.J. Alpha-decay-induced Amorphization in Complex Silicate Structures. J. Am. Ceram. Soc. 1993, 76, 1729–1738. [Google Scholar] [CrossRef]
  242. Utsunomiya, S.; Yudintsev, S.; Wang, L.M.; Ewing, R.C. Ion-beam and Electron-beam Irradiation of Synthetic Britholite. J. Nucl. Mater. 2003, 322, 180–188. [Google Scholar] [CrossRef]
  243. Leo’n-Reina, L.; Losilla, E.R.; Martı´nez-Lara, M.; Bruque, S.; Llobet, A.; Sheptyakov, D.V.; Aranda, M.A.G. Interstitial Oxygen in Oxygen-stoichiometric Apatites. J. Mater. Chem. 2005, 15, 2489–2498. [Google Scholar] [CrossRef]
  244. Terra, O.; Dacheux, N.; Audubert, F.; Podor, R. Immobilization of tetravalent actinides in phosphate ceramics. J. Nucl. Mater. 2006, 352, 224–232. [Google Scholar] [CrossRef]
  245. Malavasi, L.; Fisher, C.A.J.; Islam, M.S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370–4387. [Google Scholar] [CrossRef]
  246. Knyazev, A.V.; Bulanov, E.N.; Korshunov, A.O.; Krasheninnikova, O.V. Synthesis and thermal expansion of some lanthanide-containing apatites. Inorg. Mater. 2013, 49, 1133–1137. [Google Scholar] [CrossRef]
  247. Bulanov, E.N.; Knyazev, A.V. High-temperature in situ XRD investigations in apatites. Structural interpretation of thermal deformations. In Apatite: Synthesis, Structural Characterization and Biomedical Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; Chapter 7; pp. 173–200. [Google Scholar]
  248. Bulanov, E.N.; Wang, J.; Knyazev, A.V.; White, T.; Manyakina, M.; Baikie, T.; Lapshin, A.N.; Dong, Z. Structure and thermal expansion of calcium-thorium apatite, [Ca4]F[Ca2Th4]T [(SiO4)6]O2. Inorg. Chem. 2015, 54, 11356–11361. [Google Scholar] [CrossRef]
  249. Knyazev, A.V.; Bulanov, E.N.; Smirnova, N.N.; Korokin, V.Z.; Shushunov, A.N.; Blokhina, A.G.; Xu, Z. Thermodynamic and thermophysics properties of synthetic britholite SrPr4(SiO4)3O. J. Chem. Thermodyn. 2017, 108, 38–44. [Google Scholar] [CrossRef]
  250. Cronstedt, A.F. Observation and Description of an Unknown Kind of Rock to be Named Zeolites. Kong Vetenskaps Acad. Handl. Stockh. 1756, 12, 120–123. (In Swedish) [Google Scholar]
  251. Smith, J.V. Structural Classification of Zeolites. Mineral. Soc. Am. Spec. Pap. 1963, 1, 281. [Google Scholar]
  252. Breck, D.A. Zeolite Molecular Sieves: Structure, Chemistry and Use; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
  253. Smith, J.V. Origin and Structure of Zeolites. In Zeolite Chemistry and Catalysis; A.C.S. Series; Rabo, J.A., Ed.; American Chemical Society: Washington, DC, USA, 1976; Volume 171, pp. 1–79. [Google Scholar]
  254. Barrer, R.M. Hydrothermal Chemistry of Zeolites; Academic Press: New York, NY, USA, 1982. [Google Scholar]
  255. Harjula, R.; Lehto, J. Effect of sodium and potassium ions on cesium absorption from nuclear power plant waste solutions on synthetic zeolites. Nucl. Chem. Waste Manag. 1986, 6, 133–137. [Google Scholar] [CrossRef]
  256. Higgins, F.M.; de Leeuw, N.H.; Parker, S.C. Modelling the Effect of Water on Cation Exchange in Zeolite A. J. Mater. Chem. 2002, 12, 124–131. [Google Scholar]
  257. Lima, E.; Ibarra, A.; Bosch, P.; Bulbulian, S. Vitrification of CsA and CsX zeolites. Stud. Surf. Sci. Catal. 2004, 154, 1907–1911. [Google Scholar]
  258. Tsukada, T.; Takahashi, K. Absorption Characteristics of Fission Product Elements on Zeolite. Nucl. Technol. 2008, 162, 229–243. [Google Scholar] [CrossRef]
  259. Kaminski, M.D.; Mertz, C.J.; Ferrandon, M.; Dietz, N.L.; Sandi, G. Physical properties of an alumino-silicate waste form for cesium and strontium. J. Nucl. Mater. 2009, 392, 510–518. [Google Scholar] [CrossRef]
  260. Cappelletti, P.; Rapisardo, G.; De Gennaro, B.; Colella, A.; Langella, A.; Fabio, S.; Lee, D.; De Gennaro, M. Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. J. Nucl. Mater. 2011, 414, 451–457. [Google Scholar] [CrossRef]
  261. Gatta, G.D.; Merlini, M.; Lotti, P.; Lausi, A.; Rieder, M. Microporous and Mesoporous Materials Phase stability and thermo-elastic behavior of CsAlSiO4 (ABW): A potential nuclear waste disposal material. Microporous Mesoporous Mater. 2012, 163, 147–152. [Google Scholar] [CrossRef]
  262. Yamagishi, I.; Nagaishi, R.; Kato, C.; Morita, K.; Terada, A.; Kamiji, Y. Characterization and storage of radioactive zeolite waste. J. Nucl. Sci. Technol. 2014, 51, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
  263. Gallis, F.S.; Ermanoski, I.; Greathouse, J.A.; Chapman, K.W.; Nenoff, T.M. Iodine Gas Adsorption in Nanoporous Materials: A Combined Experiment–Modeling Study. Ind. Eng. Chem. Res. 2017, 56, 2331–2338. [Google Scholar] [CrossRef]
  264. Lee, H.Y.; Kim, H.S.; Jeong, H.-K.; Park, M.; Chung, D.-Y.; Lee, E.-H.; Lim, W.T. Selective Removal of Radioactive Cesium from Nuclear Waste by Zeolites: On the Origin of Cesium Selectivity Revealed by Systematic Crystallographic Studies. J. Phys. Chem. C 2017, 121, 10594–10608. [Google Scholar] [CrossRef]
  265. Papynov, E.K. Spark plasma sintering of ceramic and glass-ceramic matrices for cesium radionuclides immobilization. In Glas-Ceramics: Properties, ApplIcations and Technolology; Narag, K., Ed.; Nova Science Publisher, Inc.: New York, NY, USA, 2018; pp. 109–153. [Google Scholar]
  266. Papynov, E.K.; Shichalin, O.O.; Mayorov, V.Y.; Kuryavyi, V.G.; Kaidalova, T.A.; Teplukhina, L.V.; Portnyagin, A.S.; Slobodyuk, A.B.; Belov, A.A.; Tananaev, I.G.; et al. SPS technique for ionizing radiation source fabrication based on dense cesium-containing core. J. Hazard. Mater. 2019, 369, 25–30. [Google Scholar] [CrossRef]
  267. Strachan, D.M.; Schulz, W.W. Characterization of Pollucite as a Material for Long-Term Storage of Cesium-137. Am. Ceram. Soc. Bull. 1979, 58, 865–871. [Google Scholar]
  268. Gallagher, S.A.; McCarthy, G.J. Preparation and X-ray Characterization of Pollucite (CsAlSi2O6). Inorg. Nucl. Chem. 1981, 43, 1773–1777. [Google Scholar] [CrossRef]
  269. Komameni, S.; White, W.B. Stability of Pollucite in Hydrothermal Fluids. Sci. Basis Nucl. Waste Manag. 1981, 3, 387–396. [Google Scholar]
  270. Yanagisawa, K.; Nishioka, M.; Yamasaki, N. Immobilization of Cesium into Pollucite Structure by Hydrothermal Hot-Pressing. J. Nucl. Sci. Technol. 1987, 24, 51–60. [Google Scholar] [CrossRef]
  271. Mielearski, M. Preparation of 137Cs Pollucite Source Core. Isotopenpraxis 1989, 25, 404–408. [Google Scholar] [CrossRef]
  272. Mimura, H.; Shibata, M.; Akiba, K. Surface Alteration of Pollucite under Hydrothermal Conditions. J. Nucl. Sci. Technol. 1990, 27, 835–843. [Google Scholar] [CrossRef]
  273. Anthony, R.G.; Phillip, C.V.; Dosch, R.G. Selective Adsorption and Ion Exchange of Metal Cations and Anions with Silico-Titanates and Layered Titanates. Waste Manag. 1993, 13, 503–512. [Google Scholar] [CrossRef]
  274. Balmer, M.L.; Bunker, B.C. Inorganic Ion Exchange Evaluation and Design-Silicotitanate Ion Exchange Waste Conversion; PNL-10460; Pacific Northwest Laboratory: Richland, WA, USA, 1995.
