Next Article in Journal
Quantum Fisher Information and Bures Distance Correlations of Coupled Two Charge-Qubits Inside a Coherent Cavity with the Intrinsic Decoherence
Next Article in Special Issue
Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte Fractional Inequalities
Previous Article in Journal
Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
Previous Article in Special Issue
About the Cauchy–Bunyakovsky–Schwarz Inequality for Hilbert Space Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function

by
Michael Th. Rassias
1,2,*,
Bicheng Yang
3 and
Andrei Raigorodskii
4,5,6,7
1
Institute of Mathematics, University of Zurich, CH-8057 Zurich, Switzerland
2
Program in Interdisciplinary Studies, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
3
Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
4
Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700 Dolgoprudny, Russia
5
Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia
6
Institute of Mathematics and Computer Science, Buryat State University, 670000 Ulan-Ude, Russia
7
Caucasus Mathematical Center, Adyghe State University, 352700 Maykop, Russia
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(2), 351; https://doi.org/10.3390/sym13020351
Submission received: 28 January 2021 / Revised: 9 February 2021 / Accepted: 17 February 2021 / Published: 21 February 2021
(This article belongs to the Special Issue Functional Equations and Analytic Inequalities)

Abstract

:
In this work we establish a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent function. We prove that the constant factor, which is associated with the cosine function, is optimal. Some special cases as well as some operator expressions are also presented.

1. Introduction

If
0 < 0 f 2 ( x ) d x < a n d 0 < 0 g 2 ( y ) d y < ,
then we have the following well-known Hilbert integral inequality (see [1]):
0 0 f ( x ) g ( y ) x + y d x d y < π 0 f 2 ( x ) d x 0 g 2 ( y ) d y 1 2 ,
where the constant factor π is the best possible. Recently, using weight functions, some extensions of (1) were established in Yang’s two books (see [2,3]) and the papers [4,5,6,7,8,9]. Most of them are constructed in the quarter plane of the first quadrant.
In 2007, Yang [10] proved the following Hilbert-type integral inequality in the whole plane (namely ( x , y ) -plane) involving the exponential function:
f ( x ) g ( y ) ( 1 + e x + y ) λ d x d y < B λ 2 , λ 2 e λ x f 2 ( x ) d x e λ y g 2 ( y ) d y 1 2 ,
with the best possible constant factor B ( λ 2 , λ 2 ) , λ > 0 , where by B ( u , v ) we denote the beta function). In the papers [11,12,13,14,15,16,17,18,19,20,21,22], the authors have presented some new Hilbert-type integral inequalities in the whole plane for which they have established optimal constant factors.
In 2017, Hong [23] proved two equivalent statements between a Hilbert-type inequality with the general homogenous kernel and a few parameters. This domain of research is very vibrant with many authors investigating other types of integral inequalities (cf. [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]).
In this paper, we follow the idea of Hong’s work in [23] and using techniques of real analysis as well as weight functions, we prove a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent function. The constant factor which is related to the cosine function is proved to be the best possible. Within this work, we also consider some particular cases of interest as well as operator expressions.

