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Abstract: In this paper, interval prediction model is studied for model predictive control (MPC) strategy with 
unknown but bounded noise. After introducing the family of models and some basic information, some 
computational results are presented to construct interval predictor model, using linear regression structure 
whose regression parameters are included in a sphere parameter set. A size measure is used to scale the average 
amplitude of the predictor interval, then one optimal model that minimizes this size measure is efficiently 
computed by solving a linear programming problem. The active set approach is applied to solve the linear 
programming problem, and based on these optimization variables, the predictor interval of the considered model 
with sphere parameter set can be directly constructed. As for choosing a fixed non-negative number in our given 
size measure, a better choice is proposed by using the Karush-Kuhn-Tucker (KKT) optimality conditions. In 
order to apply interval prediction model into model predictive control, the midpoint of that interval is 
substituted in a quadratic optimization problem with inequality constrained condition to obtain the optimal 
control input. After formulating it as a standard quadratic optimization and deriving its dual form, the 
Gauss-Seidel algorithm is applied to solve the dual problem and convergence of Gauss-Seidel algorithm is 
provided too. Finally simulation examples confirm our theoretical results.  
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1.  Introduction 

Model predictive control (MPC) has developed 
considerably over the past two decades, both within 
the control field and in industry. This success can be 
attributed to the fact that model predictive control is 
perhaps the most general way of posing constrain 
control problem in the time domain. Model 
predictive control formulation integrates optimal 
control, stochastic control, control of processes with 
dead time, multivariable control and future 
references when available. One important advantage 
of model predictive control is that because of the 
finite control horizon used, constraints and, in 
general nonlinear processes which are frequently 
found in industry, can be handled. The rationale 

behind model predictive control is the following: at 
each time step, an L2 or alternative variation of the 
cost function is locally optimized over time to 
obtain the open loop control as a function of time 
instant, only a small portion of which is actually 
applied to the system. The time horizon is then 
shifted, and the process is repeated at a later time 
step based on state feedback (Marko Tanaskovic, 
2014). Although model predictive control has been 
found to be quite a robust type of control in most 
reported applications, some new and very promising 
results allow one to think that this control technique 
will experience greater expansion within this 
community in near years (X Zhang, 2017). 
However although lots of applications have been 
reported in both industries and research institutions, 
model predictive control has not yet reached 
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popular in industry. 
The most important element in model predictive 
control is the prediction of output value. After 
deriving the prediction of output value by prediction 
error method and then substituting in into one 
considered cost function, we take the derivative of 
the cost function with respect to input value to 
obtain one optimal input (Marko Tanaskovic, 2017). 
But the problem of deriving the prediction of output 
value is dependent of external noise, which is 
always assumed to be independent and identically 
distributed white noise. Due to white noise is an 
ideal case, it does not exist in engineering and in 
additional, deriving statistical properties of noise is 
often very difficult in practice as it is usually not 
possible to measure noise directly (M Casini, 2014). 
To relax this strict probabilistic description on noise, 
assumption on the noise bound is less restrictive, as 
noise is bounded and the bound can be roughly 
calculated from the specification of the used sensor. 
Here we investigate model predictive control in 
presence of bounded noise, which is similar to set 
membership predictive control (Vito Cerone, 2014). 
The idea of set membership predictive control is 
from set membership identification in classical 
system identification theory. As this paper is 
different from set membership identification, we 
apply interval predictor model, coming from 
classical system identification theory, into model 
predictive control. To have a better understanding 
about how to apply interval predictor model into 
model predictive control, firstly we give a short 
review about interval predictor model.  
In classical system identification theory, one 
parametric model structure corresponding to an 
identified system is selected firstly, and then the 
parameters in the parametric model structure are 
estimated using the measured input-output data. 
During the system identification process, many 
identification methods are proposed to identify 
these unknown parameters, for example the 
classical least squares method, instrumental variable 
method, maximum likelihood estimation method, 
prediction error method, Bayesian method, etc. (J M 