  275. Su, Y.; Balmer, M.L.; Bunker, B.C. Evaluation of Cesium Silicotitanates as an Alternate Waste Form. Mater. Res. Soc. Symp. Proc. 1996, 465, 457–464. [Google Scholar] [CrossRef]
  276. McCready, D.E.; Balmer, M.L.; Keefer, K.D. Experimental and Calculated X-ray Diffraction Data for Cesium Titanium Silicate, CsTiSi2O6,5: A New Zeolite. Powder Diffr. 1997, 12, 40–46. [Google Scholar] [CrossRef]
  277. Su, Y.; Balmer, M.L.; Wang, L.; Bunker, B.C.; Nyman, M.; Nenoff, T.; Navrotsky, A. Evaluation of Thermally Converted Silicotitanate Waste Forms. Mater. Res. Soc. Symp. Proc. 1999, 556, 77–84. [Google Scholar] [CrossRef]
  278. Xu, H.; Navrotsky, A.; Nyman, M.D.; Nenoff, T.M. Thermochemistry of Microporous Silicotitanate Phases in the Na2O-Cs2O-SiO2-TiO2-H2O System. J. Mater. Res. 2000, 15, 815–823. [Google Scholar] [CrossRef]
  279. Xu, H.; Navrotsky, A.; Balmer, M.L.; Su, Y.; Bitten, E.R. Energetics of Substituted Pollucites along the CsAlSi2O6-CsTiSi2O6,5 Join: A High-Temperature Calorimetric Strudy. J. Am. Ceram. Soc. 2001, 84, 555–560. [Google Scholar] [CrossRef]
  280. Bubnova, R.S.; Stepanov, N.K.; Levin, A.A.; Filatov, S.K.; Paufler, P.; Meyer, D.C. Crystal structure and thermal behavior of boropollucite CsBSi2O6. Solid State Sci. 2004, 6, 629–637. [Google Scholar] [CrossRef]
  281. Richerson, D.W.; Hummel, F.A. Synthesis and Thermal Expansion of Polycrystalline Cesium Minerals. J. Am. Ceram. Soc. 2006, 55, 269–273. [Google Scholar] [CrossRef]
  282. Rehspringer, J.-L.; Balencie, J.; Vilminot, S.; Burger, D.; Boos, A.; Estournes, C. Confining caesium in expanded natural Perlite. J. Eur. Ceram. Soc. 2007, 27, 619–622. [Google Scholar] [CrossRef] [Green Version]
  283. Garino, T.G.; Nenoff, T.M.; Park, T.J.; Navrotsky, A. The Crystallization of Ba-Substituted CsTiSi2O6.5 Pollucite using CsTiSi2O6.5 Seed Crystals. J. Am. Ceram. Soc. 2009, 92, 2144–2146. [Google Scholar] [CrossRef]
  284. Park, T.-J.; Garino, T.J.; Nenoff, T.M.; Rademacher, D.; Navrotsky, A. The Effect of Vacancy and Ba-Substitution on the Stability of the CsTiSi2O6.5 Pollucite. J. Am. Ceram. Soc. 2011, 94, 3053–3059. [Google Scholar] [CrossRef]
  285. He, P.; Jia, D. Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin. J. Mater. Sci. 2013, 48, 1812–1818. [Google Scholar] [CrossRef]
  286. Garino, T.J.; Rademacher, D.X.; Rodriguez, M.; Nenoff, T.M. The Synthesis of Ba and Fe Substituted CsAlSi2O6 Pollucites. J. Am. Ceram. Soc. 2013, 96, 2966–2972. [Google Scholar]
  287. Jing, Z.; Hao, W.; He, X.; Fan, J.; Zhang, Y.; Miao, J.; Jin, F. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. J. Hazard. Mater. 2016, 306, 220–229. [Google Scholar] [CrossRef]
  288. Fan, J.; Jing, Z.; Zhang, Y.; Miao, J.; Chen, Y.; Jin, F. Mild hydrothermal synthesis of pollucite from soil for immobilization of Cs in situ and its characterization. Chem. Eng. J. 2016, 304, 344–350. [Google Scholar] [CrossRef]
  289. Vance, E.R.; Gregg, D.J.; Griffiths, G.J.; Gaugliardo, P.R.; Grant, C. Incorporation of Ba in Al and Fe pollucite. J. Nuc. Mater. 2016, 478, 256–260. [Google Scholar] [CrossRef]
  290. Henderson, C.M.B.; Charnock, J.M.; Bell, J.M.; van der Laan, G.C.M.B. X-ray absorption study of 3d transition-metals and Mg in glasses and analogue crystalline materials in AFe3+Si2O6 and A2X2+Si5O12, where A = K, Rb, or Cs and X = Mg, Mn, Fe, Co, Ni, Cu, or Zn. J. Non-Cryst. Solids 2016, 451, 23–48. [Google Scholar] [CrossRef]
  291. Omerasevic, M.; Matovic, L.; Ruzic, J.; Golubovic, Z.; Jovanovic, U.; Mentus, S.; Dondur, V. Safe trapping of cesium into pollucite structure by hot-pressing method. J. Nuc. Mater. 2016, 474, 35–44. [Google Scholar] [CrossRef]
  292. Hamada, S.; Kishimura, H.; Matsumoto, H.; Takahashi, K.; Aruga, A. Effect of shock compression on luminescence properties of CsAlSi2O6:Eu2+ for white-light-emitting diodes. Opt. Mater. 2016, 62, 192–198. [Google Scholar] [CrossRef]
  293. Orlova, A.I.; Chuvildeev, V.N.; Mikhailov, D.A.; Boldin, M.S.; Belkin, O.A.; Nokhrin, A.V.; Sakharov, N.V.; Skuratov, V.A.; Kirilkin, S. Preparation of ceramic materials with mineral-like structures by mean of SPS technology for the purpose of radwaste consolidation and radiation and hydrolytic investigations. J. Nucl. Energy Sci. Power Gener. Technol. 2017, 6, 33. [Google Scholar]
  294. Berry, L.G.; Mason, B. Mineralogy Concepts, Descriptions, Determinations; W.H. Freeman & Co.: San Francisco, CA, USA, 1959. [Google Scholar]
  295. Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals, Vol IV; John Wiley & Sons, Inc.: New York, NY, USA, 1963. [Google Scholar]
  296. Klingenberg, R.; Felsche, J. Interstitial Cristobalite-type Compounds (Na2O)≤0.33Na[AlSiO4]). J. Solid State Chem. 1986, 61, 40–46. [Google Scholar] [CrossRef]
  297. Kim, J.G.; Lee, J.H.; Kim, I.T.; Kim, E.H. Fabrication of a Glass-Bonded Zeolite Waste Form for Waste LiCl Salt. J. Ind. Eng. Chem. 2007, 13, 292–298. [Google Scholar]
  298. Brookins, D.G. Geochemical Aspects of Radioactive Waste Disposal; Springer: Berlin, Germany, 1984. [Google Scholar]
  299. Fleet, M.E. Structures of Sodium Alumino-Germanate Sodalites. Acta Cryst. 1989, C45, 843–847. [Google Scholar]
  300. McFarlane, H.F.; Goff, K.M.; Felicione, F.S.; Dwight, C.C.; Barber, D.B. Hot Demonstrations of Nuclear-Waste Processing Technologies. JOM 1997, 49, 14–21. [Google Scholar] [CrossRef]
  301. Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals. Vol. 2A. Single-Chain Silicates; Geological Society: London, UK, 1997. [Google Scholar]
  302. Nakazawa, T.; Kato, H.; Okada, K.; Ueta, S.; Mihara, M. Iodine Immobilization by Sodalite Waste Form. Mater. Res. Soc. Symp. Proc. 2001, 663, 51–57. [Google Scholar] [CrossRef]
  303. Olson, A.L.; Soelberg, N.R.; Marshal, D.W.; Anderson, G.L. Fluidized Bed Steam Reforming of INEEL SBW Using THOR Mineralizing Technology; INEEL/EXT-04-02564; Idaho National Laboratory: Idaho Falls, ID, USA, 2004. [Google Scholar]
  304. Deer, W.A.; Howie, R.A.; Wise, W.S.; Zussman, J. Rock-Forming Minerals, Vol. 4B, Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites; The Geological Society: London, UK, 2004. [Google Scholar]
  305. Mattigod, S.V.; McGrail, B.P.; McCready, D.E.; Wang, L.; Parker, K.E.; Young, J.S. Synthesis and Structure of Perrhenate Sodalite. J. Microporous Mesopourous Mater. 2006, 91, 139–144. [Google Scholar] [CrossRef]
  306. Angelis, G.D.; Capone, M.; Mannielo, A.; Mariani, M.; Maceratu, E.; Conti, C. Different methods for conditioning Chlorite Salt waste from Pyroprocesses. In Book of Abstracts “III International Pyroprocessing Research Conference; NIIAR: Dimitrovgrad, Russia, 2010; p. 48. [Google Scholar]
  307. Simpson, M.F.; Allensworth, J.R.; Phongikaroon, S.; Williams, A.N.; Dunzik-Gourgar, M.L.; Ferguson, C. Immobilization of Salt from Zone Freezing Process in Zeolite-A. In III International Pyroprocessing Research Conference; NIIAR: Dimitrovgrad, Russia, 2010; pp. 30–31. [Google Scholar]
  308. Akimkhan, A.M. Structural and Ion-Exchange Properties of Natural Zeolite. Ion Exch. Technol. 2012, 10, 261–283. [Google Scholar]
  309. Tendeloo, L.V.; Blochouse, B.; Dom, D.; Vancluysen, J.; Snellings, R.; Martens, J.A.; Kirschhock, C.E.A.; Maes, A.; Breynaert, E. Cation Exchange Properties of Zeolites in Hyper Alkaline Aqueous Media. Environ. Sci. Technol. 2015, 49, 1729–1737. [Google Scholar] [CrossRef]
  310. Olszewska, W.; Miśkiewicz, A.; Zakrzewska-Kołtuniewicz, G.; Lankof, L.; Pająk, L. Multibarrier system preventing migration of radionuclides from radioactive waste repository. Nukleonika 2015, 60, 557–563. [Google Scholar] [CrossRef] [Green Version]
  311. Kim, H.S.; Park, J.S.; Lim, W.T. Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies. J. Mineral. Soc. Korea 2018, 31, 235–248. [Google Scholar] [CrossRef]
  312. Ovhal1, S.; Butler, I.S.; Xu, S. The Potential of Zeolites to Block the Uptake of Radioactive Strontium-90 in Organisms. Contemp. Chem. 2018, 1, 1–13. [Google Scholar]
  313. Dyer, A.; Hriljac, J.; Evans, N.; Stokes, I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R.; et al. The use of columns of the zeolite clinoptilolite in the remediation of aqueous nuclear waste streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. [Google Scholar] [CrossRef] [Green Version]
  314. Grundy, H.D.; Hassan, I. The crystal structure of a carbonate-rich cancrinite. Can. Mineral. 1982, 20, 239–251. [Google Scholar]
  315. Zhao, H.; Deno, Y.; Harsh, J.B.; Flury, M.; Boyle, J.S. Alteration of Kaolinite to Cancrinite and Sodalite by simulated Hanford tank waste and its inpact on cesium retention. Clay Mater. 2004, 52, 1–13. [Google Scholar]
  316. Mon, J.; Deng, Y.; Flury, M.; Harsh, J.B. Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophone. Microporous Microporous Mater. 2005, 86, 277–286. [Google Scholar] [CrossRef]
  317. Hassan, I.; Antao, S.M.; Parise, J.B. Cancrinite: Crystal structure, phase transitions, and dehydration behavior with temperature. Am. Mineral. 2006, 91, 1117–1124. [Google Scholar] [CrossRef]
  318. Deng, Y.; Flury, M.; Harsh, J.B.; Felmy, A.R.; Qafoku, O. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste stimulant. Appl. Geochem. 2006, 21, 2049–2063. [Google Scholar] [CrossRef]
  319. Dickson, J.O.; Harsh, J.B.; Flury, M.; Lukens, W.W.; Pierce, E.M. Immobilization and Exchange of Perrhenate in Sodalite and Cancrinite. Microporous Mesoporous Mater. 2015, 214, 115–120. [Google Scholar] [CrossRef]
  320. Zheng, Z.; Anthony, R.G.; Miller, J.E. Modeling Multicomponent Ion Exchange Equilibrium Utilizing Hydrous Crystalline Silicotitanates by a Multiple Interactive Ion Exchange Site Model. Ind. Eng. Chem. Res. 1997, 36, 2427–2434. [Google Scholar] [CrossRef]
  321. Miller, J.E.; Brown, N.E. Development and Properties of Crystalline Silicotitanate (CST) Ion Exchangers for Radioactive Waste Applications; SAND97-0771; Sandia National Laboratories: Albuquerque, NM, USA, 1997.