2. Some Lemmas

For ρ > 0 , 0 < σ < γ , setting h ( u ) : = arctan ρ u γ ( u > 0 ) , we obtain
k ρ ( γ ) ( σ ) : = 0 h ( u ) u σ 1 d u = 0 arctan ρ u γ u σ 1 d u ( v = ρ 2 u 2 γ ) = ρ σ / γ 2 γ 0 ( arctan v 1 2 ) v σ 2 γ 1 d v = ρ σ / γ σ 0 ( arctan v 1 2 ) d v σ 2 γ = ρ σ / γ 2 σ 0 v γ σ 2 γ 1 1 + v d v = ρ σ / γ π 2 σ sin π ( γ σ ) 2 γ = ρ σ / γ π 2 σ cos π σ 2 γ R + = ( 0 , ) .
For R : = ( , ) , δ { 1 , 1 } , α , β ( 1 , 1 ) , we set
x α : = | x | + α x , y β : = | y | + β y ( x , y R ) , E δ : = { t R ; | t | δ 1 } , E δ = { t R ; | t | δ 1 } .
Lemma 1.
For c > 0 , θ = α , β , we have
E δ t θ c δ 1 d t = 1 c 1 ( 1 + θ ) c δ + 1 + 1 ( 1 θ ) c δ + 1 ,
E δ t θ c δ 1 d t = 1 c 1 ( 1 + θ ) c δ + 1 + 1 ( 1 θ ) c δ + 1 .
For c 0 , it follows that
E δ t θ c δ 1 d t = E δ t θ c δ 1 d t = .
Proof. 
Setting
E δ + : = { t R + ; t δ 1 } , E δ : = { t R + ; ( t ) δ 1 } ,
it follows that E δ = E δ + E δ and
E δ t θ c δ 1 d t = E δ + [ ( 1 + θ ) t ] c δ 1 d t + E δ [ ( 1 θ ) ( t ) ] c δ 1 d t = 1 ( 1 + θ ) c δ + 1 + 1 ( 1 θ ) c δ + 1 E δ + t c δ 1 d t .
Setting u = t δ (or t = u 1 δ ) , we obtain
E δ + t c δ 1 d t = 1 | δ | 1 u 1 δ ( c δ 1 ) u 1 δ 1 d u = 1 u c 1 d u .
Hence, for c > 0 , Formula (4) follows and for c 0 , we get that
E δ t θ c δ 1 d t = .
Since
E δ t θ c δ 1 d t = E ( δ ) t θ c ( δ ) 1 d t = 1 ( 1 + θ ) c δ + 1 + 1 ( 1 θ ) c δ + 1 0 1 u c 1 d u ,
for c > 0 , Equation (5) follows and for c 0 , we have
E δ t θ c δ 1 d t = .
This completes the proof of the lemma. □
In what follows, we assume that p > 1 , 1 p + 1 q = 1 , δ { 1 , 1 } , α , β ( 1 , 1 ) , ρ > 0 , 0 < σ < γ , σ 1 R ,
h ( u ) = arctan ρ u γ ( u > 0 ) ,
k ρ ( γ ) ( σ ) is indicated by (3) and
K α , β ( γ ) ( σ ) : = 2 k ρ ( γ ) ( σ ) ( 1 α 2 ) 1 / q ( 1 β 2 ) 1 / p .
For n N = { 1 , 2 , } , E 1 = [ 1 , 1 ] , x E δ , we define the following expressions:
I ( ) ( x ) : = 1 0 arctan ρ ( x α δ y β ) γ y β σ + 1 q n 1 d y , I ( + ) ( x ) : = 0 1 arctan ρ ( x α δ y β ) γ y β σ + 1 q n 1 d y , I ( x ) : = E 1 arctan ρ ( x α δ y β ) γ y β σ + 1 q n 1 d y = I ( ) ( x ) + I ( + ) ( x ) .
Since y β = | y | + β y = ( s g n ( y ) + β ) y , where
s g n ( y ) : = 1 , y < 0 0 , y = 0 1 , y > 0 ,
x α δ = ( 1 + α · s g n ( x ) ) δ | x | δ min δ { 1 , 1 } ( 1 ± | α | ) δ ( x E δ ) ,
and 1 | α | ( 1 + | α | ) 1 1 + | α | ( 1 | α | ) 1 , we have
( 1 ± β ) x α δ m α , β : = ( 1 | β | ) ( 1 | α | ) > 0 ( x E δ ) .
For fixed x E δ , setting u = x α δ y β , we obtain
I ( ) ( x ) = x α δ ( σ + 1 q n ) 1 β 0 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u x α δ ( σ + 1 q n ) 1 β 0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u , I ( + ) ( x ) = x α δ ( σ + 1 q n ) 1 + β 0 ( 1 + β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u x α δ ( σ + 1 q n ) 1 + β 0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u , I ( x ) = x α δ ( σ + 1 q n ) 1 1 β 0 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u + 1 1 + β 0 ( 1 + β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u 2 x α δ ( σ + 1 q n ) 1 β 2 0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u .
For n N , x F δ , we define the following expressions:
J ( ) ( x ) : = 1 y β σ + 1 q n 1 arctan ρ ( x α δ y β ) γ d y , J ( + ) ( x ) : = 1 y β σ + 1 q n 1 arctan ρ ( x α δ y β ) γ d y , J ( x ) : = E 1 y β σ + 1 q n 1 arctan ρ ( x α δ y β ) γ d y = J ( ) ( x ) + J ( + ) ( x ) .