Bravo, 2016). One common property in these 
identification methods is that the prior information 
about noise is known. Based on some probabilistic 
assumptions on noise, the unknown parameters are 
identified as the specific numerical values. But the 
probabilistic assumptions on noise are not realistic 
and these probabilistic assumptions are not realized 
easily in reality. So in order to relax the 
probabilistic assumptions on noise, we always 
assume that the noises are unknown but bounded. 
This unknown but bounded assumption is weaker 
than the original probabilistic assumption, as it 
needs not any prior distribution on noise. The 
common used method applied to solve the unknown 
but bounded case is called set membership 
identification (M.Milanese, 2004). In set 
membership identification, the obtained result is not 
a detailed numerical value, but a guaranteed interval 
with respect to each parameter. This guaranteed 
interval means that each parameter can be included 
in this interval with one guaranteed accuracy which 
is assessed by some probabilistic inequalities. From 
the idea of set membership identification, after the 
unknown parameters are identified, the identified 
parametric model may be applied to determine one 
prediction for the output value of the system, 
together with probabilistic confidence intervals 
around the prediction (M.C.Campi, 1998). As we 
expect the confidence interval can accurately 
describe the actual probability that the future 
predictor will fall into the obtained interval. The 
future predictor is important for the next controller 
design and state estimation, so in (M.C.Campi, 
2009), a novel approach for the construction of 
prediction models is proposed. The advantage of 
this novel approach is that instead of using a 
standard identification way, where one constructs a 
parametric model by minimizing an identification 
cost, and the identified model is used to design the 
prediction interval (J M Bravo, 2017). This novel 
approach directly considers interval model and 
applies measured data to ascertain the reliability of 
such interval predictor model (M.C.Campi, 2001). It 
means that we directly obtain the interval predictor 
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model from measured data and avoid the 
identification process for the parametric model 
structure. 
In this paper, we continue to do a deep research for 
the construction of interval prediction model and 
then apply it in model predictive control strategy. 
The contribution of the paper is two fold. First, after 
introducing the family of models under study and 
some basic information about the interval predictor 
model, we present the computational results for the 
construction of interval predictor model, using 
linear regression structure, whose regression 
parameters are included in a sphere. Given a size 
measure to scale the average amplitude of the 
predictor interval, one optimal model that 
minimizes a size measure is efficiently computed by 
solving a linear programming problem, our first 
contribution is to apply the active set approach to 
solve this linear programming problem and then 
propose a Newton iterative form for the 
optimization variables. Based on these optimization 
variables, the predictor interval of the considered 
model with sphere parameter set can be directly 
constructed. Furthermore as for a fixed 
non-negative number coming from the size measure, 
we propose a good choice by using the 
Karush-Kuhn-Tucker (KKT) optimality conditions. 
Second, on the basis of this constructed interval 
predictor model, the midpoint of this interval 
predictor can be used as a central estimate, then the 
prediction of the output value can be obtained by 
that central estimate. As the goal of model 
predictive control is to control the system in order 
to track a desired output reference and reject 
disturbances. Moreover, the considered controller 
may enforce input and output constraints. So after 
introducing that central estimate corresponding to 
the prediction of the output value, such a control 
objective can be formulated as a quadratic 
programming problem with inequality constrained 
condition. It is well known that the dual of the 
quadratic programming problem is an unconstrained 
optimization problem (M Casini, 2017). After 
simple but tedious calculations, we formulate those 

input and output constraints into a standard 
inequality form and give a detailed process about 
how to derive the dual of the quadratic 
programming problem. As the dual problem has a 
simple constraint set, so it is amenable to the use of 
the Gauss-Seidel algorithm, whose convergence can 
be shown, if the step-size parameter is chosen 
appropriately.  
The paper is organized as follows. In section 2, 
some preliminaries are formulated about interval 
predictor model, providing a linear programming 
problem with respect to three variables. In section 3, 
one choice of a fixed non-negative number is 
proposed by using the optimality KKT sufficient 
and necessary condition. In section 4, Newton 
method is applied to solve that linear programming 
problem so that one interval predictor model is 
constructed. In section 5, the midpoint of the 
obtained interval predictor model is used in model 
predictive control strategy, where one quadratic 
programming problem with inequality constrained 
condition is needed to be solved. After 
reformulating that quadratic programming problem 
with inequality constrained condition and deriving 
its dual problem, the Gauss-Seidel algorithm is used 
to obtain the optimal control input and the 
convergence of the algorithm is also given. In 
section 6, simulation examples illustrate the 
effectiveness of the proposed interval predictor 
model. Section 7 ends the paper with final 
conclusion and points out the next topic, which we 
are studying in our next paper.  