  322. Andrews, M.K.; Harbour, J. Glass Formulation Requirements for Hanford Coupled Operations Using Crystalline Silicotitanates (CST); WSRC-RP-97-0265; Westinghouse Savannah River Company, Savannah River Site: Aike, SC, USA, 1997. [Google Scholar]
  323. Yu, B.; Chen, J.; Song, C. Crystalline Silicotitanate: A New Type of Ion Exchange for Cs Removal from Liquid Waste. J. Mater. Sci. Technol. 2002, 18, 206–210. [Google Scholar]
  324. Tripathi, A.; Medvedev, D.G.; Nyman, M.; Clearfield, A. Selectivity for Cs and Sr in Nb-Substituted Titanosilicate with Sitinakite Topology. J. Solid State Chem. 2003, 175, 72–83. [Google Scholar] [CrossRef]
  325. Keppler, H. Ion Exchange Reactions Between Dehydroxylated Micas and Salt Melts and the Crystal Chemistry of the Interlayer Cation in Micas. Am. Minerial. 1990, 75, 529–538. [Google Scholar]
  326. Fleet, M.E. Rock-Forming Minerals: Sheet Silicates: Micas, V. 3A; The Geological Society: Bath, Englad, 2003. [Google Scholar]
  327. Jantzen, C.M.; Williams, M.R.; Bibler, N.E.; Crawford, C.L.; Jurgensen, A.R. Fluidized Bed Steam Reformed (FBSR) Mineral Waste Forms: Application to Cs-137/Sr-90 Wastes for the Global Nuclear Energy Partnership (GNEP); U.S. DOE Report WSRC-MS; Savannah River National Laboratory: Jackson, MS, USA, 2008.
  328. Jantzen, C.M.; Williams, M.R. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP); Waste Management 08, Paper #8314 (2008); WM Symposia: Phoenix, AZ, USA, 2008; p. 8314. [Google Scholar]
  329. Neeway, J.J.; Qafoku, N.P.; Peterson, R.A.; Brown, C.F. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilizatio; Waste Management 2013, Paper 13400; WM Symposia: Phoenix, AZ, USA, 2013. [Google Scholar]
  330. Kumar, A.; Singh, Y.P.; Pradhan, G.; Dhawan, N. Utilization of Mica for Potassium Recovery. In Proceedings. Mater. Today 2018, 5, 17030–17034. [Google Scholar]
  331. Boatner, L.A.; Sales, B.C. Monazite. In Radiation Waste Forms for the Future; Lutze, W., Ewing, R.C., Eds.; North-Holland Press: Amsterdam, The Netherlands, 1988; pp. 495–564. [Google Scholar]
  332. Ewing, R.C.; Weber, W.J.; Lutze, W. Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium. In Disposal of Ex-weapons Plutonium as Waste; NATIO ASI Series; Merz, E.R., Walter, C.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 65–83. [Google Scholar] [Green Version]
  333. Merz, E.R.; Walter, C.E. Disposal of Ex-weapons Plutonium as Waste, NATIO ASI Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 65–83. [Google Scholar]
  334. Van Emden, B.; Thornber, M.R.; Graham, J.; Lincoln, F.J. The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can. Mineral. 1997, 35, 95–104. [Google Scholar]
  335. Chang, L.L.Y.; Howie, R.A.; Zussman, J. Rock-Forming Minerals, V.5B Non-Silicates. In Sulphates, Carbonates, Phosphates, Halides, 2nd ed.; The Geological Society: London, UK, 1998; Volume 383, ICBN 978-1897799901. [Google Scholar]
  336. Genet, M.; Dacheux, N.; Thomas, A.C.; Chassigneux, B.; Pichot, E.; Brandel, V. Thorium phosphate-diphosphate as a ceramic for the immobilization of tetravalent uranium, neptunium and plutonium. Waste Manag. 1999, 99, 38. [Google Scholar]
  337. Clavier, N.; Dacheux, N.; Podor, R.; Le Coustumer, P. Study of Actinides Incorporation in Thorium Phosphate-Diphosphate/Monazite Based Ceramics. Mater. Res. Soc. Symp. Proc. 2004, 802, DD3.6.1–DD3.6.6. [Google Scholar] [CrossRef]
  338. Burakov, B.E.; Yagovkina, M.A.; Garbuzov, V.M.; Kitsay, A.A.; Zirlin, V.A. SelfIrradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238. In Scientific Basis for Nuclear Waste Management XXVIII; Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds.; Materials Research Society Symposium Proceedings: San Francisco, CA, USA, 2004; Volume 824, pp. 219–224. [Google Scholar]
  339. Montel, J.M.; Glorieux, B.; Seydoux-Guilaume, A.M.; Wirth, R. Synthesis and Sintering of a Monazite-brabantite Solid Solution Ceramic for Nuclear Waste Storage. J. Phys. Chem. Solids 2006, 67, 2489–2500. [Google Scholar] [CrossRef]
  340. Zhang, Y.J.; Vance, E.R. Plutonium in Monazite and Brabanite: Diffuse Reflectance Spectroscopy Study. J. Nucl. Mater. 2008, 375, 311–314. [Google Scholar] [CrossRef]
  341. Glorieux, B.; Montel, J.M.; Matecki, M. Synthesis and Sintering of a Monazite-brabantite Solid Solution Ceramics Using Metaphosphate. J. Eur. Ceram. Soc. 2009, 29, 1679–1686. [Google Scholar] [CrossRef]
  342. Brandt, F.; Neumeier, S.; Schuppik, T.; Arinicheva, Y.; Bukaemskiy, A.; Modolo, G.; Bosbach, D. Conditioning of minor actinides in lanthanum monazite ceramics: A surrogate with Europium. Prog. Nucl. Energy 2014, 72, 140–143. [Google Scholar] [CrossRef]
  343. Arinicheva, Y.; Bukaemskiy, A.; Neumeier, S.; Modolo, G.; Bosbach, D. Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides. Prog. Nucl. Energy 2014, 72, 144–148. [Google Scholar] [CrossRef]
  344. Mezentseva, L.P.; Kruchinina, I.Y.; Osipov, A.V.; Kuchaeva, S.K.; Ugolkov, V.L.; Popova, V.F.; Pugachev, K.E. Nanopowders of Orthophosphate LaPO4–YPO4–H2O System and Ceramics Based on Them. Glass Phys. Chem. 2014, 40, 356–361. [Google Scholar] [CrossRef]
  345. Ma, J.; Teng, Y.; Huang, Y.; Wu, L.; Zhang, K.; Zhao, X. Effects of sintering process, pH and temperature on chemical durability of Ce0.5Pr0.5PO4 ceramics. J. Nucl. Mater. 2015, 465, 550–555. [Google Scholar] [CrossRef]
  346. Zhao, X.; Teng, Y.; Yang, H.; Huang, Y.; Ma, J. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram. Int. 2015, 41, 11062–11068. [Google Scholar] [CrossRef]
  347. Teng, Y.; Zeng, P.; Huang, Y.; Wu, L.; Wang, X. Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability. J. Nucl. Mater. 2015, 465, 482–487. [Google Scholar] [CrossRef]
  348. Zhao, X.; Teng, Y.; Wu, L.; Huang, Y.; Ma, J.; Wang, G. Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: Effects of temperature and pH values. J. Nucl. Mater. 2015, 466, 187–193. [Google Scholar] [CrossRef]
  349. Teng, Y.; Wang, X.; Huang, Y.; Wu, L.; Zeng, P. Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics. Ceram. Int. 2015, 41, 10057–10062. [Google Scholar] [CrossRef]
  350. Meng, C.; Ding, X.; Zhao, J.; Ren, C.; Fu, H.; Yang, H. Phase evolution and microstructural studies of Gd1−xYbxPO4 (0≤x≤1) ceramics for radioactive waste storage. J. Eur. Ceram. Soc. 2016, 36, 773–779. [Google Scholar] [CrossRef]
  351. Potanina, E.; Golovkina, L.; Orlova, A.; Nokhrin, A.; Boldin, M.; Sakharov, N. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering. J. Nucl. Mater. 2016, 473, 93–98. [Google Scholar] [CrossRef]
  352. Ji, Y.; Kowalski, P.M.; Neumeier, S.; Deissmann, G.; Kulriya, P.K.; Gale, J.D. Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics. Nucl. Instrum. Methods Phys. Res. 2017, 393, 54–58. [Google Scholar] [CrossRef]
  353. Babelot, C.; Bukaemskiy, A.; Neumeier, S.; Modolo, G.; Bosbach, D. Crystallization processes, compressibility, sinterability and mechanical properties of La-monazite-type ceramics. J. Eur. Ceram. Soc. 2017, 37, 1681–1688. [Google Scholar] [CrossRef]
  354. Guo, L.; Yan, Z.; Li, Z.; Yu, J.; Wang, Q.; Li, M.; Ye, F. GdPO4 as a novel candidate for thermal barrier coating applications at elevated temperatures. Surf. Coat. Technol. 2018, 349, 400–406. [Google Scholar] [CrossRef]
  355. Arinicheva, Y.; Gausse, C.; Neumeier, S.; Brandt, F.; Rozov, K.; Szenknect, S.; Dacheux, N.; Bosbach, D.; Deissmann, G. Influence of temperature on the dissolution kinetics of synthetic LaPO4-monazite in acidic media between 50 and 130 °C. J. Nucl. Mater. 2018, 509, 488–495. [Google Scholar] [CrossRef]
  356. Arinicheva, Y.; Clavier, N.; Neumeier, S.; Podor, R.; Bukaemskiy, A.; Klinkenberg, M.; Roth, G.; Dacheux, N.; Bosbach, D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. J. Eur. Ceram. Soc. 2018, 38, 227–234. [Google Scholar] [CrossRef]
  357. Zhao, X.; Li, Y.; Teng, Y.; Wu, L.; Bi, P.; Wang, L.; Wang, S. The structure, sintering process, and chemical durability of Ce0.5Gd0.5PO4 ceramics. Ceram. Int. 2018, 44, 19718–19724. [Google Scholar] [CrossRef]
  358. Zhao, X.; Li, Y.; Teng, Y.; Wu, L.; Bi, P.; Yang, X.; Wan, L. The effect of Ce content on structure and stability of Gd1-xCexPO4: Theory and experiment. J. Eur. Ceram. Soc. 2019, 39, 1555–1563. [Google Scholar] [CrossRef]
  359. Milligan, W.O.; Mullica, D.F.; Beall, G.W.; Boatner, L.A. Structural investigation of YPO4, ScPO4, and LuPO4. Inorg. Chim. Acta 1982, 60, 39–43. [Google Scholar] [CrossRef]
  360. Boatner, L. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. Rev. Mineral. Geochem. 2002, 48, 87–121. [Google Scholar] [CrossRef]