Since for x E δ ,
x α δ = ( 1 + α · s g n ( x ) ) δ | x | δ max δ { 1 , 1 } { ( 1 ± | α | ) δ } = ( 1 | α | ) 1 ,
we have
M α , β : = ( 1 + | β | ) ( 1 | α | ) 1 ( 1 ± β ) x α δ ( x E δ ) .
For fixed x E δ , setting u = x α δ y β , we obtain
J ( ) ( x ) = x α δ ( σ 1 q n ) 1 β ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u x α δ ( σ 1 q n ) 1 β M α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u , J ( + ) ( x ) = x α δ ( σ 1 q n ) 1 + β ( 1 + β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u x α δ ( σ 1 q n ) 1 + β M α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u , J ( x ) = x α δ ( σ 1 q n ) 1 1 β ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u + 1 1 + β ( 1 + β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u 2 x α δ ( σ 1 q n ) 1 β 2 M α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u .
In view of (8) and (10), we derive the lemma below:
Lemma 2.
We have the following inequalities:
I 1 : = E δ I ( x ) x α δ ( σ 1 1 p n ) 1 d x 2 1 β 2 E δ x α δ ( σ σ 1 + 1 n ) 1 d x 0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u ,
J 1 : = E δ J ( x ) x α δ ( σ 1 + 1 p n ) 1 d x 2 1 β 2 E δ x α δ ( σ 1 σ + 1 n ) 1 d x M α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u .
Lemma 3.
If there exists a constant M, such that for any nonnegative measurable functions f ( x ) and g ( y ) in R , the following inequality
I : = arctan ρ ( x α δ y β ) γ f ( x ) g ( y ) d x d y M x α p ( 1 δ σ 1 ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q
holds true, then we have σ 1 = σ .
Proof. 
If σ 1 > σ , then for n 1 σ 1 σ ( n N ) , we consider the functions
f n ( x ) : = x α δ ( σ 1 1 p n ) 1 , x E δ 0 , x R E δ , g n ( y ) : = y β σ + 1 q n 1 , y E 1 0 , y R E 1 ,
and by (4) and (5), we obtain
J ˜ 1 : = x α p ( 1 δ σ 1 ) 1 f n p ( x ) d x 1 p y β q ( 1 σ ) 1 g n q ( y ) d y 1 q = E δ x α δ n 1 d x 1 p E 1 y β 1 n 1 d y 1 q = n 1 ( 1 + α ) δ n + 1 + 1 ( 1 α ) δ n + 1 1 p × 1 ( 1 + β ) 1 n + 1 + 1 ( 1 β ) 1 n + 1 1 q < .
By (11) and (13) (for f = f n , g = g n ), we have
2 1 β 2 E δ x α δ ( σ σ 1 + 1 n ) 1 d x 0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u I 1 = arctan ρ ( x α δ y β ) γ f n ( x ) g n ( y ) d x d y M J ˜ 1 < .
Since for any n 1 σ 1 σ ( n N ) , σ σ 1 + 1 n 0 , by Lemma 1 it follows that
E δ x α δ ( σ σ 1 + 1 n ) 1 d x = .
In view of
0 m α , β ( arctan ρ u γ ) u σ + 1 q n 1 d u > 0 ,
we derive that M J ˜ 1 < , which is a contradiction.
If σ > σ 1 , then for n 1 σ σ 1 ( n N ) , we consider the functions
f ˜ n ( x ) : = x α δ ( σ 1 + 1 p n ) 1 , x F δ 0 , x R F δ , g ˜ n ( y ) : = y β σ 1 q n 1 , y E 1 0 , y R E 1 ,
and by (4) and (5), we obtain
J ˜ 2 : = x α p ( 1 δ σ 1 ) 1 f ˜ n p ( x ) d x 1 p y β q ( 1 σ ) 1 g ˜ n q ( y ) d y 1 q = E δ x α δ n 1 d x 1 p E 1 y β 1 n 1 d y 1 q = n 1 ( 1 + α ) δ n + 1 + 1 ( 1 α ) δ n + 1 1 p × 1 ( 1 + β ) 1 n + 1 + 1 ( 1 β ) 1 n + 1 1 q .
By (12) and (13) (for f = f ˜ n , g = g ˜ n ), we have
2 1 β 2 E δ x α δ ( σ 1 σ + 1 n ) 1 d x M α , β ( arctan ρ u γ ) u σ 1 q n 1 d u J 1 = arctan ρ ( x α δ y β ) γ f ˜ n ( x ) g ˜ n ( y ) d x d y M J ˜ 2 < .
Since for n 1 σ σ 1 ( n N ) , σ 1 σ + 1 n 0 , by Lemma 1 it follows that
F δ x α δ ( σ 1 σ + 1 n ) 1 d x = .
In view of
M α , β ( arctan ρ u γ ) u σ 1 q n 1 d u > 0 ,
we have M J ˜ 2 < , which is a contradiction.
Hence, we conclude that σ 1 = σ .
This completes the proof of the lemma. □
For σ 1 = σ , we also get the lemma below:
Lemma 4.
If there exists a constant M, such that for any nonnegative measurable functions f ( x ) and g ( y ) in R , the following inequality
arctan ρ ( x α δ y β ) γ f ( x ) g ( y ) d x d y M x α p ( 1 δ σ ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q
holds true, then we have K α , β ( γ ) ( σ ) M .
Proof. 
For σ 1 = σ , by (8), we have
I 1 = E δ I ( x ) x α δ ( σ 1 p n ) 1 d x = I 1 ( ) + I 1 ( + ) , I 1 ( ) : = E δ I ( ) ( x ) x α δ ( σ 1 p n ) 1 d x , I 1 ( + ) : = E δ I ( + ) ( x ) x α δ ( σ 1 p n ) 1 d x .
In view of the presented results, for n > 1 q ( γ σ ) , we obtain
I 1 ( ) = 1 1 β E δ x α δ n 1 0 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u d x = 1 1 β E δ x α δ n 1 0 ( arctan ρ u γ ) u σ + 1 q n 1 d u ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u d x = n 1 β 1 ( 1 + α ) δ n + 1 + 1 ( 1 α ) δ n + 1 k ρ ( γ ) ( σ + 1 q n ) 1 1 β E δ x α δ n 1 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u d x .
For γ > σ + d ( d > 0 ) , we have that ( arctan ρ u γ ) u σ + d is continuous in ( 0 , ) , and
( arctan ρ u γ ) u σ + d 0 ( u ) .
There exists a positive constant M 1 , such that
( arctan ρ u γ ) u σ + d M 1 ( u [ m α , β , ) ) .
By (4), it follows that
0 < E δ x α δ n 1 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u d x M 1 E δ x α δ n 1 ( 1 β ) x α δ u d + 1 q n 1 d u d x = M 1 E δ x α δ ( d + 1 p n ) 1 d x ( 1 β ) σ 1 q n = ( d + 1 p n ) 1 M 1 ( 1 β ) σ 1 q n 1 ( 1 + α ) δ ( d + 1 p n ) + 1 + 1 ( 1 α ) δ ( d + 1 p n ) + 1 ,
namely
1 1 β E δ x α δ n 1 ( 1 β ) x α δ ( arctan ρ u γ ) u σ + 1 q n 1 d u d x = O ( 1 ) ,
and then by (15), it follows that
1 n I 1 ( ) = k ρ ( γ ) ( σ + 1 q n ) 1 β 1 ( 1 + α ) δ n + 1 + 1 ( 1 α ) δ n + 1 O ( 1 ) n .
Similarly, we have
1 n I 1 ( + ) = k ρ ( γ ) ( σ + 1 q n ) 1 + β 1 ( 1 + α ) δ n + 1 + 1 ( 1 α ) δ n + 1 O ˜ ( 1 ) n .
By (14) (for f = f n , g = g n ), we have
1 n I 1 = 1 n I 1 ( ) + I 1 ( + ) 1 n M J ˜ 1 .
For n , by Fatou’s lemma (cf. [39]), (16) and (17), we obtain
2 1 β 2 · 2 k ρ ( γ ) ( σ ) 1 α 2 M 2 1 α 2 1 p 2 1 β 2 1 q ,
namely
K α , β ( γ ) ( σ ) = 2 k ρ ( γ ) ( σ ) ( 1 α 2 ) 1 / q ( 1 β 2 ) 1 / p M .
This completes the proof of the lemma. □
Lemma 5.
We define the following weight functions:
ω δ ( σ , y ) : = y β σ arctan ρ ( x α δ y β ) γ x α δ σ 1 d x ( y R ) ,
ϖ δ ( σ , x ) : = x α δ σ arctan ρ ( x α δ y β ) γ y β σ 1 d y ( x R ) .
Then we have
1 α 2 2 ω δ ( σ , y ) = 1 β 2 2 ϖ δ ( σ , x ) = k ρ ( γ ) ( σ ) ( x , y R { 0 } ) .
Proof. 
For fixed y ( , 0 ) ( 0 , ) , setting u = x α δ y β , we obtain
ω δ ( σ , y ) = y β σ 0 arctan ρ ( x α δ y β ) γ x α δ σ 1 d x + y β σ 0 arctan ρ ( x α δ y β ) γ x α δ σ 1 d x = 2 1 α 2 0 ( arctan ρ u γ ) u σ 1 d u = 2 k ρ ( γ ) ( σ ) 1 α 2 ;
for fixed x ( , 0 ) ( 0 , ) , setting u = x α δ y β , it follows that
ϖ δ ( σ , x ) = x α δ σ 0 arctan ρ ( x α δ y β ) γ y β σ 1 d y + x α δ σ 0 arctan ρ ( x α δ y β ) γ y β σ 1 d y = 2 1 β 2 0 ( arctan ρ u γ ) u σ 1 d u = 2 k ρ ( γ ) ( σ ) 1 β 2 .
Hence, we derive (20).
This completes the proof of the lemma. □

3. Main Results and Some Particular Cases

Theorem 1.
If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:
(i) For any f ( x ) 0 , we have the following inequality:
J : = y β p σ 1 [ arctan ρ ( x α δ y β ) γ ] f ( x ) d x p d y 1 p M x α p ( 1 δ σ 1 ) 1 f p ( x ) d x 1 p ;
(ii) for any f ( x ) , g ( y ) 0 , we have the following inequality:
I = arctan ρ ( x α δ y β ) γ f ( x ) g ( y ) d x d y M x α p ( 1 δ σ 1 ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q ;
(iii) σ 1 = σ , and K α , β ( γ ) ( σ ) M .
Proof. 
( i ) ( i i ) . By Hölder’s inequality (cf. [40]), we get
I = y β σ 1 p [ arctan ρ ( x α δ y β ) γ ] f ( x ) d x y β σ + 1 p g ( y ) d y J y β q ( 1 σ ) 1 g q ( y ) d y 1 q .
Then by (21), we have (22).
( i i ) ( i i i ) . By Lemma 1, we have σ 1 = σ . Then by Lemma 2, we get K α , β ( γ ) ( σ ) M .
( i i i ) ( i ) . For σ 1 = σ , by Hölder’s inequality with weight (see [40]) and (18), we have
[ arctan ρ ( x α δ y β ) γ ] f ( x ) d x p = [ arctan ρ ( x α δ y β ) γ ] y β ( σ 1 ) / p x α ( δ σ 1 ) / q f ( x ) x α ( δ σ 1 ) / q y β ( σ 1 ) / p d x p arctan ρ ( x α δ y β ) γ y β σ 1 f p ( x ) x α ( δ σ 1 ) p / q d x × [ arctan ρ ( x α δ y β ) γ ] x δ σ 1 y β ( σ 1 ) q / p d x p / q = ω δ ( σ , y ) y β q ( 1 σ ) 1 p 1 arctan ρ ( x α δ y β ) γ y β σ 1 f p ( x ) x α ( δ σ 1 ) p / q d x = 2 k ρ ( γ ) ( σ ) 1 α 2 p 1 y β p σ + 1 arctan ρ ( x α δ y β ) γ y β σ 1 f p ( x ) x α ( δ σ 1 ) p / q d x .
By Fubini’s theorem, (24) and (19), we derive that
J 2 k ρ ( γ ) ( σ ) 1 α 2 1 q [ arctan ρ ( x α δ y β ) γ ] y β σ 1 f p ( x ) x α ( δ σ 1 ) p / q d x d y 1 p = 2 k ρ ( γ ) ( σ ) 1 α 2 1 q ϖ δ ( σ , x ) x δ p ( 1 δ σ ) 1 f p ( x ) d x 1 p = K α , β ( γ ) ( σ ) x δ p ( 1 δ σ ) 1 f p ( x ) d x 1 p .
For K α , β ( γ ) ( σ ) M , we have (21) (for σ 1 = σ ).
Therefore, Statements (i), (ii) and (iii) are equivalent.
This completes the proof of the theorem. □
For σ 1 = σ , we deduce the theorem below:
Theorem 2.
If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:
(i) For any f ( x ) 0 , satisfying
0 < x α p ( 1 δ σ ) 1 f p ( x ) d x < ,
we have the following inequality:
y β p σ 1 [ arctan ρ ( x α δ y β ) γ ] f ( x ) d x p d y 1 p < M x α p ( 1 δ σ ) 1 f p ( x ) d x 1 p ;
(ii) for any f ( x ) 0 , satisfying
0 < x α p ( 1 δ σ ) 1 f p ( x ) d x < ,
and g ( y ) 0 , satisfying
0 < y β q ( 1 σ ) 1 g q ( y ) d y < ,
we have the following inequality:
arctan ρ ( x α δ y β ) γ f ( x ) g ( y ) d x d y < M x α p ( 1 δ σ ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q ;
(iii) K α , β ( γ ) ( σ ) M .
Moreover, if the statement (iii) holds true, then the constant factor M = K α , β ( γ ) ( σ ) in (25) and (26) is the best possible.
In particular:
(1) for δ = 1 , we have the following equivalent inequalities with the nonhomogeneous kernel:
y β p σ 1 [ arctan ρ ( x α y β ) γ ] f ( x ) d x p d y 1 p < K α , β ( γ ) ( σ ) x α p ( 1 σ ) 1 f p ( x ) d x 1 p ,
arctan ρ ( x α y β ) γ f ( x ) g ( y ) d x d y < K α , β ( γ ) ( σ ) x α p ( 1 σ ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where K α , β ( γ ) ( σ ) is the best possible constant factor;
(2) for δ = 1 , we have the following equivalent inequalities with the homogeneous kernel of degree 0:
y β p σ 1 [ arctan ρ ( x α y β ) γ ] f ( x ) d x p d y 1 p < K α , β ( γ ) ( σ ) x α p ( 1 + σ ) 1 f p ( x ) d x 1 p ,
arctan ρ ( x α y β ) γ f ( x ) g ( y ) d x d y < K α , β ( γ ) ( σ ) x α p ( 1 + σ ) 1 f p ( x ) d x 1 p y β q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where K α , β ( γ ) ( σ ) is the best possible constant factor.
Proof. 
For σ 1 = σ and the assumption of statement (i), if (24) assumes the form of equality for some y ( , 0 ) ( 0 , ) , then (see [40]) there exist constants A and B, such that they are not both zero, and
A y β σ 1 x α ( δ σ 1 ) p / q f p ( x ) = B x δ σ 1 y β ( σ 1 ) q / p a . e . i n R .
We suppose that A 0 (otherwise B = A = 0 ). Then it follows that
x α p ( 1 δ σ ) 1 f p ( x ) = y β q ( 1 σ ) B A x α a . e . i n R .
Since
x α 1 d x = ,
it contradicts the fact that
0 < x α p ( 1 δ σ ) 1 f p ( x ) d x < .
Hence, (24) takes the form of strict inequality, and so does (21). Hence, (25) and (26) are true.
In view of Theorem 1, we can establish the equivalency between the statements (i), (ii) and (iii) in Theorem 2.
In case the statement (iii) is valid, namely K α , β ( γ ) ( σ ) M , if there exists a constant M K α , β ( γ ) ( σ ) , such that (26) is satisfied, then we can derive that the constant factor M = K α , β ( γ ) ( σ ) in (26) is optimal.
The constant factor M = K α , β ( γ ) ( σ ) in (25) remains the best possible. Otherwise, by (23) (for σ 1 = σ ), we would reach a contradiction that the constant factor M = K α , β ( γ ) ( σ ) in (26) is not optimal.
This completes the proof of the theorem. □

4. Operator Expressions

We set the following functions: φ ( x ) : = x α p ( 1 δ σ ) 1 ( x R ) and ψ ( y ) : = y β q ( 1 σ ) 1 , wherefrom ψ 1 p ( y ) = y β p σ 1 ( y R ) . Define the following real normed linear spaces:
L p , φ ( R ) : = f : | | f | | p , φ : = φ ( x ) | f ( x ) | p d x 1 p < ,
L q , ψ ( R ) = g : | | g | | q , ψ = ψ ( y ) | g ( y ) | q d y 1 q < , L p , ψ 1 p ( R ) = h : | | h | | p , ψ 1 p = ψ 1 p ( y ) | h ( y ) | p d y 1 p < .
In view of Theorem 2, for f L p , φ ( R ) , setting
h 1 ( y ) : = arctan ρ ( x α δ y β ) γ f ( x ) d x ( y R ) ,
by (25), we have
| | h 1 | | p , ψ 1 p = ψ 1 p ( y ) h 1 p ( y ) d y 1 p < M | | f | | p , φ < .
Definition 1.
Define a Hilbert-type integral operator with the nonhomogeneous kernel
T : L p , φ ( R ) L p , ψ 1 p ( R ) as follows: For any f L p , φ ( R ) , there exists a unique representation T f = h 1 L p , ψ 1 p ( R ) , satisfying T f ( y ) = h 1 ( y ) , for any y R .
In view of (31), it follows that
| | T f | | p , ψ 1 p = | | h 1 | | p , ψ 1 p < M | | f | | p , φ ,
and thus the operator T is bounded satisfying
| | T | | = sup f ( θ ) L p , φ ( R ) | | T f | | p , ψ 1 p | | f | | p , φ M .
If we define the formal inner product of T f and g as follows:
( T f , g ) : = [ arctan ρ ( x α δ y β ) γ ] f ( x ) d x g ( y ) d y ,
then we can rewrite Theorem 2 as follows:
Theorem 3.
If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:
(i) For any f ( x ) 0 , f L p , φ ( R ) , | | f | | p , φ > 0 , the following inequality holds true:
| | T f | | p , ψ 1 p < M | | f | | p , φ ;
(ii) for any f ( x ) , g ( y ) 0 , f L p , φ ( R ) , g L q , ψ ( R ) , | | f | | p , φ , | | g | | q , ψ > 0 , the following inequality holds true:
( T f , g ) < M | | f | | p , φ | | g | | q , ψ ;
(iii) K α , β ( γ ) ( σ ) M .
Moreover, if the statement (iii) holds true, then the constant factor M = K α , β ( γ ) ( σ ) in (32) and (33) is optimal, i.e., | | T | | = K α , β ( γ ) ( σ ) .
Remark 1.
(1) In particular, for α = β = 0 in (27) and (28) we have the following equivalent inequalities:
| y | p σ 1 ( arctan ρ | x y | γ ) f ( x ) d x p d y 1 p < ρ σ / γ π σ cos π σ 2 γ | x | p ( 1 σ ) 1 f p ( x ) d x 1 p ,
arctan ρ | x y | γ f ( x ) g ( y ) d x d y < ρ σ / γ π σ cos π σ 2 γ | x | p ( 1 σ ) 1 f p ( x ) d x 1 p | y | q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where ρ σ / γ π σ cos π σ 2 γ is the optimal constant factor. If f ( x ) = f ( x ) , g ( y ) = g ( y ) ( x , y R + ) , then we have the following equivalent inequalities:
0 y p σ 1 0 [ arctan ρ ( x y ) γ ] f ( x ) d x p d y 1 p < ρ σ / γ π 2 σ cos π σ 2 γ 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p ,
0 0 arctan ρ ( x y ) γ f ( x ) g ( y ) d x d y < ρ σ / γ π 2 σ cos π σ 2 γ 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where ρ σ / γ π 2 σ cos π σ 2 γ is the best possible constant factor.
(2) For α = β = 0 in (29) and (30) we have the following equivalent inequalities:
| y | p σ 1 ( arctan ρ | x y | γ ) f ( x ) d x p d y 1 p < ρ σ / γ π σ cos π σ 2 γ | x | p ( 1 + σ ) 1 f p ( x ) d x 1 p ,
arctan ρ | x y | γ f ( x ) g ( y ) d x d y < ρ σ / γ π σ cos π σ 2 γ | x | p ( 1 + σ ) 1 f p ( x ) d x 1 p | y | q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where ρ σ / γ π σ cos π σ 2 γ is the best possible constant factor. If f ( x ) = f ( x ) , g ( y ) = g ( y )
( x , y R + ) , then we have the following equivalent inequalities:
0 y p σ 1 0 [ arctan ρ ( x y ) γ ] f ( x ) d x p d y 1 p < ρ σ / γ π 2 σ cos π σ 2 γ 0 x p ( 1 + σ ) 1 f p ( x ) d x 1 p ,
0 0 arctan ρ ( x y ) γ f ( x ) g ( y ) d x d y < ρ σ / γ π 2 σ cos π σ 2 γ 0 x p ( 1 + σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where ρ σ / γ π 2 σ cos π σ 2 γ is the best possible constant factor.

5. Conclusions

In this paper, making use of ideas of Hong [23], and by employing techniques of real analysis as well as weight functions, we obtain in Theorem 1 a few equivalent statements of a Hilbert-type integral inequality in the whole plane associated with the kernel of the arc tangent function. In Theorem 2, the constant factor associated with the cosine function is proved to be optimal. Furthermore, in Theorem 3 and Remark 1 we also consider some particular cases and operator expressions. The lemmas and theorems within this work provide an extensive account of this type of inequalities.

Author Contributions

All authors contributed equally during all stages of the preparation of the present work. All authors have read and agreed to the published version of the manuscript.

Funding

B. Yang: This work is supported by the National Natural Science Foundation (No. 61772140), and the Characteristic Innovation Project of Guangdong Provincial Colleges and Universities in 2020 (No. 2020KTSCX088).

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1934. [Google Scholar]
  2. Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
  3. Yang, B.C. Hilbert-Type Integral Inequalities; Bentham Science Publishers Ltd.: Sharjah, The United Arab Emirates, 2009; Available online: https://benthambooks.com/book/9781608050550/chapter/53554/ (accessed on 10 January 2021).
  4. Yang, B.C. On the norm of an integral operator and applications. J. Math. Anal. Appl. 2006, 321, 182–192. [Google Scholar] [CrossRef] [Green Version]
  5. Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
  6. Yang, B.C. On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 2007, 325, 529–541. [Google Scholar] [CrossRef] [Green Version]
  7. Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
  8. Yang, B.C. A Hilbert-type integral inequality with the homogenous kernel of degree 0. J. Shandong Univ. (Nat.) 2010, 45, 103–106. [Google Scholar]
  9. Debnath, L.; Yang, B.C. Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Math. Sci. 2012, 2012, 871845. [Google Scholar] [CrossRef] [Green Version]
  10. Yang, B.C. A new Hilbert-type integral inequality. Soochow J. Math. 2007, 33, 849–859. [Google Scholar]
  11. He, B.; Yang, B.C. On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometrc function. Math. Pract. Theory 2010, 40, 105–211. [Google Scholar]
  12. Yang, B.C. A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. (Sci. Ed.) 2008, 46, 1085–1090. [Google Scholar]
  13. Zeng, Z.; Xie, Z.T. On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequalities Appl. 2010, 2010, 256796. [Google Scholar] [CrossRef] [Green Version]
  14. Wang, A.Z.; Yang, B.C. A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequalities Appl. 2011, 2011, 123. [Google Scholar] [CrossRef] [Green Version]
  15. Xin, D.M.; Yang, B.C. A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree -2. J. Inequalities Appl. 2011, 2011, 401428. [Google Scholar] [CrossRef] [Green Version]
  16. He, B.; Yang, B.C. On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsul Oxford J. Inf. Math. Sci. 2011, 27, 75–88. [Google Scholar]
  17. Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree -2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
  18. Huang, Q.L.; Wu, S.H.; Yang, B.C. Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, 2014, 169061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Zhen, Z.; Gandhi, K.R.R.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral. Bull. Math. Sci. Appl. 2014, 3, 11–20. [Google Scholar]
  20. Rassias, M.T.; Yang, B.C. A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 2015, 428, 1286–1308. [Google Scholar] [CrossRef]
  21. Huang, X.Y.; Cao, J.F.; He, B.; Yang, B.C. Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. J. Inequalities Appl. 2015, 2015, 129. [Google Scholar] [CrossRef] [Green Version]
  22. Gu, Z.H.; Yang, B.C. A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequalities Appl. 2015, 2015, 314. [Google Scholar] [CrossRef] [Green Version]
  23. Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernal and applications. J. Jilin Univ. (Sci. Ed.) 2017, 55, 189–194. [Google Scholar]
  24. Rassias, M.T.; Yang, B.C. Equivalent properties of a Hilbert-type integral inequality with the best constant factor related the Hurwitz zeta function. Ann. Funct. Anal. 2018, 9, 282–295. [Google Scholar] [CrossRef]
  25. Hong, Y.; Huang, Q.L.; Yang, B.C.; Liao, J.Q. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequalities Appl. 2017, 2017, 316. [Google Scholar] [CrossRef]
  26. Yang, B.C.; Chen, Q. Equivalent conditions of existence of a class of reverse Hardy-type integral inequalities with nonhomogeneous kernel. J. Jilin Univ. (Sci. Ed.) 2017, 55, 804–808. [Google Scholar]
  27. Yang, B.C. Equivalent conditions of the existence of Hardy-type and Yang-Hilbert-type integral inequalities with the nonhomogeneous kernel. J. Guangdong Univ. Educ. 2017, 37, 5–10. [Google Scholar]
  28. Yang, B.C. On some equivalent conditions related to the bounded property of Yang-Hilbert-type operator. J. Guangdong Univ. Educ. 2017, 37, 5–11. [Google Scholar]
  29. Yang, Z.M.; Yang, B.C. Equivalent conditions of the existence of the reverse Hardy-type integral inequalities with the nonhomogeneous kernel. J. Guangdong Univ. Educ. 2017, 37, 28–32. [Google Scholar]
  30. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 2018, 12, 273–296. [Google Scholar] [CrossRef]
  31. Rassias, M.T.; Yang, B.C. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequalities 2019, 13, 315–334. [Google Scholar] [CrossRef] [Green Version]
  32. Rassias, M.T.; Yang, B.C. A reverse Mulholland-type inequality in the whole plane with multi-parameters. Appl. Anal. Discrete Math. 2019, 13, 290–308. [Google Scholar] [CrossRef] [Green Version]
  33. You, M.H.; Guan, Y. On a Hilbert-type integral inequality with non-homogeneous kernel of mixed hyperbolic functions. J. Math. Inequalities 2019, 13, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
  34. Gao, P. On weight Hardy inequalities for non-increasing sequence. J. Math. Inequalities 2018, 12, 551–557. [Google Scholar] [CrossRef] [Green Version]
  35. Liu, Q. A Hilbert-type integral inequality under configuring free power and its applications. J. Inequalities Appl. 2019, 2019, 91. [Google Scholar] [CrossRef]
  36. Chen, Q.; He, B.; Hong, Y.; Zhen, L. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
  37. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On Hardy-Type Integral Inequalities in the Whole Plane Related to the Extended Hurwitz-Zeta Function. J. Inequalities Appl. 2020, 94. [Google Scholar] [CrossRef]
  38. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On the Reverse Hardy-Type Integral Inequalities in the Whole Plane with the Extended Riemann-Zeta Function. J. Math. Inequalities 2020, 14, 525–546. [Google Scholar] [CrossRef]
  39. Kuang, J.C. Real and Functional Analysis (Continuation) (Second Volume); Higher Education Press: Beijing, China, 2015. [Google Scholar]
  40. Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Rassias, M.T.; Yang, B.; Raigorodskii, A. A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function. Symmetry 2021, 13, 351. https://doi.org/10.3390/sym13020351

AMA Style

Rassias MT, Yang B, Raigorodskii A. A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function. Symmetry. 2021; 13(2):351. https://doi.org/10.3390/sym13020351

Chicago/Turabian Style

Rassias, Michael Th., Bicheng Yang, and Andrei Raigorodskii. 2021. "A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function" Symmetry 13, no. 2: 351. https://doi.org/10.3390/sym13020351

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop