
Errors in state estimation over wireless sensor networks
(WSN) affected by uncertain, delayed, and missing data have
been investigated in the last years by many authors [1]–[4].
It has been revealed that factors such as the environmental
changes, failures in measurement equipment, congestion in
transmission channels, and limited communication bandwidth
cause data to arrive at the received with latency and packet
dropout. Furthermore, ignoring such phenomena may cause
crucial consequences for WSN operation. In [5], [6], the
problem was solved under the supposition that the delays are
known and deterministic. That applied to the transmission with
time-stamped data and cannot be used otherwise.

In many cases, it is required to consider randomly delayed
and missing data as, for example, has been made in [7] for
unreliable WSN channels. In many cases, the binary stochastic
Bernoulli distribution is employed to describe the intermittent
random faults in the received signal [8]. For randomly delayed
and missing data, the Kalman filter (KF) was developed in
[9], [10], the H∞ filter in [11], and the optimal estimation
problem solved in [12]. The problem with lost data was
also investigated. An innovated compensation of the lost data
is developed in [13] by solving an optimal linear filtering
problem. A modified model based on the Bernoulli distribution
is presented in [14] to substitute lost data by using an estimator
that processes one or two packets at once. The problem
with multi-step delays has been considered in [15] using the
Bernoulli distribution, an H∞ filter was designed in [16], and
some other relevant solutions can be found in [17]–[19].

To improve the estimation accuracy under delayed and
missing data [20]–[22]. A drawback is that the KF is not robust
and thus does not guarantee an optimal performance under
uncertain conditions. The unbiased finite impulse response
(UFIR) filter was designed in [23] as a robust alternative to the
KF [24], [25] and other methods such as the game theory H∞
filter [26] developed under the parameter uncertainties. The
UFIR filter required no information about zero-mean noise

and initial values and is thus more robust than other linear
filters. In [27]–[29] the UFIR filter was used to process data
with multi-step known deterministic delays and lost data.

In this paper, the UFIR filter is developed for WSN with
one- or two-step random delays and lost data. Similarly to [30],
the observation equation is modeled using the Bernoulli dis-
tribution with known probabilistic parameters. An innovation
system transformation is presented to apply the conventional
estimators such as the KF and H∞ filter which derivation does
not depend on latency. Experimental testing is provided based
on the Global Positioning System (GPS) tracking problem.

Consider a dynamic quantity measured and observed in
discrete-time state space with equations

xn = Fxn−1 + wn , (1)
yn = Hxn + vn , (2)

where n is a discrete time index, xn ∈ RK is the state vector,
yn ∈ RM is the observation vector, F ∈ RK×K , H ∈ RK×M ,
and wn ∼ N (0, Q) ∈ RK and vn ∼ N (0, R) ∈ RM are
zero mean white Gaussian noise vectors with the covariances
Q = E{wnwTn } ∈ RK×K and R = E{vnvTn } ∈ RM×M and
the property E{wnvTk } = 0 for all n and k.

We consider transmission over a WSN with random delays
with multi-step delays. To deal with lost data, a packet is
transmitted several times but an estimator process only the
first arrived packet at each time instant. The following model is
adopted to describe the measured information at the estimator,

zn = ξ0,nyn + (1− ξ0,n)
{
ξ1,nyn−1 + (1− ξ1,n){

ξ2,nyn−2 + · · ·+ (1− ξkn−2,n)
{
ξkn−1,nyn−kn−1

+(1− ξkn−1,n)yn−kn
}
· · ·
}
, (3)
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where zn ∈ RM is the transmitted measurement vector and
ξi,n, i ∈ [0, kn − 1], is a binary random variable with known
probabilities P{ξi,n = 1} = ξi,n and P{ξi,n = 0} = 1− ξi,n,
where 0 ≤ ξi ≤ 1. Although model (3) is valid for an arbitrary
delay step, in this paper we consider a special case of kn = 2
that yields

zn = ξ0,nyn+ (1− ξ0,n)
{
ξ1,nyn−1 + (1− ξ1,n) yn−2

}
. (4)

Model (4) suggests that a packet received on time zn = yn
with the probability ξ̄0,n when ξ0,n = 1. Otherwise, if ξ0,n =
0, one-step delayed data are received zn = yn−1 with the prob-
ability (1− ξ̄0,n)ξ̄1,n when ξ1,n = 1 or two-step delayed data
are received zn = yn−2 with the probability (1−ξ̄0,n)(1−ξ̄1,n)
when ξ1,n = 0. The latest data transmitted is used when the
current data is lost and the Bernoulli distribution guarantees
zn = ξ0,n + (1− ξ0,n) ξ1,n + (1− ξ0,n) (1− ξ1,n).

Typical scenarios with delayed data are listed in Table I,
where y1, y5, and y6 are received on time, y7 and y8 are one-
step delayed, y2 is two-step delayed, and y4, y9 and y10 are
lost. Given the model (1)–(3), our aim is modify the UFIR, KF,

TABLE I
TYPICAL SCENARIOS WITH TWO-STEP DELAYED DATA AND PACKET

DROPOUTS

n 1 2 3 4 5 6 7 8 9 10
θ0 1 0 1 0 1 1 0 0 0 0
θ1 – 1 – 0 – – 0 1 1 0
Zn y1 y1 y3 y2 y5 y6 y5 y7 y8 y8

and H∞ state estimators under two-step delayed and missing
data in zn. We also wish to investigate the trade-off in accuracy
and robustness of these estimators.

To design a FIR filter based on model (1)–(4), the latter can
be transformed to have no delay. To this end, we first represent
model (1) as

xn−1 = F−1(xn − wn−1) . (5)

Then, substituting the delayed states xn−1 = F−1 (xn − wn)
and xn−2 = F−2

(
xn − wn − F−1wn−1

)
the observation

equation can be written for kn = 2 as

yn = H̄nxn + v̄n , (6)

where the modified observation matrix H̄ and noise vector v̄n
are defined as

H̄ = ξ0,nH + (1− ξ0,n){ξ1,nHF−1

+(1− ξ1,n)HF−2} , (7)
v̄n = ξ0,nvn + (1− ξ0,n) {ξ1,nvn−1 + (1− ξ1,n)vn−2}

−(1− ξ0,n)
[
ξ1,nHF

−1 + (1− ξ1,n)HF−2
]
wn

−(1− ξ0,n)(1− ξ1,n)HF−1wn−1 (8)

and the covariance R = E
{
v̄nv̄

T
n

}
of noise v̄n is given by

R̄n = ξ̄0,nRn + (1− ξ̄0,n)
{
ξ̄1,nRn−1 + (1− ξ̄1,n)Rn−2

}
+(1− ξ̄0,n)ξ̄1,nHF

−1QnF
−1THT

+(1− ξ̄0,n)(1− ξ̄1,n)HF−2QnF
−2THT

+(1− ξ̄0,n)(1− ξ̄1,n)HF−1Qn−1F
−1THT . (9)

From (8) we see that noise v̄n is time-correlated with noise
w(n) and the cross covariance is

E{v̄nwTn } = −[(1− ξ̄0,n)ξ̄1,nHF
−1 + (1− ξ̄0,n)

(1− ξ̄1,n)HF−2]Qn . (10)

The time-correlation may reduce the estimator efficiency.
To avoid this issue, a de-correlation can be provided using the
Lagrange multiplier method [31], [32] as will be shown next.

wn v̄n

Rewrite model (1) as follows

xn = Fxn−1 + wn + Λn
(
zn − H̄nxn − v̄n

)
(11)

= Anxn−1 + un + ζn ,

where An = F − ΛnH̄nF , un = Λnzn,

ζn = (I − ΛnH̄n)wn − Λnv̄n , (12)

and Λn is the Lagrange multiplier.
To make the noise vector white ζn ∼ N (0, Qζ) ∈ RK ,

the cross-covariance between the new measurement noise Qζ
and the state noise v̄n should be zero, E{ζnv̄Tn } = 0. Then,
transform the covariance Qζ = E{ζnζTn } as follows,

Qζ = (I − ξ̄0,nΛnH)Qn(I − ξ̄0,nΛnH)T + (1− ξ̄0,n)

(1− ξ̄1,n)ΛnHF
−1Qn−1F

−1THTΛTn

+(1− ξ̄0,n)ΛnRnΛTn + (1− ξ̄0,n)ξ̄1,nΛnRn−1ΛTn

+(1− ξ̄0,n)(1− ξ̄1,n)ΛnRn−2ΛTn . (13)

Satisfied E{ζnv̄Tn } = 0, the Lagrange multiplier Λn becomes

Λn = −Qn[(1− ξ̄0,n)ξ̄1,nHF
−1 + (1− ξ̄0,n)(1− ξ̄1,n)

×HF−2]T [(1− ξ̄0,n)(1− ξ̄1,n)HF−1Qn−1F
−1T

×HT + ξ̄0,nRn + (1− ξ̄0,n)ξ̄1,nRn−1 + (1− ξ̄0,n)

(1− ξ̄1,n)Rn−2]−1 (14)

to guarantee the de-correlation. The covariance matrix Qζ can
now be used in the algorithms.

Unlike the KF, the UFIR filter operates with N most recent
data points on a horizon [m,n], where m = n − N + 1. To
design the UFIR filter, model (1)–(6) needs an extention on
[m,n] as shown in [24]. An extension of (1) yields

xn = Fnxn−1 +BnWn ,
xn−1 = Fn−1xn−2 +Bn−1Wn−1 ,

· · ·
xm = Fmxm−1 +BmWm ,

(15)

3. Filtering Under Randomly Delayed Data 

3.1 De-correlation of  and 

3.2 UFIR Filter Algorithm 
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and leads to the extended state model

Xm,n = Am,nXm +Bm,nWm,n , (16)

where Xm,n =
[
xTm x

T
m+1 . . . x

T
n

]T
and extended matrices

are

AN =
[
I FT . . . FN−1

T
]T

, (17)

BN =


I 0 · · · 0 0
F I · · · 0 0
...

...
. . .

...
...

FN−2 FN−3 · · · I 0
FN−1 FN−2 · · · F I

 . (18)

Similarly, the observation equation is extended on [m,n] as

ym,n = Cm,nxm +Dm,nwm,n + vm,n , (19)

where the extended observation vector and matrices are
ym,n =

[
yTm y

T
m+1 . . . y

T
n

]T
,

Cm,n =


H̄m

H̄m+1F
H̄m+1F

2

...
H̄nF

n−1

 , (20)

Dm,n =


H̄m 0 0 . . . 0

H̄m+1F H̄m+1 0 . . . 0
H̄m+2F

2 H̄m+2F H̄m+2 . . . 0
...

...
. . .

...
...

H̄nF
N−1 H̄nF

N−2 H̄nF
N−3 . . . H̄n

 .
(21)

The UFIR filter can now be designed in the batch and fast
iterative form using recursions.

1) Batch UFIR Filter : In a batch form, the UFIR filter
operates on [m,n] to satisfy the unbiased condition E{xn} =
E{x̂n} and can be written similarly to the least squares as
[24],

x̂n = (HT
m,nHm,n)−1HT

m,nYm,n , (22)

where the observation vector Ym,n and Hm,n are given by

Ym,n =
[
yTm yTm+1 · · · yTn

]
, (23)

Hm,n =


H̄F−N+1−km

...
H̄F−1−kn−1

H̄F−kn

 . (24)

The UFIR Filter can also be written as

x̂n = GnH
T
m,nYm,n , (25)

where Gn = (HT
m,nHm,n)−1 is the generalized noise power

gain (GNPG) responsible for denoising.

2) Iterative UFIR Filtering Algorithm: The iterative UFIR
filtering algorithm operates similarly to the KF in two phases,
predict and update. The initial state is self-computed in a
short batch form (25) on [m, s], where s = m + K − 1. A
pseudo code of the iterative UFIR filtering algorithm is listed
as Algorithm III-B2. It is implied that data arrive with delays
having the Bernoulli distribution. When data contain only
noise, data prediction is organized in lines 4–6 with κ = 0.
Note that in this algorithm matrix H̄ given by (7) is a function
of the delay probability ξ. Provided the modified state-space
model, the KF and H∞ filter can be applied straightforwardly.

Algorithm 1 Iterative UFIR Filtering Algorithm for Delayed
and Missing Data
Data: yn, kn, N , ξ, κn
Result: x̂n
begin

for n = N − 1 :∞ do
m = n−N + 1, s = m+K − 1;

if κ = 0 then
yn = HFx̂n−1

end
H̄ = ξ0,nH+(1− ξ0,n)

{
ξ1,nHF

−1 + (1− ξ1,n)HF−2
}

;
Gs = (CTm,sCm,s)−1;
x̃s = GsCTm,sym,s;
for l = s+ 1 : n do
Gl = [H̄T H̄ + (FGl−1F

T )−1]−1;
KUF
l = GlH̄

T ;
x̃l = Fx̃l−1 +KUF

l (yl − H̄F x̃l−1);

end
x̂n = x̃n;

end
end
† Data y0, y1,..., yN−1 must be available.

In this section, we consider an experimental example of
tracking over a network, where the measurement information
is transmitted with latency and lost data. Measurements are
obtained from the Beijing’s county and available from [33].
The GPS coordinates of a vehicle are transmitted via a wireless
communication channel to a central station. The main results
obtained in this example using the UFIR filter are compared
to the performances of the KF and H∞ filter. The vehicle
trajectory in the north-east direction in coordinates x and y is
shown in Fig.1.

The vehicle dynamics is represented with the four-state
vector xn =

[
x1n x2n x3n x4n

]T
, where x1n = xn,

x2n = ẋn, x3n = yn and x4n = ẏn. Accordingly, the system
matrix and the observation matrix are specified as

F =


1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

 , H =

[
1 0 0 0
0 0 1 0

]
.

4. Experimental Example 
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Fig. 1. GPS-measured vehicle trajectory in the north y and east x coordinates.

The UFIR filter require Nopt to minimize the noise vari-
ance. We determine the optimal horizon Nopt by solving the
minimization problem

Nopt = arg min
N

[trPn(N)] , (26)

where the error covariance matrix P = E
{

(ε1...n)(ε1...n)T
}

is represented with

P =


ε21 0 · · · 0
0 ε22 · · · 0
...

...
. . .

...
0 0 · · · ε2n

 , (27)

where εi = xi − x̂i is the estimation error of the ith state. In
this example the optimal horizon was found to be Nopt = 5.

The parameter θopt is the principal tuning factor of the game
theory H∞ filter that is introduced to minimize errors and we
notice that it is highly sensible to delays. If not properly tuned,
the H∞ filter produces large errors and can diverge. In our
experiment, we found θopt ∼= 0.0192.

Big efforts are commonly required to specify the noise
covariances. Because no information about noise is available
in [33], we do it based on a general knowledge. A vehicle in
the residential district moves with an average speed of 11 m/s.
Based upon, we suppose that the optimal filter performance
will be obtained with the standard deviation in the acceleration
noise of σ3w = 0.2 m/s by neglecting noise in the first
and second states, σ1w = 0 m and σ2w = 0 m/s. The
GPS navigation service produces an error of less than 15
meters with a probability of 95%. Accordingly, we assign
σv = 3.75 m and form the noise covariance matrices as

Q = σ2
w2


τ2

4
τ
2 0 0

τ2

2 1 0 0

0 0 τ2

4
τ
2

0 0 τ2

2 1

 , R =

[
σ2
v 0

0 σ2
v

]
.

Setting the probabilistic parameters as ξ0 = 0.7 and ξ1 =
0.5, the vehicle trajectory estimated by the UFIR filter, KF, and
H∞ filter is sketched in Fig. 2, where a consistent estimation
is observed with identical development. The three filters have
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Fig. 2. GPS-based vehicle tracking in the x,m direction by the UFIR filter,
KF, and H∞ filter using model (1)–(4).

the ability to track the ground truth. However, when the vehicle
rapidly maneuvers, the filters produce different transients. The
UFIR filter has the higher capacity to converge to the trajectory
due to the inherently bounded input bounded output (BIBO)
stability. The effect can be seen at the 470th second of the
movement. The convergence time is shorter in the UFIR filter,
but the errors are smaller in the KF. The H∞ output turned
out to be more noisy, but with the shortest convergence time.
The errors produced by the filters in the y direction can be
seen in Fig. 3.
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Fig. 3. Tracking error produced by the UFIR filter, KF, and H∞ filter in the
y,m direction (1)–(4).

We next analyze the trade-off in robustness between the
filters under the real operation conditions assuming uncertain
information in two feasible scenarios.

4.1 Tuning Factors and Noise Covariances 

4.2 State Estimation 
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1) The First Scenario: The noise statistics are typically
not well-defined that degrades the estimator performance. We
thus suppose that the noise covariances are not known exactly
and introduce as error factor in the algorithms. The actual
matrices Q and R are substituted in the algorithms with α2Q
and β2R, where α = 1

β and β indicates an error in the noise
standard deviation. Effect of errors in the noise covariances
is sketched in Fig. 4. As can be seen, the UFIR filter is
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Fig. 4. Effect of a scalar scaling error factor β on the RMSEs produced by
the UFIR filter, KF, and H∞ filter in the y direction.

invariant to β, while the KF demonstrates a big sensibility to
β that leads to large errors when β deviates from unity. The
KF produces smaller errors when β < 1 and it performance
degrades dramatically when β > 1. It is also seen that the H∞
filter produces the smallest errors in the normal mode when
β = 1. But even an insignificant deviation of β from unity
makes this filter highly unstable and leads to divergence. We
thus conclude that if the operation conditions are uncertain
under delayed and missing data, then the robust UFIR filter is
the best estimator.

2) The Second Scenario: To learn effects of the data trans-
mission probability on the estimator performance, we consider
the RMSEs as functions of ξ0 and sketch the results in Fig.
5 and Fig. 6. When the one-step delay probability parameter
does not vary, the constant value is ξ1,n = 0.5. We know that
when the transmitted probability and the model probability are
equal the minimum errors occur when ξ0,n = 0.8. Otherwise,
the estimation errors grow. The RMSE produced by the filters
become large when ξ0,n decreases because the probability
to obtain the one-step or two-step delay grow. It is seen
that the KF and UFIR filter are not heavily affected by the
possible increase in a lack of information. On the contrary,
the H∞ produces minimum RMSEs. Variations in ξ1,n cause
an increase or reduction at the one-step or two-step delay
information. One can also notice that a bit more errors occur
when ξ1,n decreases, since the two-step delays distort the
ground truth vector.
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Fig. 5. Effect of the data transmission probability ξ0 on the RMSEs produced
by the UFIR filter, KF, and H∞ filter in the y direction.
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Fig. 6. Effect of the data transmission probability ξ1 on the RMSEs produced
by the UFIR filter, KF, and H∞ filter in the y direction.

In this paper, we have developed the UFIR filter for the
information transmission under two-step delayed and lost
data. The Bernoulli distribution was used to model the multi-
step delayed and missing data. More specifically, we have
considered the one-step and two-step delayed data. A trans-
mission protocol where data are sent twice at a central station
was considered to avoid lost information. The system state-
space model has been reformulated in a way such that the
delay factor was removed from the state to the matrices. An
experimental example of vehicle tracking was considered to
compare the effectiveness of the UFIR filter, KF, and H∞
filter in terms of accuracy and robustness against errors in the
noise statistics and tuning probabilistic parameter. It has been
shown that the UFIR filter is not affected by these factors as
much as the KF and H∞ filter.

5. Conclusions 
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