2. Interval predictor model 

Interval predictor model returns an interval as 
output. The following concepts can be seen in 
(M.C.Campi, 2009) and (M.Vidyasagar, 2008). 
Define nR  and Y R be given sets, and they 
are denoted as the instance set and outcome set. The 
interval predictor model is a rule that assigns to 
each instance vector   a corresponding output 
interval. An interval predictor model is a set valued 
map. 
  :I I Y                                      (1) 
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where  is a regressor vector,  I  is the predictor 
interval, also  I  is called an informative interval. 
Consider the parametric model family M , the 
output of a system is expressed as  ,y M q , for 

some parameters qn
q Q R  . Through selecting a 

feasible set Q , an interval predictor model is 
obtained as the following relation. 
   , , qn

M y M q q Q R                                  (2) 

In a dynamic setting, at each time instant the 
instance vector  may contain past values of input 
and output measurements, then behaving as a linear 
regression function. From standard auto-regressive 
structures, a parametric interval predictor model is 
derived. 
          ,Ty k k k e k e k                               (3) 
where  y k and  k denote the output 
measurement and regressor vector at time instant k , 
  nk R  is the time varying unknown parameter, 

 e k is the external noise. But here any prior 
probability information of noise  e k  is unknown. 
We only assume that noise  e k is unknown but 
bounded and   is its magnitude bound. 
Assume time varying unknown parameter 
  nk R  satisfies. 

   nk R                                         (4)  

where   is one assigned bounded set. Here we 
assume   is a sphere with center  and radius r . 
  : , ,nR r                                       (5) 

Combining equations (2), (3) and (5), the 
parameters indicating the feasible set Q  are the 
center  and radius r of sphere  , and the 
magnitude bound   on noise  e k . 
substituting (5) into (3), we obtain the output of the 
system. 

 
            T T Ty k k e k k k e k           

                    (6) 
Using the bounded radius r  and magnitude 
bound  , regression vector  k , the output of the 
parametric model is one interval. 

            ,T TI k k r k k r k             
 

                (7) 
Equation (7) is one interval model, it contains the 
output of the parametric model  y k with some 

guaranteed probability. When the observations are 
collected in the data sequence      1

,
N

N k
D k y k


 , 

whatever open or closed loop, the following relation 
holds. 
      , 1,2y k I k for k N                                  (8) 
where equation (8) means that the interval 

  I k is consistent with a given data 
sequence

ND . 
Observing the interval (7) again, we see that this 

interval is dependent on three parameters-  , ,r  . 

So if these three parameters are identified, the 
interval can be constructed based on equation (7). In 
order to obtain these three parameters, one linear 
programming problem is constructed (G.Calafiore, 
2005).  
Introducing a size measure ar   , where a is a 
fixed non-negative number, the optimal model that 
minimizes   can be derived by solving a linear 
programming problem. 
Theorem 1 (M.C.Campi,2009) Given an observed 
data sequence      1

,
N

N k
D k y k


 , a model order 

n , and a size objective ar   , three 
parameters used to construct the optimal interval 
predictor model are computed by solving the 
following linear programming problem with respect 
to three variables. 

, ,nR r   

      

     

, ,
min

, 1,2

r

T

T

ar

subject to k r k y k

k r k y k k N

 


   

   





  

     

                       (9) 

According to linear programming problem (9), there 
are no any references on how to solve it, so here the 
main contributions of the next two sections are to 
solve this linear programming problem and choose 
an appropriate fixed non-negative number. 

3. One choice of a fixed 

non-negative number 

In linear programming problem (9), as the 
optimization variables r and   denote the radius 
of sphere   and magnitude bound on noise  e k , 
so these two optimization variables must satisfy 
that. 
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 0 0r and                                       (10) 
Combining linear programming problem (9) and 
inequality constraints (10), we rewrite the new 
linear programming problem as that. 

      

     

, ,
min

, 1,2

0 0

r

T

T

ar

subject to k r k y k

k r k y k k N

r and

 


   

   





   

     


 

         

            (11)

 

Define the Lagrangian function L  corresponding 
to the above linear programming problem by  

        

      

1 2 1 2
1

1

, , , , , ,
N

T

k k k

k

N
T

k

k

L r ar r y k k r k

y k k r k

              

    

  







       

    





           (12) 
We refer to  1 2 1

, , ,
N

k k k
    


as the Lagrangian 

multipliers. By applying the optimality KKT 
sufficient and necessary condition on Lagrangian 
function, then some equality relations for the 
optimal solution hold. 

    
1

0
N

k k

k

L
k  



 




  


                                   (13)  

  1
1

1 0
N

k k

k

L
  



 




    


                                

   (14)     2
1

0
N

k k

k

L
a k

r
    




    


             

                (15) 
 1 20, 0r                                          

(16)

 

        0T

k y k k r k                                      

(17)

 

        0T

k y k k r k                     

                 (18) 
Also as optimization variables r and   denote 
the radius of sphere   and magnitude bound on 
noise  e k  respectively, if 0  , then that 

  0e k   means no noise exists in the standard 

auto-regressive structure (3). If 0r  , then sphere 
  reduces to its center  , so here for interval 
predictor model ,we want to satisfy that.  
 0 0r and                                         (19)  
When r and   are all equal to zero, then 

  I k is not an interval, but a fixed output value. 
The midpoint of the interval predictor model is a 
central estimate here. 

  
         

 
2

T T

T
k r k k r k

I k k
       

  
    

 

 
Comparing (16) and (19), we see that equation (16) 
holds unless Lagrangian multipliers  1 2,  must 

satisfy by that. 
 1 2 0                                            (20) 
Further in equation (13), assume regression vectors 
     1 , 2 N   at different instants are linearly 

independent. So in order to let equation (13) hold, 
the  

1
,

N

k k k
  


 need to satisfy by. 

 , 1,2k k k k N                                       (21) 
substituting (20) and (21) into (14) and (15), we 
obtain the following simplified forms. 

 
 

1

1

1
2

2

N

k

k

N

k

k

a
k



 










 





                                      (22) 

From the idea of equation (22), one choice of this 
fixed non-negative number a  is given here. As 

1

1
2

N

k

k




 holds, we set 1
2k
N

  . Then after 

substituting 1
2k
N

   into 

equality  
1 2

N

k

k

a
k 



 , we have. 

      
1 1 2

2 2
a

N
N

                   

       

       (23) 
It means that  

      
1 1 2a N
N

                                    (24) 

Equation (24) is one of the choices of that fixed 
non-negative number a . As regressor vectors 

   1

N

t
k


 and the number of data are given, so the 

form (24) of a  can be computed easily. 

4. Newton method for interval 

predictor model 

Because interval predictor model (7) is dependent 
of the linear programming problem (11) with 
respect to three kinds of optimization 
variables  , , r  , so the important step in 
constructing interval predictor model (7) is to solve 
that linear programming problem (11). First we 
rewrite the linear programming problem (11) as its 
standard form. Define a new vector 2nx R   
as  , ,x r  . Based on the new optimization 

vector 2nx R  , the cost function in (11) can be 
rewritten as. 
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 

 

0 1

0 1

T

T

ar a C x

r

C a



 

 
 

   
 
 



                                

(25)

 

Also each inequality can be rewritten as. 

 

     

      

     

      

 

 

1 ,

1 ,

0 0 0 1 0, 0

0 1 0 0

T

T

T

T

k r k y k

k k y k

r

k r k y k

k k y k

r

r

r

r

   



  

   



  



 





   

  

 
    

   

    


 
       
 

  


 
         

  


 
      

  

        (26)  

Define some matrices to merge all inequities in 
equation (26). 

   

   

   

   

 

 

 

 

0 1 0 0
0 0 1 0

1 1 1 1

,1
11 1 1

1

T

T

T

T

y

A B
N N y N

y

y NN N

 

 

 

 

   
   
   
    
   
   

     
   
      
   
   
        

    

                    (27) 
where    2 2 3 2 2 1,N N

A R B R
   

  . Given regression 

vector    1

N

k
k


 and output measured 

data    1

N

k
y k


, the above two matrices ,A B are 

known.  
Applying two matrices ,A B , all inequities in 
equation (26) are obtained in a simplified form. 
 Ax B                                         (28) 
Then based on (25) and (28), the formal linear 
programming problem (11) can be formulated into a 
standard linear programming form. 

 
min T

x
C x

subject to Ax B






                                  
 (29)

 

Now we propose a Newton method to solve the 
above standard linear programming problem. Our 

Newton method introduces the active set approach 
into classical Newton approach. The active set 
approach introduced here is based on a 
transformation by means of which the optimality 
KKT conditions are converted into a system of 
nonlinear equations. 
Firstly for a fixed scalar 0c  , consider the open set 

* 2 2 2 2N N

cS R R    defined by. 
   * , / , 1,2 2 2c j jS x m m cA x j N             

                (30) 
where

jA is the j column of matrix A , and the 
system of equations on *

cS . 

 
 

 

, , 0

, , 0
xC g x m c m

g x m c





  




                                     (31) 

where the function  , ,g x m c  is defined by. 

 

 

 

 

1 1

2 2 2 2

, ,
, ,

, ,

, , max , , 1,2 2 2

N N

j

j j j

g x m c

g x m c

g x m c

m
g x m c A x j N

c







 



 
 

  
 
 

 
    

 

                    (32) 
Note that  , ,g x m c is differentiable on 

*
cS as Ax B , so equations (31), (32) are well 

defined.  , ,g x m c appears in the definition of the 
augmented Lagrangian function, which takes the 
form as that. 

     
21, , , , , ,

2
T

cL x m c C x m g x m c c g x m c          

Secondly consider the implementation of Newton 
approach. Define for   *. cx m S . 

   

 

, , , ,

, / , 1,2 2 2

T

j

c j j

L x m c C x m g x m c

m
A x m j A x B j N

c

  

 
      
 

                        (33) 

Assume without loss of generality that 
   , 1cA x m p  for one integer p . This integer 

p depends on x and m . We view  ,cA x m as the 
active index set, in the sense that indices in 

 ,cA x m  are predicted by the algorithm to be 
active at the solution. By differentiation in equation 
(31), we propose that Newton method consists of 
the iteration. 
 ,x x x m m m                                         (34) 
where  ,x m  is the solution of the following 
system. 
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    

 

  
 

 

 

 

1
2

1

2 2

1

1

2 2

, , , , 0

, , 0 0
10 0

, ,

, ,

, ,
, ,

, ,

xx

p

p

N

x

p

p

N

x

m

m g x m c N x m c

N x m c m

m
I

c

m

C m g x m c

g x m c

g x m c

g x m c

g x m c





















 
 
   

   
   

    
   

   
   

  

 
 
 
 
 

  
 
 
 
 
  

M

M

M

M

               (35) 
where  , ,N x m c  is the  2 2N p  matrix having 
as columns the gradients  , ,j cA j A x m , I is the 

   2 2 2 2N p N p      identity matrix, and the 
zero matrices have appropriate dimension. Since we 
see that. 

   , , , ,j

j c

m
g x m c j A x m

c

      

It follows that 
 0, ,j cm j A x m    

It follows from equation (35) that the remaining 
variables x and 1 pm m   are obtained by 
solving the reduced system. 

 

    

 

  

2
1

1 1

, , , ,

, , 0

, ,

xx

p

x

p p

x

mm g x m c N x m c

N x m c

m

C m g x m c

A x B

A x B





 
   
   
     
  

 
 

 
  
 
  

M

M

               

(36)

 

where we make use of the fact that. 

 
     

   
 ,

, , , ,

, ,
c

j j c

x j j j

j A x m

g x m c g x j A x m

L x m c C A B m







  

   
                           (37) 

From above equations, we see that the proposed 
Newton iteration can be described in a simpler 
manner. 
 
 
 

5. Application interval predictor 

model into model predictive 

control 

Now in this section, we start to apply the above 
obtained interval predictor model into model 
predictive control strategy. Set the optimal variables 
corresponding to the linear programming problem 
(9) as follows. 

ˆ ˆ ˆ, , r   

Then based on these three optimal variables  ˆ ˆ ˆ, , r  , 

the interval predictor model   I k is defined as 
that. 

 
            ˆ ˆˆ ˆˆ ˆ,T TI k k r k k r k             

 

               (38) 
Then from probability theory (Carlo Novara, 2016), 
then predictor of output value will be included in 
this confidence interval with one guaranteed 
accuracy, i.e. 
     , 0,1,2y k I k k N                  

                (39) 
5.1 Model predictive control problem 
As the goal of model predictive control is to control 
the system in order to track a desired output 
reference and reject disturbances from 0k  up to 
some finite time step N , where this time step N  
can be very large.  
Assuming that the control input 
 , 1, 2,u l l    are known, then a control 

objective can be formalized by one optimization 
problem. 

 

     
           1 10 , 1 0

min
N

T T

des des
u u u N

k

y k y k Q y k y k u k S u k


        

            (40) 
where  desy k is the desired output reference, 

1 1,Q S are positive semi-definite weighting matrices 
selected by the designer. Observing (39) and (40), 
the predictor of output value 
  , 0,1,2y k k N exists in cost function (40), but 

the only knowledge about the predictor of output 
value is that  y k is included in confidence interval 

  I k , so there are two cases needed to be 
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considered here. One case is to expand the cost 
function (40), then a numerical value about  y k is 
needed to substitute into cost function, i.e. the 
midpoint of that confidence interval can be used as 
the prediction of output value  y k . 

   
         

 
ˆ ˆˆ ˆˆ ˆ

ˆ
2

T T

T
k r k k r k

I k k
       

  
    

 

        (41) 
Replacing  y k as   ˆT k  into cost function (40), 
we obtain an explicit form corresponding to 
optimization problem. 
 

     
           1 10 , 1 0

ˆ ˆmin
N T

T T T

des des
u u u N

k

k y k Q k y k u k S u k   


     
   

           (42) 
The second case is to use confidence interval 

  I k into optimization problem directly, but 
another max operation is added, i.e. a robust model 
predictive control problem is obtained. 

 

          
           1 10 , 1 0

min max
N

T T

des des
u u u N y k I k

k

y k y k Q y k y k u k S u k




        

        (43) 
Here in this paper, we only consider the first case 
(41) and the second case (42) corresponding to a 
robust model predictive control problem will be 
solved later. Further the controller will satisfy input 
and output constraints as that. 

 
 

 

min max

min max

0,1
u u i u

i N
y y i y

 


 

                         
 (44) 

Combining (42) and (44), the model prediction 
control problem is formalized by the following 
optimization problem with inequality constrained 
condition. 

 
     

           

 

 

1 10 , 1 0

min max

min max

ˆ ˆmin

0,1

N T
T T T

des des
u u u N

k

k y k Q k y k u k S u k

u u i u
subject to i N

y y i y

   


     
   

 


 

     

   (45) 
where min max,u u  and min max,y y denote the lower 
and upper bounds on input and output respectively. 
Before solving optimization problem (45), we 
analyze the cost function and inequality constrained 
condition in (45). The second term in cost function 
can be rewritten as. 

 

         

 

 

 

1

1
1

0

1

0 0 0
0 0 1

0 1

0 0

N
T T

k

S u

S u
u k S u k u u u N u Su

S u N



  
  
        
  
    



            (46) 
where vector u and matrix S are defined as that. 

       1 1 10 1 ,
T

u u u u N S diag S S S   

 
It means that vector u includes all optimal input at 
all time step , 0,1i i N . The first term in cost 
function can be also reformulated as that. 

     
       

           

10 , 1 0

1 1 1
0 0

ˆ ˆmin

ˆ ˆ ˆ2

N T
T T

des des
u u u N

k

N N
TT T T

des des des

k k

k y k Q k y k

k Q k k Q y k y k Q y k

   

     



 

    
   

  



 

 
As no input  u i exists in 

term    1
0

N
T

des des

k

y k Q y k


 , then this term can be 

omitted. For clarity of presentation, set the control 
inputs  , 1, 2,u l l    be zero, it not, we use 
coordinate transformation to satisfy it. Due to 
ˆ nR  , then regressor vector  k and ̂ can be 

defined as follows. 

       

1 2

1 2

ˆ ˆ ˆ ˆ

T

T

N

k u k u k u k N

   

      


 
 

 

From above descriptions, the following relations 
hold. 

       

1

2

ˆ

ˆˆ0 1 2 0

ˆ

T

N

u u u N




 



 
 
 

        
 
 
 

 

         

     

1 1

2 2

1

2
1

ˆ ˆ

ˆ ˆˆ1 0 1 1 0 0 0

ˆ ˆ

ˆ1 0 0
ˆ0 0 0 ˆ0 1

0 0 0 ˆ

T

N N

T

N

u u u N u

u u u N u I

 

 
 

 








   
   
   

            
   
   
   

  
  
        
  
    
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           

             

1 1

2 2
2

1

2

ˆ ˆ0 1 0
ˆ ˆ1 0 0ˆ ˆ2 1 0 0 0 1

0 0 0ˆ ˆ

0 0 1 0
ˆ 0 0 0 0
ˆˆ 1 2 0 1

0 1 0 0
1 0 0 0ˆ
0 0 0 0

T T

N N

T

N

u u u u u N u I

N u N u N u N n u u u N

 

 
  

 




 



    
    
                
    
       


 
 

 
           

 
 
 



1

2

ˆ

ˆ ˆ

ˆ

T

N

N

u I









  
  

   
   

   
   

  
 

 
substituting above relations into the first term of the 
cost function, we obtain. 

 

         1 1 1 1
0 0

ˆ ˆ ˆ ˆ2 2
N N

T T T T T T

des k k k des

k k

k Q k k Q y k u I Q I u u Su I Q y k u      
 

         

 (47) 
Set  

 1 1
0

1ˆ , 2
2

N
T

k k k des

k

I Q I S Q I Q y k b


        

Then the cost function in optimization problem (45) 
can be simplified as that. 

 1min
2

T

u
u Qu bu                                        (48) 

Those inequality constraints on input and output can 
be also reformulated as that. 

 

     
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u

u
u u u N

u

Iu U

u i u i N

u

u
u u u N

u

Iu U

y i y i

 

  
  
          
  

   

 

  

  
  

           
  
   

   

 

L

L

L
L

MM M

L

L

L

L
L

MM M

L

  max

1 max

2 max
max

max

0 0
0 0

0 0

T

T

N

I

N i y

I y

I y
u I u Y

I y

 







 

   
   
      
   
   
   

L

L

L

M M M

L  

Similarly we have that. 
  min min, 0,1y i y i N I u Y        

where I denotes identify matrix, , 1,2iI i N is 
from cost function , I is defined as. 

 1 2 NI diag I I I    

For notational clarity, combining above four 
inequalities to obtain. 

 

max

min

max

min

E F

I U

I U
u Eu F

I Y

I Y





   
   
 

     
   
   
    

                                 (49) 

Merging (48) and (49), the following quadratic 
programming problem is considered. 

 
1min
2

T

u
u Qu bu

subject to Eu F





                           

          (50) 
In order to obtain the optimal control input u by 
solving above quadratic programming problem (50), 
the following Gauss-Seidel algorithm is used. 
 

5.2 Gauss-Seidel algorithm 
To solve that quadratic programming problem (50) 
with inequality constraint, as the dual of the 
quadratic programming problem is an unconstrained 
optimization problem (J M Bravo, 2006), so it is 
easy to solve its dual problem. 
The dual function is defined as that. 

   
1inf
2

T

u
q z u Qu bu z Eu F

 
    

 
 

The infimum is attained for  1u Q b Ez  and 
after substitution of this expression in the preceding 
relation for  q z , a straightforward calculation 
yields. 

 
     

       

1 1

1 1 1

1 1

1
2
1
2

1
2

T

T

T T

q z Q b Ez QQ b Ez

b Ez Q b Ez bQ b Ez z EQ b Ez F

z EQ E z zF zEQ b

 

  

 

  

         

   

          (51) 
Then the dual of the quadratic programming 
problem is given by 

 
1min
2

0

T

z
z Gz dz

subject to z





                                     (52) 

where 

 1 1,TG EQ E d f EQ b                      

             (53) 
If *z solve the dual problem (52), then 

 * 1 *u Q b Ez   solves the primal problem (T 
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Alamo, 2005). Let 
jg  denote the j th column 

of E , assume that 
jg is nonzero for all j . Since 

Q is symmetric and positive define, the first partial 
derivative of the dual cost function with respect to 

jz is given by. 

 
1

N

j jk k

k

d g z


                                

           (54) 
where 

jkg and 
jd are the corresponding elements 

of the matrix G and the vector d , respectively. Set 
the derivative to be zero, the unconstrained 
minimum of the dual cost function along the j th 
coordinate starting from z is attained at 

jz given 
by. 

1

1 1
j j jk k j j jk k

k j kjj jj

z d g z z d g z
g g 

   
        

  
   

Taking into account the non-negativity 
constraint 0jz  , when the j th coordinate is 
updated, the Gauss-Seidel iteration has the form. 

  
1

1max 0, max 0,

,

j j j j jk k

kjj

i i

z z z d g z
g

z z i j



    
      

    


  

  

                (55) 
Consider a linear projection Jacobi method, it is a 
special case of the Gauss-Seidel algorithm. Taking 
into account the first partial derivation of the dual 

cost function with respect to
jz , another iteration 

formula is given by.  

      
1

1 max 0,j j j jk k

kjj

z t z t d g z t
g





   
     

   
    

              (56) 
where 0  is the stepsize parameter. The above 
iteration is more suitable for parallelization than the 
Gauss-Seidel iteration. On the other hand, for 
convergence, the stepsize  should be chosen 
sufficiently small, and some experimentations may 
be needed to obtain the appropriate range for . In 
the dual problem (52), let Gk be the largest 
eigenvalue of G , and assume that 0Gk  , then the 
Lipschitz condition corresponding to the dual 

function  
1
2

Tq z z Gz dz  is written as. 

   1 2 1 2Gq z q z k z z     

or equivalently 
 1 2 1 2GG z z k z z    

Then from the parallel distribution algorithm (T 

Alamo, 2005), we obtain the following theorem 2 
easily. 
Theorem 2 (Convergence of the Gauss-Seidel 
algorithm) Suppose that dual function 
 q z satisfies the Lipchitz condition, if 

10 jj

G

g
k

   and if *z is a limit point of the 

sequence   z t generated by the Gauss-Seidel 

algorithm, then    * * 0z z q z   for all 0z  . 

Moreover if  q z is convex on the set / 0z z  , 
then *z minimizes  q z over the set  / 0z z   

6. Simulation examples 

Now we propose a simulation example to illustrate 
the nature of the above results. In this simulation 
example, the unknown regressive structure is 
assumed as follows.  

       

      

0.1 1 0.2 2

0.1
1 2

0.2

y k u k u k e k

u k u k e k

     

 
   

 
 

Setting regression vector as 
      1 2T k u k u k     

Seeking an explanatory interval predictor model of 
the form. 

         ,Ty k k k e k e k      

In order to fit this above interval predictor model to 
the measured data, we choose    cosu k k  and 
collect 500N   observations as the data 
sequence      1

,
N

N k
D k y k


 . Choosing that size 

measurement as 0.8r   , and solving the linear 
programming problem by Newton method on the 
basis of our measured data      1

,
N

N k
D k y k


 , we 

obtain one optimal center 
0.1

0.18


 
  
 

 with bounded 

radius 0.2r  , and level of magnitude bound 0.1  . 
The resulting iterative estimations of the unknown 
parameter is shown in Figure 1, with the iterative 
estimations are also clustered around at the 

point
0.1

0.18


 
  
  . 

In Figure 1, the center of the circle is the optimal or 
true value, denoted by red triangle. The black 
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triangles are denoted as iterative estimations, 
obtained by Newton method. From Figure.1, we see 
that the iterative estimations will converge to its 
optimal or true value with increasing iteration steps. 
After substituting the optimal center into equation 
(7), our interval predictor model for output value is 
obtained. This interval predictor model contains the 
output of the parametric model with some 
guaranteed probability. The whole output frequency 
response curves are showed in Figure 2, based on 
estimated model parameters. The red curve is the 
actual true amplitude curve from Bode plot tool. 
When the estimated parameters are contained in the 
uncertainty bound with probability level 0.99, the 
amplitude curves lie above or low the red curve. 
From Figure 2, we see these three curves are very 
close and the red amplitude curve lies between two 
confidence amplitude curves with probability level 
0.99. 
As using Matlab simulation tool to simulate the 
output response of Bode plot in closed loop, the 
phase plot is get with amplitude plot simultaneously. 
The confidence interval phase plot is given in 
Figure 3, and the red phase curve lies also between 
two confidence phase curves with the probability 
level 0.99.This is similar to the derivation of Figure 
3.The output error between true output value and 
actual output value will converge to zero with time 
increases in Figure.4, then this model error can be 
neglected in our next process in designing 
controllers. 
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Figure. 1. Iterative parameter 
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Figure. 2 Confidence interval of amplitude in Bode 

plot 
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Figure. 3 Confidence interval of phase in Bode plot 
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Figure.4. One bound of the model error 

7. Conclusion 

In this paper, we apply interval predictor model into 
model predictive control strategy. As the interval 
predictor model is dependent of three unknown 
parameters, one linear programming problem is 
constructed to obtain this interval predictor model. 
We propose to choose one fixed non-negative 
number in size measure and give a Newton method 
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to solve that linear programming problem. Further 
in model predictive control, the midpoint of the 
obtained interval is used in one quadratic 
programming problem. After some tedious 
calculations, the dual problem of that quadratic 
programming problem is solved by Gauss-Seidel 
algorithm. But the midpoint of the obtained interval 
is a special case of confidence interval, as here the 
prediction of output value is dependent only on one 
identified parameter. Generally the confidence 
interval needs to construct the robust model 
predictive control, i.e. the problem of applying 
dynamic programming to solve a robust model 
predictive control is our next topic. 
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