  361. Hetherington, C.J.; Hasrlov, D.E.; Budzyn, B. Experimental metasomatism of monazite and xenotime: Mineral stability, REE mobility and fluid composition. Miner. Petrol. 2010, 99, 165–184. [Google Scholar] [CrossRef]
  362. Ji, Y.; Beridze, G.; Bosbach, D.; Kowalski, P.M. Heat capacities of xenotime-type ceramics: An accurate ab initio prediction. J. Nucl. Mater. 2017, 494, 172–181. [Google Scholar] [CrossRef]
  363. Kondrat’eva, O.N.; Nikiforova, G.E.; Tyurin, A.V.; Ryumin, M.A.; Gurevich, V.M.; Kritskaya, A.P.; Gavrichev, K.S. Calorimetric study of ytterbium orthovanadate YbVO4 polycrystalline ceramics. Ceram. Int. 2018, 44, 18103–18107. [Google Scholar] [CrossRef]
  364. Weber, W.J.; Turcotte, R.P.; Bunnell, L.R.; Roberts, F.P.; Westsik, J.H., Jr. Radiation Effects in Vitreous and Devitrified Simulated Waste Glass (Contains Apatite). In Proceedings of the International Symposium on Ceramics in Nuclear Waste Management, Cincinnati, OH, USA, 28 April–3 May 1979; pp. 294–299. [Google Scholar]
  365. Weber, W.J. Radiation Damage in Rare-earth Silicate with the Apatite Structure. J. Am. Ceram. Soc. 1982, 65, 544–548. [Google Scholar] [CrossRef]
  366. Bros, R.; Carpens, J.; Sere, V.; Beltritti, A. Occurrence of Plutonium and Fissiogenic REE in Hydrothermal Apatites from the Nuclear Reactor 16 at Oklo (Gabon). Radiochim. Acta 1996, 74, 277–282. [Google Scholar] [CrossRef]
  367. Weber, W.J.; Ewing, R.C.; Meldrum, A. The Kinetics of Alpha-decay-induced Amorphization in Zircon and Apatite Containing Weapons-grade Plutonium or Other Actinides. J. Nucl. Mater. 1997, 250, 147–155. [Google Scholar] [CrossRef]
  368. Audubert, F.J.; Lacout, J.L.; Tetard, F. Elaboration of an Iodine-Bearing Apatite Iodine Diffusion into a Pb3(VO4)2 Matrix. Solid State Ion. 1997, 95, 113–119. [Google Scholar] [CrossRef]
  369. Boyer, L.; Carpena, J.; Lacout, J.L. Synthesis of Phosphate-Silicate Apatites at Atmospheric Pressure. Solid State Ion. 1997, 95, 121–129. [Google Scholar] [CrossRef]
  370. Carpena, J.; Donazzon, B.; Ceraulo, E.; Prene, S. Composite Apatitic Cement as a Material to Retain Cesium and Iodine. Comptes Rendus de L Academie Des Sciences Serie II Fascicule C—Chimie 2001, 4, 301–308. [Google Scholar]
  371. Park, H.S.; Kim, I.T.; Kim, H.Y.; Lee, K.S.; Ryu, S.K.; Kim, J.H. Application of Apatite Waste Form for the Treatment of Water-soluble Wastes Containing Radioactive Elements. Part 1: Investigation on the Possibility. J. Ind. Eng. Chem. 2002, 8, 318–327. [Google Scholar]
  372. Elliott, J.C.; Wilson, R.M.; Dowker, S.E.P. Apatite Structures. Adv. X-ray Anal. 2002, 45, 172–181. [Google Scholar]
  373. Kim, J.Y.; Dong, Z.L.; White, T.J. Model Apatite Systems for the Stabilization of Toxic Metals: II, Ccation and Metalloid Substitutions in Chlorapatites. J. Am. Ceram. Soc. 2005, 88, 1253–1260. [Google Scholar] [CrossRef]
  374. Carpena, J.; Lacout, J.L. Calcium Phosphate Nuclear Materials: Apatitic Ceramics for Separated Wastes. Actual. Chim. 2005, 66–71. [Google Scholar]
  375. Jothinathan, E.; Vammeesel, K.; Vleugels, J. Apatite type lanthanum silicate and composite anode half cells. Solid State Ion. 2011, 192, 419–423. [Google Scholar] [CrossRef]
  376. Knyazev, A.V.; Chernorukov, N.G.; Bulanov, E.N. Apatite-structured compounds: Synthesis and high-temperature investigation. Mater. Chem. Phys. 2012, 132, 773–781. [Google Scholar] [CrossRef]
  377. Wang, J. Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network. Front. Earth Sci. 2015, 3, 1–11. [Google Scholar] [CrossRef]
  378. Kirkland, C.L.; Yakymchuk, C.; Szilas, K.; Evans, N.; Hollis, J.; McDonald, B.; Gardiner, N.J. Apatite: A U-Pb thermochronometer or geochronomete. Lithos 2018, 318–319, 143–157. [Google Scholar] [CrossRef]
  379. Hong, H.Y.-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12. Mater. Res. Bull. 1976, 11, 173–182. [Google Scholar] [CrossRef]
  380. Goodenough, J.B.; Hong, H.Y.-P.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
  381. Boilot, J.P.; Salanié, J.P.; Desplanches, G.; Le Potier, D. Phase transformation in Na1+xSixZr2P3−xO12 compounds. Mater. Res. Bull. 1979, 14, 1469–1477. [Google Scholar] [CrossRef]
  382. de la Rochère, M.; d’Yvoire, F.; Collin, G.; Comès, R.; Boilot, J.P. NASICON type materials—Na3M2(PO4)3 (M = Sc, Cr, Fe): Na+-Na+ correlations and phase transitions. Solid State Ion. 1983, 9–10 Pt 2, 825–828. [Google Scholar] [CrossRef]
  383. Manthiram, A.; Goodenough, J.B. Lithium Insertion into Fe2(MO4)3 Frameworks: Comparison of M = W with M = Mo. J. Solid State Chem. 1987, 71, 349–360. [Google Scholar] [CrossRef]
  384. Roy, R.; Vance, E.R.; Alamo, J. [NZP], a new radiophase for ceramic nuclear waste forms. Mater. Res. Bull. 1982, 17, 585–589. [Google Scholar] [CrossRef]
  385. Alamo, R.; Roy, R. Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family. J. Mater. Sci. 1986, 21, 444–450. [Google Scholar] [CrossRef]
  386. Scheetz, B.E.; Roy, R. Novel Waste Forms. In Radioactive Waste Forms for the Future; Lutze, W., Ewing, R.C., Eds.; North-Holland: Amsterdam, The Netherlands, 1988; pp. 596–599. [Google Scholar]
  387. Orlova, A.I.; Zyryanov, V.N.; Kotel’nikov, A.R.; Demarin, V.T.; Rakitina, E.V. Ceramic phosphate matrices for high level waste. Behaviour in hydrothermal conditions. Radiokhimiya 1993, 35, 120–126. [Google Scholar]
  388. Orlova, A.I.; Volkov, Y.F.; Melkaya, R.F.; Masterova, L.Y.; Kulikov, I.A.; Alferov, V.A. Synthesis and Radiation Stability of NZP Phosphates Containg F-elements. Radiochemistry 1994, 36, 322–325. [Google Scholar]
  389. Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R. Sodium Zirconium-phosphate (NZP) as a Host Structure for Nuclear Waste Immobilization—A Review. Waste Manag. 1994, 14, 489–505. [Google Scholar] [CrossRef]
  390. Hawkins, H.T.; Scheetz, B.E.; Guthrie, G.D., Jr. Preparation of Monophasic [NZP] Radiophases: Potential Host Matrices for the Immobilization of Reprocessed Commercial High-Level Wastes. In Scientific Basis for Nuclear Waste Management. XX; Gray, W.J., Triay, I.R., Eds.; Material Research Society: Pittsburgh, PA, USA, 1997; pp. 387–394. [Google Scholar]
  391. Zyryanov, V.N.; Vance, E.R. Comparison of Sodium Zirconium Phosphate-Structured HLW forms and Synroc for High-Level Nuclear Waste Immobilization. In Scientific Basis for Nuclear Waste Management. XX; Gray, W.J., Triay, I.R., Eds.; Material Research Society: Pittsburgh, PA, USA, 1997; pp. 409–416. [Google Scholar]
  392. Miyajima, Y.; Miyoshi, T.; Tamaki, J.; Matsuoka, M.; Yamamoto, Y.; Masquelier, C.; Tabuchi, M.; Saito, Y.; Kageyama, H. Solubility range and ionic conductivity of large trivalent ion doped Na1+xMxZr2-xP3O12 (M: In, Yb, Er, Y, Dy, Tb, Gd) solid electrolytes. Solid State Ion. 1999, 124, 201–211. [Google Scholar] [CrossRef]
  393. Orlova, A.I.; Charlamova, A.A.; Volkov, Y.F. Investigation of Plutonium, Americium and Curium Phosphates as a Basis for Inclusion into Kosnarite-type Ceramic Waste Worms. In Review of Excess Weapons Plutonium Disposition, LLNL Contract Work in Russia, Proceedings of the 3rd Annual Meeting for Coordination and Review of LLNL Contract Work, St. Petersburg, Russia, 14–18 January 2002; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2002; pp. 407–418. [Google Scholar]
  394. Orlova, A.I.; Orlova, V.A.; Buchirin, A.V.; Beskrovnyi, A.I.; Kurazhkovskaya, V.S. Cesium and Its Analogs, Rubidium and Potassium, in Rhombohedral [NaZr2(PO4)3 Type] and Cubic (Langbeinite Type) Phosphates: 1. Crystal-Chemical Studies. Radiochemistry 2005, 47, 225–234. [Google Scholar] [CrossRef]
  395. Bykov, D.M.; Orlova, A.I.; Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N. Americium and Plutonium on Trigonal Phosphates (NZP Type) AM1/3Zr2(PO4)3 and Pu1/4Zr2(PO4)3. Radiochemistry 2006, 48, 234–239. [Google Scholar] [CrossRef]
  396. Bykov, D.M.; Konings, R.J.M.; Orlova, A.I. High Temperature Investigations of the rare earth NZP phosphates R1/3Zr2(PO4)3 (R = La, Nd, Eu, Lu) by drop calorimetry. J. Alloy. Compd. 2007, 439, 376–379. [Google Scholar] [CrossRef]
  397. Nalk, A.H.; Deb, S.B.; Chalke, A.B.; Saxena, M.K.; Ramakumar, K.L.; Venugopal, V.; Dharwadkar, S.R. Microwave-assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure—A case study of leachability of cesium. J. Chem. Sci. 2010, 122, 71–82. [Google Scholar]
  398. Orlova, A.I.; Lizin, A.A.; Tomilin, S.V.; Lukinykh, A.N.; Kanunov, A.E.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Nokhrin, A.V. Actinide Phosphates with NaZr2(PO4)3 Structure. High-Speed Production of Dense Ceramics. In Book of Abstracts: The 49-th Conference on Hot Laboratories and Remote Handling “HOTLAB 2012”; CEA: Marcoule, France, 2012. [Google Scholar]
  399. Orlova, A.I.; Volgutov, V.Y.; Mikhailov, D.A.; Bykov, D.M.; Skuratov, V.A.; Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 type: Synthesis of a dense ceramic material and its radiation testing. J. Nucl. Mater. 2014, 441, 232–239. [Google Scholar] [CrossRef]
  400. Bohre, A.; Shrivastava, O.P.; Awasthi, K. Crystal Chemistry of Immobilization of Tetravalent Ce and Se in Ceramic Matrix of Sodium Zirconium Phosphate. Phys. Chem. Res. 2014, 2, 21–29. [Google Scholar]
  401. Pet’kov, V.; Asabina, E.; Loshkarev, V.; Sukhanov, M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J. Nucl. Mater. 2016, 471, 122–128. [Google Scholar] [CrossRef]
  402. Pet’kov, V.I.; Dmitrienko, A.S.; Sukhanov, M.V.; Koval’skii, A.M.; Borovikova, E.Y. Synthesis, phase formation, and thermal expansion of sulfate phosphates with the NaZr2(PO4)3 structure. Russ. J. Inorg. Chem. 2016, 61, 623–629. [Google Scholar] [CrossRef]
  403. Glukhova, I.O.; Asabina, E.A.; Pet’kov, V.I.; Borovikova, E.Y.; Koval’skii, A.M. Phase Formation, Structure, and Thermal Expansion of Phosphates M0.5(1+x)FexTi2–x(PO4)3 (M = Mn, Zn). Russ. J. Inorg. Chem. 2016, 61, 681–687. [Google Scholar] [CrossRef]
  404. Liu, T.; Wang, B.; Gu, X.; Wang, L.; Ling, M.; Liu, G.; Wang, D.; Zhang, S. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 2016, 30, 756–761. [Google Scholar] [CrossRef]
  405. Kim, Y.; Kim, H.; Park, S.; Seo, I.; Kim, Y. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochim. Acta 2016, 191, 1–7. [Google Scholar] [CrossRef]
  406. Wang, J.; Zhang, Z.J. Luminescence properties and energy transfer studies of color tunable Tb3+-doped RE1/3Zr2(PO4)3 (RE = Y, La, Gd and Lu). J. Alloys Compd. 2016, 685, 841–847. [Google Scholar] [CrossRef]
  407. Ribero, D.; Seymour, K.C.; Kriven, W.M.; White, M.A. Synthesis of NaTi2(PO4)3 by the inorganic–organic steric entrapment method and its thermal expansion behavior. J. Am. Ceram. Soc. 2016, 99, 3586–3593. [Google Scholar] [CrossRef]
  408. Ananthanarayanan, A.; Ambashta, R.D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P.K. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste. J. Nucl. Mater. 2017, 487, 5–12. [Google Scholar] [CrossRef]
  409. Kanunov, A.; Glorieux, B.; Orlova, A.; Borovikova, E.; Zavedeeva, G. Synthesis, structure and luminescence properties of phosphates A1-3xEuxZr2(PO4)3 (A-alkali metal). Bull. Mater. Sci. 2017, 40, 7–16. [Google Scholar] [CrossRef]
  410. Orlova, A. Next Generation Ceramic Materials for Consolidation of radioactive alpha-wastes using the Innovative Technology Spark Plasma Sintering for their preparation. In Book of Abstracts: 3rd World Congress on Materials Science, Engineering, Oil, Gas and Petrochemistry; StatNano: Dunbai, UAE, 2018. [Google Scholar]
  411. Kanunov, A.E.; Orlova, A.I. Phosphors Based on Phosphates of NaZr2(PO4)3 and Langbeinite Structural Families. Rev. J. Chem. 2018, 8, 1–33. [Google Scholar] [CrossRef]
  412. Hallopeau, L.; Bregiroux, D.; Rousse, G.; Portehault, D.; Stevens, P.; Toussaint, G.; Laberty-Robert, C. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. J. Power Sources 2018, 378, 48–52. [Google Scholar] [CrossRef]
  413. Wang, H.; Okubo, K.; Inada, M.; Hasegawa, G.; Enomoto, N.; Hayashi, K. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering. Solid State Ion. 2018, 322, 54–60. [Google Scholar] [CrossRef]
  414. Savinkh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S. New Phosphate-Sulfates with NZP Structure. Russ. J. Inorg. Chem. 2018, 63, 714–724. [Google Scholar] [CrossRef]
  415. Savinkh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S. Preparation and Thermal Expansion of Calcium Iron Zirconium Phosphates with the NaZr2(PO4)3 Structure. Inorg. Mater. 2018, 54, 591–595. [Google Scholar] [CrossRef]
  416. Orlova, A.; Khainakov, S.; Alexandrov, A.; Garcia-Granda, S.; Savinykh, D. Crystallographic studies of NaZr2(PO4)3 phosphates at high temperatures. In Book of Abstracts: 31-st European Crystallographic Meeting “ECM31”; European Crystallographic Association: Oviedo, Spain, 2018. [Google Scholar]
  417. Savinkh, D.O.; Khainakov, S.A.; Boldin, M.S.; Orlova, A.I.; Aleksandrov, A.A.; Lantsev, E.A.; Sakharov, N.V.; Murashov, A.A.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Preparation of NZP-Type Ca0.75+0.5xZr1.5Fe0.5(PO4)3-x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior. Inorg. Mater. 2018, 54, 1267–1273. [Google Scholar] [CrossRef]
  418. Orlova, A.I.; Loginova, E.E.; Logacheva, A.A.; Demarin, V.T.; Shmidt, O.V.; Nikolaev, A.Y. A Crystal-Chemical Approach in the Development of Phosphate Materials as Environmentally Safe Chemical Forms of Utilization of Spent Cs-Containing Ferrocyanide Sorbents. Radiochemistry 2010, 52, 462–468. [Google Scholar] [CrossRef]
  419. Lizin, A.A.; Tomilin, S.V.; Gnevashov, O.E.; Lukinykh, A.N.; Orlova, A.I. Orthophosphates of Langbeinite Structure for Immobilization of Alkali Metal Cations of Salt Wastes from Pyrochemical Processes. Radiochemistry 2012, 54, 542–548. [Google Scholar] [CrossRef]
  420. Martynov, K.V.; Nekrasov, A.N.; Kotel’nikov, A.R.; Tananaev, I.G. Synthesis and study of the chemical stability and strength of zirconium phosphates with the structure of langbeinite with imitators of high-level radioactive waste (HLRW). Glass Phys. Chem. 2017, 43, 75–82. [Google Scholar] [CrossRef]
  421. Mold, P.; Bull, R.K.; Durrani, S.A. Constancy of 244Pu distribution in chondritic whitlockite. Nuclear Tracks 1981, 5, 27–31. [Google Scholar] [CrossRef]
  422. Nakamura, S.; Otsuka, R.; Aoki, H.; Akao, M.; Miura, N.; Yamamoto, T. Thermal expansion of hydroxyapatite-β-tricalcium phosphate ceramics. Thermochim. Acta 1990, 165, 57–72. [Google Scholar] [CrossRef]
  423. Belik, A.A.; Morozov, V.A.; Grechkin, S.V.; Khasanov, S.S.; Lazoryak, B.I. Crystal Structures of Double Vanadates, Ca9R(VO4)7. III. R = Nd, Sm, Gd, or Ce. Crystallogr. Rep. 2000, 45, 798–803. [Google Scholar]
  424. Orlova, A.I.; Orlova, M.P.; Solov’eva, E.N.; Loginova, E.E.; Demarin, V.T.; Kazantsev, G.N.; Samojlov, S.G.; Stefanovsky, S.V. Lanthanides in Phosphates with the structure of whitlockite mineral (analog of β-Ca3(PO4)2). Radiochemistry 2006, 48, 561–567. [Google Scholar] [CrossRef]
  425. Orlova, M.; Glorieux, B.; Orlova, A.; Montel, J.M.; Kazantsev, G.; Samoilov, S. Phosphates with structure of mineral whitlockite (beta-Ca3(PO4)3. In Book of Abstracts: Engineering Conf. International ECI “Alternative Materials for Radioactive Waste Stabilization and Nuclear Materials Containment”; ECI: Brooklyn, NY, USA, 2007. [Google Scholar]
  426. Orlova, A.I.; Orlova, M.P.; Loginova, E.E.; Lizin, A.A.; Tomilin, S.V.; Lukinykh, A.N.; Khainakov, S.A.; Garcia-Granda, S.; Demarin, V.T.; Oleneva, T.A.; et al. Thorium, Plutonium, Lanthanides and Some 1- and 2-Valent Elements in the New Orthophosphates with the Structure of Mineral Whitlockite. Chemistry, Structure, Stability. In Abstracts Booklet “Plutoniun Future—“The Science”, Proceedings of the Topical Conference on Plutonium and Actinides, Dijon, France, 7–11 July 2008; Elsevier: Amsterdam, Netherlands, 2008; pp. 313–314. [Google Scholar]
  427. Orlova, A.I.; Khainakov, S.A.; Loginova, E.E.; Oleneva, T.A.; Garcia Granda, S.; Kurazhkovskaya, V.S. Calcium Thorium Phosphate (whitlockite type Mineral). Synthesis and Structure Refinement. Crystallogr. Rep. 2009, 54, 591–597. [Google Scholar] [CrossRef]
  428. Benhamou, R.A.; Bessiere, A.; Wallez, G.; Viana, B.; Elaatmani, M.; Daoud, M.; Zegzouti, A. New insight in the structure-luminescence relationship of Ca9Eu(PO4)7. J. Solid State Chem. 2009, 182, 2319–2325. [Google Scholar] [CrossRef]
  429. Orlova, A.I.; Orlova, M.P.; Loginova, E.E.; Khainakov, S.; Garcia-Granda, S.; Lizin, A.A.; Tomilin, S.V.; Lukinikh, A.N.; Kurazshkovskay, V.S. Nature “experience” and experimental data on immobilization of actinides into calcium phosphate with whitelochite mineral structure. In Book of Abstracts: 6th Russian Conference on Radiochemistry “Radiochemistry-2009”; Lomonosov Moscow State University: Moscow, Russia, 2009; p. 294. [Google Scholar]
  430. Orlova, A.I.; Malanina, N.V.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Nokhrin, A.V. Praseodymium and neodymium phosphates Ca9Ln(PO4)7 of whitlockite structure. Preparation of a ceramic with a high relative density. Radiochemistry 2014, 56, 380–384. [Google Scholar] [CrossRef]
  431. Adcock, C.T.; Tschauner, O.; Hausrath, E.M.; Udry, A.; Luo, S.N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; et al. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nat. Commun. 2017, 8, 14667. [Google Scholar] [CrossRef] [Green Version]
  432. Carrasco, I.; Piccinelli, F.; Bettinelli, M. Optical Spectroscopy of Ca9Tb1-xEux(PO4)7 (x = 0, 0.1, 1): Weak Donor Energy Migration in the Whitlockite Structure. J. Phys. Chem. C 2017, 121, 16943–16950. [Google Scholar] [CrossRef]
  433. Bénard, P.; Brandel, V.; Dacheux, N.; Jaulmes, S.; Launay, S.; Lindecker, C.; Genet, M.; Louër, D.; Quarton, M. Th4(PO4)4P2O7, a New Thorium Phosphate:  Synthesis, Characterization, and Structure Determination. Chem. Mater. 1996, 8, 181–188. [Google Scholar] [CrossRef]
  434. Dacheux, N.; Podor, R.; Chassigneux, B.; Brandel, V.; Genet, M. Actinides Iimmobilization in New Matrices Bbased on Solid Solutions: Th4-xMxIV(PO4)(4)P2O7, (M-IV = U-238, Pu-239). J. Alloy. Compd. 1998, 271, 236–239. [Google Scholar] [CrossRef]
  435. Dacheux, N.; Podor, R.; Brandel, V.; Genet, M. Investigations of systems ThO2-MO2-P2O5 (M = U, Ce, Zr, Pu). Solid Solutions of Thorium-Uranium(IV) and ThoriumPlutonium(IV) Phosphate-diphosphates. J. Nucl. Mater. 1998, 252, 179–186. [Google Scholar] [CrossRef]
  436. Pichot, E.; Dacheux, N.; Brandel, V.; Genet, M. Investigation of Cs-137(+), Sr-85(2+) and Am-241(3+) Ion Exchange on Thorium Phosphate Hydrogenphosphate and their Immobilization in the Thorium Phosphate Diphosphate. New J. Chem. 2000, 24, 1017–1023. [Google Scholar] [CrossRef]
  437. Clavier, N.; Dacheux, N.; Martinez, P.; Du Fou de Kerdaniel, E.; Aranda, L.; Podor, R. Sintering of β-Thorium−Uranium(IV) Phosphate−Diphosphate Solid Solutions from Low-Temperature Precursors. Chem. Mater. 2004, 16, 3357–3366. [Google Scholar] [CrossRef]
  438. Clavier, N.; Dacheux, N.; Podor, R. Synthesis, characterization, sintering, and leaching of β-TUPD/monazite radwaste matrices. Inorg. Chem. 2006, 45, 22. [Google Scholar] [CrossRef]
  439. Clavier, N.; Du Fou de Kerdaniel, E.; Dacheux, N.; Le Coustumer, P.; Drot, R.; Ravaux, J.; Simoni, E. Behavior of thorium–uranium (IV) phosphate–diphosphate sintered samples during leaching tests. Part II. Saturation processes. J. Nucl. Mater. 2006, 349, 304–316. [Google Scholar] [CrossRef]
  440. Morozov, V.A.; Mironov, A.V.; Lazoryak, B.I.; Khaikina, E.G.; Basovich, O.M.; Rossell, M.D.; Van Tendeloo, G. Ag1/8Pr5/8MoO4: An incommensurately modulated scheelite-type structure. J. Solid State Chem. 2006, 179, 1183–1191. [Google Scholar] [CrossRef]
  441. Maček Kržmanc, M.; Logar, M.; Budič, B.; Suvorov, D. Dielectric and Microstructural Study of the SrWO4, BaWO4, and CaWO4 Scheelite Ceramics. J. Am. Ceram. Soc. 2011, 94, 2464–2472. [Google Scholar] [CrossRef]
  442. Cheng, J.; He, J. Electrical properties of scheelite structure ceramic electrolytes for solid oxide fuel cells. Mater. Lett. 2017, 209, 525–527. [Google Scholar] [CrossRef]
  443. Zhang, B.; Zhao, Q.; Zhao, C.; Chang, A. Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1-xYxCeNbWO8 NTC ceramics. J. Alloy. Compd. 2017, 698, 1–6. [Google Scholar] [CrossRef]
  444. Xiao, M.; Sun, H.; Zhou, Z.; Zhang, P. Bond ionicity, lattice energy, bond energy, and microwave dielectric properties of Ca1-xSrxWO4 ceramics. Ceram. Int. 2018, 44, 20686–20691. [Google Scholar] [CrossRef]
  445. Potanina, E.A.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Chuvil’deev, V.N.; Tokarev, M.G.; Shotin, S.V.; Zelenov, A.Y. Characterization of Nax(Ca/Sr)1-2xNdxWO4 complex tungstates fine-grained ceramics obtained by Spark Plasma Sintering. Ceram. Int. 2018, 44, 4033–4044. [Google Scholar] [CrossRef]
  446. Potanina, E.A.; Orlova, A.I.; Mikhailov, D.A.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Lantcev, E.A.; Tokarev, M.G.; Murashov, A.A. Spark Plasma Sintering of fine-grained SrWO4 and NaNd(WO4)2 tungstates ceramics with the scheelite structure for nuclear waste immobilization. J. Alloys Compd. 2019, 774, 182–190. [Google Scholar] [CrossRef]
  447. Pang, L.-X.; Zhou, D.; Yue, Z.-X. Temperature independent low firing [Ca0.25(Nd1-xBix)0.5]MoO4 (0.2 ≤ x ≤ 0.8) microwave dielectric ceramics. J. Alloys Compd. 2019, 781, 385–388. [Google Scholar] [CrossRef]
  448. Hanusa, J. Raman scattering and ifra-red spectra of tungstates KLn(WO4)2-family (Ln: La – Lu). J. Mol. Struct. 1984, 114, 471–474. [Google Scholar] [CrossRef]
  449. Pages, M.; Freundlich, W. Phases of scheelite structure in the neptunium molybdate and sodium or litium molybdate systems. J. Inorg. Nucl. Chem. 1972, 34, 2797–2801. [Google Scholar] [CrossRef]
  450. Lee, M.R.; Mahe, P. Molybdates et tungstates d`uranium IV et de sodium. C. R. Acad. Sci. Paris. 1974, 279, 1137–1170. [Google Scholar]
  451. Tabuteau, A.; Pages, M. Identification and crystal chemistry of double molybdates of alkalimetals (K, Rb, Cs) and transuranium elements (Np, Pu, Am). J. Inorg. Nucl. Chem. 1980, 42, 401–403. [Google Scholar] [CrossRef]
  452. Tabuteau, A.; Pages, M.; Freundlich, W. Sur les phases de structure sheelite dans les systems molybdate deplutonium-molybdate de litium du sodium. Mater. Res. Bull. 1972, 7, 691–697. [Google Scholar] [CrossRef]
  453. Müller-Buschbaum, H.; Gallinat, S. Synthese und Röntgenstrukturanalyse von KCuGd2Mo4O16 und CuTb2Mo4O16. Z. Naturforsch. 1995, 50, 1794–1798. [Google Scholar] [CrossRef]
  454. 454. Basovich, M.; Khaikina, E.G.; Vasil’ev, E.V.; Frolov, A.M. Phase formation in the Li2MoO4Rb2MoO4Ln2(MoO4)3 systems and the poperties of LiRbLn2(MoO4)4. Zh. Neorg. Khim. 1995, 40, 2047-251. [Google Scholar]
  455. Basovich, O.M.; Khaikina, E.G.; Solodovnikov, S.F.; Tsyrenova, G.D. Phase formation in the systems Li2MoO4K2MoO4Ln2(MoO4)3 (Ln = La, Nd, Dy, Er) and properties of triple molybdates LiKLn2(MoO4)4. J. Solid State Chem. 2005, 178, 1580–1588. [Google Scholar] [CrossRef]
  456. Szillat, H.; Müller-Buschbaum, H. Synthese und Kristallstructur von KCuHoMo4O16. Z. Nat. 1994, 49, 350–354. [Google Scholar]
  457. Wang, Y.; Wu, W.; Fu, X.; Liu, M.; Cao, J.; Shao, C.; Chen, S. Metastable scheelite CdWO4:Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dyes Pigment. 2017, 147, 283–290. [Google Scholar] [CrossRef]
  458. Donald, I.W. Waste Immobilisation in Glass and Ceramic Based Hosts; Wiley: Chichester, UK, 2010; 507p. [Google Scholar]
  459. Kinoshita, H. Development of ceramic matrices for high level radioactive waste. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M., Ed.; Woodhead: Cambridge, UK, 2011; Chapter 10; p. 293. [Google Scholar]
  460. Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 497. [Google Scholar]
  461. Zhang, Y.; Wei, T.; Zhang, Z.; Kong, L.; Dayal, P.; Gregg, D.J. Uranium brannerite with Tb(III)/Dy(III) ions: Phase formation, structures, and crystallizations in glass. J. Am. Ceram. Soc. 2019, 1–11. [Google Scholar] [CrossRef]
Figure 1. Silica, SiO2. α-quartz (low temperature modification), structure rhombohedra, Sp. gr. R3. β-quartz (high-temperature modification, it forms from α-quartz at 846 K, stable up to 1140 K). Structure hexagonal, Sp. gr. P6222. Cations can be Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr and Te.
Figure 1. Silica, SiO2. α-quartz (low temperature modification), structure rhombohedra, Sp. gr. R3. β-quartz (high-temperature modification, it forms from α-quartz at 846 K, stable up to 1140 K). Structure hexagonal, Sp. gr. P6222. Cations can be Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr and Te.
Materials 12 02638 g001
Figure 2. Fluorite, ZrO2. Structure cubic, Sp. gr. Fm3m. Cations can be Zr, Hf, Th, U, Np and Pu.
Figure 2. Fluorite, ZrO2. Structure cubic, Sp. gr. Fm3m. Cations can be Zr, Hf, Th, U, Np and Pu.
Materials 12 02638 g002
Figure 3. Pyrochlore. A2B2O7. Structure cubic, Sp. gr. Fd3m. A-site-cations can be Na, Ca, Y, lanthanides, Th and U, while on the B-site—cations can be Fe3+, Ti, Zr, Nb and Ta.
Figure 3. Pyrochlore. A2B2O7. Structure cubic, Sp. gr. Fd3m. A-site-cations can be Na, Ca, Y, lanthanides, Th and U, while on the B-site—cations can be Fe3+, Ti, Zr, Nb and Ta.
Materials 12 02638 g003
Figure 4. Murataite. A6B12C5TX40-x. Structure: Cubic, Sp. gr. F4m. Cations can be U, Np, Pu, Am, Cm and REE, including Gd (a neutron absorber).
Figure 4. Murataite. A6B12C5TX40-x. Structure: Cubic, Sp. gr. F4m. Cations can be U, Np, Pu, Am, Cm and REE, including Gd (a neutron absorber).
Materials 12 02638 g004
Figure 5. Zirconolite. CaZrTi2O7, Structure monoclinic, Sp. gr. C2/c. Cations can be Gd, Hf, Ce, Th, U, Pu and Nb.
Figure 5. Zirconolite. CaZrTi2O7, Structure monoclinic, Sp. gr. C2/c. Cations can be Gd, Hf, Ce, Th, U, Pu and Nb.
Materials 12 02638 g005
Figure 6. Perovskite. CaTiO3, Structure cubic, Sp. gr. Pm3m. Cations can be Ca, Y, REE, Ti, Zr, U and Pu.
Figure 6. Perovskite. CaTiO3, Structure cubic, Sp. gr. Pm3m. Cations can be Ca, Y, REE, Ti, Zr, U and Pu.
Materials 12 02638 g006
Figure 7. Hollandite. Ba1.2(Al,Ti)8O16. Structure tetragon, Sp. gr. I4/m, monocl, Sp. gr. I2/m. Cations can be Na, K, Cs, Mg, Ca, Sr, Ba, Al, Fe, Mn3+, Si, Ti and Mn4+.
Figure 7. Hollandite. Ba1.2(Al,Ti)8O16. Structure tetragon, Sp. gr. I4/m, monocl, Sp. gr. I2/m. Cations can be Na, K, Cs, Mg, Ca, Sr, Ba, Al, Fe, Mn3+, Si, Ti and Mn4+.
Materials 12 02638 g007
Figure 8. Garnet, Ca3Al2Si3O12. Structure cubic, Sp. gr. Ia3d. Cations can be Mg, Ca, Mn, Co, Cd, Al, Sc, Fe, Ga, Y, In, La, REE, Ti, Zr, Ru, Sn, N, P, V and As.
Figure 8. Garnet, Ca3Al2Si3O12. Structure cubic, Sp. gr. Ia3d. Cations can be Mg, Ca, Mn, Co, Cd, Al, Sc, Fe, Ga, Y, In, La, REE, Ti, Zr, Ru, Sn, N, P, V and As.
Materials 12 02638 g008
Figure 9. Crichtonite. Sr(Mn,Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH)38. Structure rombohedral, Sp. gr. R3. Cations can be Mg, Mn, Ni, Cu, Mn, Sr, Pb, Cr, Fe, Y, La, Ce, Ti, Zr, Hf, U, V and Nb.
Figure 9. Crichtonite. Sr(Mn,Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH)38. Structure rombohedral, Sp. gr. R3. Cations can be Mg, Mn, Ni, Cu, Mn, Sr, Pb, Cr, Fe, Y, La, Ce, Ti, Zr, Hf, U, V and Nb.
Materials 12 02638 g009
Figure 10. Freudenbergite (spinel). Na2Al2(Ti,Fe)6O16;. Structure monocl. Sp. gr. C12/m1. Cations can be Na, K, Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si and Nb.
Figure 10. Freudenbergite (spinel). Na2Al2(Ti,Fe)6O16;. Structure monocl. Sp. gr. C12/m1. Cations can be Na, K, Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si and Nb.
Materials 12 02638 g010
Figure 11. P-Pollucite. (Na,K,Rb,Cs)MgAl0.5P1.5O6; Structure cubic, Sp. gr. I4132. Cations can be Li, Na, K, Rb, Cs, Tl, Be, Mg, Mn, Co, Ni, Cd, Sr, Ba, Sr. Ba, B, Al, Fe, Si, Ti, P, V, Nb and Ta.
Figure 11. P-Pollucite. (Na,K,Rb,Cs)MgAl0.5P1.5O6; Structure cubic, Sp. gr. I4132. Cations can be Li, Na, K, Rb, Cs, Tl, Be, Mg, Mn, Co, Ni, Cd, Sr, Ba, Sr. Ba, B, Al, Fe, Si, Ti, P, V, Nb and Ta.
Materials 12 02638 g011
Figure 12. Magnetoplumbite. (Sr,Ba, ((Na,Cs)0.5+La0.5))(Al,Fe)12O19. Structure hexagon., Sp. gr. P63/mmc. Cations can be Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu, An, Si, Ti and Sn.
Figure 12. Magnetoplumbite. (Sr,Ba, ((Na,Cs)0.5+La0.5))(Al,Fe)12O19. Structure hexagon., Sp. gr. P63/mmc. Cations can be Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu, An, Si, Ti and Sn.
Materials 12 02638 g012
Figure 13. Zircon/Thorite/Coffinite. ZrSiO4/ThSiO4/USiO4. Structure tetragon., Sp. gr. I41/amd. Cations can be Na, Tl, Mg, Ca, Mn, Co, Fe, Ti, REE, Ti, Th, U, Pi, P, V, Mo and Se.
Figure 13. Zircon/Thorite/Coffinite. ZrSiO4/ThSiO4/USiO4. Structure tetragon., Sp. gr. I41/amd. Cations can be Na, Tl, Mg, Ca, Mn, Co, Fe, Ti, REE, Ti, Th, U, Pi, P, V, Mo and Se.
Materials 12 02638 g013
Figure 14. Titanite (sphene). CaTiSiO5 [CaTiO(SiO4)]. Structure monocl., Sp. gr. P2I/a. Cations can be Mg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y, Zr, Th and F.
Figure 14. Titanite (sphene). CaTiSiO5 [CaTiO(SiO4)]. Structure monocl., Sp. gr. P2I/a. Cations can be Mg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y, Zr, Th and F.
Materials 12 02638 g014
Figure 15. Britholite (silicate apatite, oxy-apatite). (REE,Ca)5(SiO4,PO4)3(OH,F)-Structure monoclin. Sp. gr. P21/hexagonal, Sp. gr. P63/m. Cations can be Cs, Sr, B, REE, Th, U, Np and Pu.
Figure 15. Britholite (silicate apatite, oxy-apatite). (REE,Ca)5(SiO4,PO4)3(OH,F)-Structure monoclin. Sp. gr. P21/hexagonal, Sp. gr. P63/m. Cations can be Cs, Sr, B, REE, Th, U, Np and Pu.
Materials 12 02638 g015
Figure 16. Zeolites. Xx/n[(AlO2)x(SiO2)y] (where Xn+ is the charge balancing counter-ion). Structure depends on chemical composition. Cations can be Na, K, NH4+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE and Ti.
Figure 16. Zeolites. Xx/n[(AlO2)x(SiO2)y] (where Xn+ is the charge balancing counter-ion). Structure depends on chemical composition. Cations can be Na, K, NH4+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE and Ti.
Materials 12 02638 g016
Figure 17. Pollucite. (Ca,Na)2Al2Si4O12·2H2O. Structure cubic, Sp. gr. Ia3d. Cations can be Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V and Nb.
Figure 17. Pollucite. (Ca,Na)2Al2Si4O12·2H2O. Structure cubic, Sp. gr. Ia3d. Cations can be Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V and Nb.
Materials 12 02638 g017
Figure 18. Nepheline/Leucite. (Na, K)AlSiO4/K[AlSi2O6]. Structure hexagon., Sp. gr. P63/tetragonal, Sp. gr. I41/a and I41/acd or cubic, Sp. gr. Ia3d. Cations can be Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn, Co, Ni Al, Fe, Cr, Si, Ti and V.
Figure 18. Nepheline/Leucite. (Na, K)AlSiO4/K[AlSi2O6]. Structure hexagon., Sp. gr. P63/tetragonal, Sp. gr. I41/a and I41/acd or cubic, Sp. gr. Ia3d. Cations can be Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn, Co, Ni Al, Fe, Cr, Si, Ti and V.
Materials 12 02638 g018
Figure 19. Sodalite.group minerals. Sodalite/Nosean/Hauyne/Helvite/Danalite/Genthelvite/Lazurite. (Na,K)6[Al6Si6O24]·(2NaCl)/(Na,K)6[Al6Si6O24](Na2SO4)/(Na)6[Al6Si6O24]((Ca,Na)SO4)1-2/(Mn4[Be3Si3O12]S/(Fe4[Be3Si3O12]S)/(Zn4[Be3Si3O12]S)/(Ca,Na)6[Al6Si6O24]((Ca,Na),S,SO4,Cl)x; Structure cubic, Sp. gr. P3n Cations and anions can be Na, K, Be, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 and CO3.
Figure 19. Sodalite.group minerals. Sodalite/Nosean/Hauyne/Helvite/Danalite/Genthelvite/Lazurite. (Na,K)6[Al6Si6O24]·(2NaCl)/(Na,K)6[Al6Si6O24](Na2SO4)/(Na)6[Al6Si6O24]((Ca,Na)SO4)1-2/(Mn4[Be3Si3O12]S/(Fe4[Be3Si3O12]S)/(Zn4[Be3Si3O12]S)/(Ca,Na)6[Al6Si6O24]((Ca,Na),S,SO4,Cl)x; Structure cubic, Sp. gr. P3n Cations and anions can be Na, K, Be, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 and CO3.
Materials 12 02638 g019
Figure 20. Cancrinite. (Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2O. Structure hexagonal, Sp. gr. P63. Cations and anions can be Na, K, Ca. Al, Si, SO4 and Cl.
Figure 20. Cancrinite. (Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2O. Structure hexagonal, Sp. gr. P63. Cations and anions can be Na, K, Ca. Al, Si, SO4 and Cl.
Materials 12 02638 g020
Figure 21. SilicoTitanate (CST). SiTiO4. Structure cubic, Sp. gr. Pm3m up to 105 °C, after-tetragonal Sp. gr. I4/mcm or P42/mcm. Cations can be Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb and Ta.
Figure 21. SilicoTitanate (CST). SiTiO4. Structure cubic, Sp. gr. Pm3m up to 105 °C, after-tetragonal Sp. gr. I4/mcm or P42/mcm. Cations can be Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb and Ta.
Materials 12 02638 g021
Figure 22. Micas (Dehydroxylated). XY2–3Z4O10(OH, F)2 with X = K, Na, Ba, Ca, Cs, (H3O) and (NH4); Y = Al, Mg, Fe2+, Li, Cr, Mn, V and Zn; and Z = Si, Al, Fe3+, Be and Ti. Structure monoclinic, Sp. gr. C2/c.
Figure 22. Micas (Dehydroxylated). XY2–3Z4O10(OH, F)2 with X = K, Na, Ba, Ca, Cs, (H3O) and (NH4); Y = Al, Mg, Fe2+, Li, Cr, Mn, V and Zn; and Z = Si, Al, Fe3+, Be and Ti. Structure monoclinic, Sp. gr. C2/c.
Materials 12 02638 g022
Figure 23. Monazite. (Ce,La,Nd,Th)(PO4,SiO4). Structure monoclinic, Sp. gr. P21/n. Cations can be Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Am, Cm, Cf, Es, Ge, Zr, Th, U, Np, Pu, Cm; Si, Se, V, As and S.
Figure 23. Monazite. (Ce,La,Nd,Th)(PO4,SiO4). Structure monoclinic, Sp. gr. P21/n. Cations can be Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Am, Cm, Cf, Es, Ge, Zr, Th, U, Np, Pu, Cm; Si, Se, V, As and S.
Materials 12 02638 g023
Figure 24. Xenotime (YPO4). Ce,La,Nd,Th)(PO4,SiO4). Structure tetragonal, Sp. gr. I41/amd. Cations can be Be, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th and U.
Figure 24. Xenotime (YPO4). Ce,La,Nd,Th)(PO4,SiO4). Structure tetragonal, Sp. gr. I41/amd. Cations can be Be, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th and U.
Materials 12 02638 g024
Figure 25. Apatite. Ca5(PO4)3(OH,F,Cl). Apatite. Structure hexagonal, Sp. gr. P63/m, monoclinic, Sp. gr. P21/b. Cations and anions can be Na, K, Cs, Mg, Ca, Mn, Ni, Sr, Ba, Cd, Hg, Pb, Cr, Y, REE, Cm, Si, Th, U, P, V, As, S, F, Cl, OH and CO3.
Figure 25. Apatite. Ca5(PO4)3(OH,F,Cl). Apatite. Structure hexagonal, Sp. gr. P63/m, monoclinic, Sp. gr. P21/b. Cations and anions can be Na, K, Cs, Mg, Ca, Mn, Ni, Sr, Ba, Cd, Hg, Pb, Cr, Y, REE, Cm, Si, Th, U, P, V, As, S, F, Cl, OH and CO3.
Materials 12 02638 g025
Figure 26. Sodium zirconium phosphate (NZP), NaZr2(PO4). Structure rhombohedral, Sp. gr. Rc, R3c, R3. Cations can be Li, Na, K, Rb, Cs, Cu and Ag; Mg, Ca, Mn, Zn, Sr and Ba; Mn, Co, Ni, Cu, Zn and Cd; Sc, Fe, Bi, Ce–Lu, Am and Cm; Zr, Hf, Th, U, Np and Pu; V, Nb, Sb and Ta; Ti, Ge, Zr, Hf, U, Np, Pu, Mo and Sn; Al, Sc, Cr, Fe, Ga, Y and In; Gd, Tb, Dy, Er and Yb; Mg; Na and K; Si, P, S, Mo and W.
Figure 26. Sodium zirconium phosphate (NZP), NaZr2(PO4). Structure rhombohedral, Sp. gr. Rc, R3c, R3. Cations can be Li, Na, K, Rb, Cs, Cu and Ag; Mg, Ca, Mn, Zn, Sr and Ba; Mn, Co, Ni, Cu, Zn and Cd; Sc, Fe, Bi, Ce–Lu, Am and Cm; Zr, Hf, Th, U, Np and Pu; V, Nb, Sb and Ta; Ti, Ge, Zr, Hf, U, Np, Pu, Mo and Sn; Al, Sc, Cr, Fe, Ga, Y and In; Gd, Tb, Dy, Er and Yb; Mg; Na and K; Si, P, S, Mo and W.
Materials 12 02638 g026
Figure 27. Langbeinite. K2Mg2(SO4)3. Structure cubic, Sp. gr. P213. Cations can be Na, K, Rb, Cs, Tl, NH4, Mg, Sr, Ba, Pb, Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga, V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P, Nb, Ta and S.
Figure 27. Langbeinite. K2Mg2(SO4)3. Structure cubic, Sp. gr. P213. Cations can be Na, K, Rb, Cs, Tl, NH4, Mg, Sr, Ba, Pb, Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga, V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P, Nb, Ta and S.
Materials 12 02638 g027
Figure 28. Whitlockite. Ca3(PO4)2. Structure trigonal, Sp. gr. R3c.Cations can be H, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th, U and Pu.
Figure 28. Whitlockite. Ca3(PO4)2. Structure trigonal, Sp. gr. R3c.Cations can be H, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th, U and Pu.
Materials 12 02638 g028
Figure 29. Thorium phosphate/Diphosphate (TPD). Th4(PO4)4P2O7. Structure orthorhombic. Sp. gr. Pbcm and Pcam. Cations can be U, Np, Pu, Am and Cm.
Figure 29. Thorium phosphate/Diphosphate (TPD). Th4(PO4)4P2O7. Structure orthorhombic. Sp. gr. Pbcm and Pcam. Cations can be U, Np, Pu, Am and Cm.
Materials 12 02638 g029
Figure 30. Scheelite. CaWO4. Structure tetragonal, Sp. gr. I4/c. Cations can be Li, Na, K, Rb, Cs, Tl, Ca, Sr, Ba, Mn, Cu, Fe, Ce, La–Lu, Y, Ge, Th, U, Np, Pu, Nb, Ta, V, Mo, W, Re and I.
Figure 30. Scheelite. CaWO4. Structure tetragonal, Sp. gr. I4/c. Cations can be Li, Na, K, Rb, Cs, Tl, Ca, Sr, Ba, Mn, Cu, Fe, Ce, La–Lu, Y, Ge, Th, U, Np, Pu, Nb, Ta, V, Mo, W, Re and I.
Materials 12 02638 g030
Table 1. Crystalline ceramic materials as potential forms for nuclear waste immobilization.
Table 1. Crystalline ceramic materials as potential forms for nuclear waste immobilization.
Type of Chemical CompoundStructureCompound Cations
Structural TypeSyngony, Sp. gr.
Oxide Compounds
Simple oxidesSiO2Silicarhombohedral, R3Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr, Te
CeO2Fluoritecubic, Fm3mCs, Sr, Ce, Y, Zr, U, Th, Hf, Pu, U, Np
Complex oxidesA2B2O7Pyrochlorecubic, F d 3 ¯ m A: Na, Ca, U, Th, Y, Ln; B: Nb, Ta, Ti, Zr, Fe3+
A6B12C5TX40-xMurataitecubic, F 4 3 ¯ m U, Np, Pu, Am, Cm, REE
CaZrTi2O7Zirconolitetrigonal C2/cGd, Hf, Ce, Th, U, Pu, Nb
CaTiO3Perovskitecubic, Pm3m;
rhombohedral, Pnma
Ca, Y, REE, Ti, Zr, U, Pu
Ba1.2(Al,Ti)8O16Hollanditetetragonal, I4/mNa, K, Cs, Mg, Ca, Ba, Al, Fe, Mn3+, Si, Ti, Mn4+
[8]A3[6]B2[TiO4]3
.[8](Ca,Gd, actinides)[6]Fe2[4]Fe3O12
Garnetcubic, Ia3dA, B: REE, An, Y, Mg, Ca, Fe2+, Mn2+; X: Cr3+, Fe3+, Al3+, Ga3+, Si4+, Ge4+, V5+
(Sr,Pb,La,Ce,Y)(Ti,Fe3+,Mn,Mg,Zn,Cr,Al,Zr,Hf,U,V,Nb,Sn,Cu,Ni)21O38Crichtoniterhombohedral, R3
Na2Al2(Ti,Fe)6O16Freudenbergitespinel based phasemonoclinic, C12/m1Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si, Nb
P-Pollucitecubic, I4132Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V, Nb, Ta
ZrSiO4/ThSiO4/USiO4Zircon/Thorite/Coffinitetetragonal, I41/amdREE, Th, U, Pu; Na, Mg, Ca, Mn, Co, Fe, Ti, P, V, Se, Mo
CaTiSiO5 [CaTiO(SiO4)]Titanite (sphene)monoclinic, P2I/aMg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y, Zr, Th, F
(REE,Ca)5(SiO4,PO4)3(OH,F)Britholite (oxy-apatite)monoclinic, sp. gr. P21, hexagonal, P63/mCs, Sr, B, Th, U, Np, Nd3+, La3+, Pu3+
Salt compounds
Framework Silicates(Xx/n[(AlO2)x(SiO2)y]Zeolites Na, K, NH4+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE, Ti
(Ca,Na)2Al2Si4O12·2H2OPollucitecubic, Ia3dLi, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V, Nb
NaAlSiO4Nepheline/LeuciteNepheline: hexagonal, P63;
Leucite: tetragonal, I41/a, I41/acd; cubic, Ia3d
Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn, Co, Ni, Al, Fe, Cr, Si, Ti, V
Na8Cl2Al6Si6O24Sodalitecubic, P 4 ¯ 3 n Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4, CO3
(Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2OCancrinitehexagonal, P63Cl, SO42−,
[(Ca,Na,K,Ba)AlSiO4Crystalline SilicoTitanate (CST)cubic, sp. gr. Pm3m up to 105 °C, after tetragon. symm., sp. gr. I4/mcm or P42/mcmNa, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb, Ta
LiAl3Si3O11, NaAl3Si3O11, KAl3Si3O11, RbAl3Si3O11, CsAl3Si3O11, TlAl3Si3O11, Ca0.50.5Al3Si3O11, Sr0.50.5Al3Si3O11, Ba0.50.5Al3Si3O11, La0.330.66Al3Si3O11Micas (Dehydroxylated)monoclinic, C2/cCs, Rb, Ba, Mg, Fe2+, Fe3+, Mn, Li, Cr, Ti, V
PhosphatesCePO4Monazitemonoclinic, P21/nCe: Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Am, Cm, Cf, Es, Ge, Zr, Th, Np, U, Pu; P: Cr, Si, Se, V, As, S
YPO4Xenotimetetragonal, I41/amdBe, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th, U
Ca4-xRE6+x(SiO4)6-y(PO4)y(O,F)2Apatitehexagonal, P63/m; monoclinic, P21/bNa, K, Cs, Mg, Ca, Sr, Ba, Mn, Ni, Cd, Hg, Pb, Cr, Y, REE, Th, U, Si, P, V, As, S, F, Cl, OH, CO3
NaZr2(PO4)3Sodium zirconium phosphate (NZP)rhombohedral, R 3 ¯ c , R3c, R3Li, Na, K, Rb, Cs; H, Cu(I), Ag, Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn, Cd, Hg, Al, Ga, In, Sc, Y, La, Ce-Lu, Am, Cm, V, Cr, Fe, Sb, Bi, Ge, Sn, Ti, Zr, Hf, Mo, Ce, Th, U, Np, Pu, Sb, Nb, Ta
K2Mg2(SO4)3Langbeinitecubic, P213 Na, K, Rb, Cs, Tl, NH4, Mg, Sr, Ba, Pb, Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga, V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P, Nb, Ta, S
β-Ca3(PO4)2Whitlockitetrigonal, R3cH, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th, Pu
Th4(PO4)4P2O7Thorium phosphate/Diphosphate (TPD)orthorhombic, Pbcm, PcamU, Np, Pu, Am, Cm
TungstatesCaWO4Scheelitetetragonal, I4/cCa: Li, Na, K, Rb, Cs, Tl; Ca, Sr, Ba, Mn, Cu; Fe, Ce, La-Lu, Y; Th, U, Np, Pu; Nb, Ta; W: Mo, Re, I, V, Ge
AluminatesX(Al,Fe)12O19Magnetoplumbitehexagonal, P63/mmcNa, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu, An, Si, Ti, Sn

Share and Cite

MDPI and ACS Style

Orlova, A.I.; Ojovan, M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials 2019, 12, 2638. https://doi.org/10.3390/ma12162638

AMA Style

Orlova AI, Ojovan MI. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials. 2019; 12(16):2638. https://doi.org/10.3390/ma12162638

Chicago/Turabian Style

Orlova, Albina I., and Michael I. Ojovan. 2019. "Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization" Materials 12, no. 16: 2638. https://doi.org/10.3390/ma12162638

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop