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1 Introduction

Fractional Fourier transform is one of the most impor-
tant tools in applied sciences [1]. It has been proved
that we can solve partial differential equations using
Fractional Fourier transform [2]. Fractional partial
differential equations also appeared to have many ap-
plications in physics and engineering. See [1], [3],
[4], [5], [6], [7] and [8]. There are many definitions
of fractional derivative. One of the most recent ones
is the conformable fractional derivative [9].

For more applications on conformable fractional
derivative we refer the reader to [10], [11], [12], [13],
[14] and [15].

Recently [16], fractional Taylor power series was
introduced, and a beautiful theory was layed there.
However, no work is done on fractional Fourier se-
ries, though there is some work on fractional fourier
transform.

The aim of this paper is to introduce conformable
fractional Fourier series with separation of variables
as a new technique to help us solve some frac-
tional differential equations (Benjamin Bana Mahony
and Heat Equations). These equations can not be
solved using classical methods. Moreover, we create
a new numerical approximation for functions using
the mathematica coding called conformable fractional
Fourier series approximation.

2 Basics of Conformable Fractional
Derivative

A definition called conformable fractional derivative
was introduced.

Definition 1 Let α > 0, then we define the fractional
derivative of f of order α as

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

for all t > 0 and α ∈ (0, 1). We shall write fα(t) for
Tα(f)(t).

One can easily show that Tα satisfies all the prop-
erties in the following theorem.

Theorem 2 Let α ∈ (0, 1] and f, g be
α−differentiable at a point t > 0. Then
(1) Tα(af+bg) = aTα(f)+bTα(g), for all a, b ∈ R.
(2) Tα(tp) = ptp−α, for all p ∈ R.
(3) Tα(λ) = 0, for all constant functions f(t) = λ.
(4) Tα(fg) = gTα(f) + fTα(g).
(5) Tα(fg ) = gTα(f)−fTα(g)

g2
.

(6) In addition, if f is differentiable, then
Tα(f)(t) = t1−α dfdt (t).

The conformable fractional derivatives of certain
functions:
(1) Tα(sin 1

α t
α) = cos 1

α t
α.

(2) Tα(cos 1
α t
α) = − sin 1

α t
α.
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(3) Tα(e
1
α
tα) = e

1
α
tα .

(4) Tα(tp) = ptp−α, for all p ∈ R.
On letting α = 1 in these derivatives, we get the

corresponding ordinary derivatives.

One should notice that a function could be
α−differentiable at a point but not differentiable, for
example, take f(t) = 2

√
t.

Then T 1
2
(f)(0) = lim

t→0+
T 1

2
(f)(t) = 1.

Where T 1
2
(f)(t) = 1, for t > 0.

This is not the case for the known classical fractional
derivatives since T1(f)(0) does not exist.

3 Fractional Fourier Series

Let 0 < α ≤ 1, and ϕ : [0,∞) → R be defined by
ϕ(t) = tα

α and g : [0,∞)→ R be any function.
Let f : [0,∞)→ R be defined by f(t) = g(ϕ(t)).
For example, if g(t) = cos t, then f(t) = cos( t

α

α ).

Definition 3 A function f(t) is called α−periodical
with period p if

f(t) = g(ϕ(t)) = g(ϕ(t) +
pα

α
), for all t ∈ [0,∞).

As an example, f(t) = cos( t
α

α ) is α−periodic
with period p = (2απ)

1
α .

Definition 4 Two functions f, h are called
α−orthogonal on [0, b] if∫ b

0

f(t)h(t)

t1−α
dt = 0.

Example 5 cos( t
α

α ) and cos(2 t
α

α ) are α−orthogonal
on [0, (α2π)

1
α ].

Proof 6 Put the variable change tα

α = x and use
property (6) in theorem 2.
We get dx = tα−1dt = dt

t1−α .

Further, when t = 0, x = 0, and when t = (a2π)
1
α ,

x = 2π.
Hence

I =

∫ (a2π)
1
a

0
cos(

ta

a
) cos(2

ta

a
)

1

t1−a
dt

I =

∫ 2π

0
cos(x) cos(2x)dx.

Using the fact that cos(2x) = 1 − 2 sin2(x) and the
variable change u = sin(x), then du = cos(x)dx,

when x = 0, u = 0 and when x = 2π, u = 0.
Then the integral I became :

I =

∫ 0

0
(1− 2u2)du = 0.

Hence a result as required.

In general, using the idea in Example 5; one can
easily prove:

Theorem 7
(1) cos(n t

α

α ) and cos(m tα

α ) are orthogonal on
[0, (α2π)

1
α ] , for all n 6= m.

(2) sin(n t
α

α ) and sin(m tα

α ) are orthogonal on
[0, (α2π)

1
α ] , for all n 6= m.

(3) sin(n t
α

α ) and cos(m tα

α ) are orthogonal on
[0, (α2π)

1
α ] , for all n,m.

Now, let us define the Fourier coefficients of an
α−periodic function with period p.

Definition 8 Let f : [0,∞) → R be a given peice-
wise continuous α−periodic with period p: Then we
define:
(1) The cosine α−Fourier coefficients of f as

an =
2α

pα

∫ p

0
f(t) cos(n

tα

α
)
dt

t1−α
, n = 0, 1, 2, ...

(2) The sine α−Fourier coefficients of f as

bn =
2α

pα

∫ p

0
f(t) sin(n

tα

α
)
dt

t1−α
, n = 1, 2, 3, ...

Example 9 Let f(t) = cos2
√
t.

The cosine and sine 1
2 −Fourier coefficients of the

function f(t) is:

a1 = 1, and an = 0 for all n 6= 1

and
bn = 0, ∀n ∈ N

where
p = (α2π)

1
α and α =

1

2
.

Now, we give the definition of the fractional
Fourier series:

Definition 10 Let f : [0,∞) → R be a given peice-
wise continuous function which is α−periodical with
period p: Then the α−fractional Fourier series of f
associated with the interval [0, p] is

S(f)(t) =
a0
2

+

∞∑
n=1

an cos(n
tα

α
) + bn sin(n

tα

α
)

where an and bn are as in above.
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Theorem 11 The fractional Fourier series of a piece
wise continuous α−periodical function converges
pointwise to the average limit of the function at each
point of discontinuity, and to the function at each point
of continuity.

Proof 12 One can easily prove the previous classical
results. See [10].

Example 13 Let f(t) = 2
√
t if 0 ≤ t ≤ (π2 )2

and f(t) = 2
√
t− 2π if (π2 )2 < t ≤ π2.

and α = 1
2 with p = π2 on the interval [0, π2].

Then,

a0 =
α

pα

∫ p

0
f(t)

dt

t1−α
=

1

2π

∫ π2

0
f(t)

dt√
t

=
1

2π

(∫ (π
2
)2

0
2
√
t
dt√
t

+

∫ π2

(π
2
)2

(2
√
t− 2π)

dt√
t

)
= 0.

On the other hand we have :

an =
2α

pα

∫ p

0
f(t) cos(n

tα

α
)
dt

t1−α

=
1

π

∫ π2

0
f(t) cos(n2

√
t))

dt√
t

=
1

π

∫ (π
2
)2

0
2
√
t cos(n2

√
t)
dt√
t

+
1

π

∫ π2

(π
2
)2

(2
√
t− 2π) cos(n2

√
t)
dt√
t
.

Using change of variables: θ = 2
√
t, we get

dθ = dt√
t
. Observe that θ = 0 if t = 0, θ = π

if t = (π2 )2, and θ = 2π if t = π2, and using
integration by parts.

Hence, the integral becomes :

an =
1

π

∫ π

0
θ cos(nθ)dθ+

1

π

∫ 2π

π
(θ−2π) cos(nθ)dθ = 0.

Similarly we get

bn =
2α

pα

∫ p

0
f(t) sin(n

tα

α
)
dt

t1−α
=

2(−1)n+1

n
.

So

Sα(f)(t) =
a0
2

+

∞∑
n=1

an cos(n
tα

α
) + bn sin(n

tα

α
)

=
∞∑
n=1

2(−1)n+1

n
sin(n

tα

α
).

The figures below represent the function along-
side its α−Fractional Fourier series approximation for
10, 100, 10000 terms where α = 1

2 , α = 1
4 and α = 1

(classical Fourier series) respectively.
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f(t) and α-Fourier Series Approximation, 10 terms

Figure 1: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 10 terms.
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f(t) and α-Fourier Series Approximation, 100 terms

Figure 2: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 100 terms.
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f(t) and α-Fourier Series Approximation, 10000 terms

Figure 3: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 10000 terms.
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f(t) and α-Fourier Series Approximation, 10 terms

Figure 4: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 10 terms.
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f(t) and α-Fourier Series Approximation, 100 terms

Figure 5: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 100 terms.
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f(t) and α-Fourier Series Approximation, 10000 terms

Figure 6: f(t) and alpha-Fractional Fourier Series Ap-
proximation, 10000 terms.
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f(t) and α-Fourier Series Approximation, 10 terms

Figure 7: f(t) and Fourier Series Approximation, 10
terms.
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f(t) and α-Fourier Series Approximation, 100 terms

Figure 8: f(t) and Fourier Series Approximation, 100
terms.
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f(t) and α-Fourier Series Approximation, 10000 terms

Figure 9: f(t) and Fourier Series Approximation,
10000 terms.

4 Solution of Fractional Benjamin
Bana Mahony Equation

We will attempt to solve an equation called Fractional
Benjamin Bana Mahony Equation using separation of
variables and fractional Fourier series :

Dβ
t D

β
t U+Dα

xU = Dβ
t D

β
t D

α
xD

α
xU. 0 < α < 1 (1)

subject to the conditions :

U(0, t) = 0; Uαx (1, t) = t2β; x > 0.

U(x, 0) = 0; U(x, 1) = 0; 1 > t > 0.

Solution :
We will be using separation of variables technique.
Let

U(x, t) = P (x)Q(t).

Substitute in equation (1) to get :

P (x)Q2β(t) + Pα(x)Q(t) = P 2α(x)Q2β(t). (2)

Here P (x) and Q(t) are the unknowns.
From which we get :

Q2β(t)

Q(t)
=

Pα(x)

P 2α(x)− P (x)
.

Since x and t are independent variables; then we get :

Q2β(t)

Q(t)
=

Pα(x)

P 2α(x)− P (x)
= λ.

where λ is a constant to be determined.
Hence we obtain :

Q2β(t)− λQ(t) = 0. (3)

λP 2α(x)− Pα(x)− λP (x) = 0. (4)

Conditions suggest that we work with equation (3)
first.
Then the auxiliary equation of equation (3) is

r2 − λ = 0.

There are three possibilities for λ :

Case (i) : λ = 0 :
then equation (3) becomes :

Q2β(t) = 0.

We get

Q(t) = c1 + c2
tβ

β

for some constants c1 and c2.
Conditions implies that : c1 = c2 = 0. So

Q(t) = 0.

Hence, no non trivial solution exists when λ = 0.

Case (ii) : λ = µ2 > 0 :
then equation (3) becomes :

Q2β(t)− µ2Q(t) = 0.

So the characteristic equation of equation (3) becomes
r2 − µ2 = 0, we get two distinct solution r1 = µ,
r2 = −µ.
Therefore the solution has the form

Q(t) = c1e
µ t
β

β + c2e
−µ t

β

β

for some constants c1 and c2.
But again conditions show that Q(0) = c1 + c2 = 0,

c1 = −c2, also Q(1) = c1e
µ
β + c2e

−µ
β = 0.

So, c1(e
µ
β − e−

µ
β ) = 0, thus c1 = c2 = 0.

Hence, no non trivial solution exists when λ = µ2.

Case (iii) : λ = −µ2 < 0 :
then equation (3) becomes :

Q2β(t) + µ2Q(t) = 0.

Then the auxiliary equation of equation (3) becomes
r2 + µ2 = 0, we get two distinct complex solution
r1 = iµ, r2 = −iµ, and since the real part in r1 and
r2 equal 0.
Therefore the solution is given as follows :

Q(t) = c1 sin(µ
tβ

β
) + c2 cos(µ

tβ

β
).
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for some constants c1 and c2.
Using conditions to get :

Q(0) = c2 = 0; Q(1) = c1 sin
µ

β
= 0.

Thus

sin
µ

β
= 0, so

µ

β
= nπ, ie µ = nπβ

where n = 1, 2, 3, ...
Hence

Qn(t) = cn sin(nπtβ). (5)

Now, we go back to equation (4) we find :

−n2π2β2P 2α(x)−Pα(x) +n2π2β2P (x) = 0. (6)

The auxiliary equation of equation (6) is :

−n2π2β2r2 − r + n2π2β2 = 0.

Thus
∆ = 1 + 4n4π4β4 > 0.

So

r1 =
−1 +

√
∆

2n2π2β2
and r2 =

−1−
√

∆

2n2π2β2
.

Hence the solution of this equation is :

P (x) = k1e
r1
xα

α + k2e
r2
xα

α .

for some constants k1 and k2.
Conditions implies that :

P (0) = k1 + k2 = 0, so k2 = −k1, thus

P (x) = k1(e
r1
xα

α − er2
xα

α ).

Hence

Pn(x) = kn(er1
xα

α − er2
xα

α ). (7)

Combining (5) and (7) to get :

U(x, t) =
∞∑
n=1

bn(er1
xα

α − er2
xα

α ) sin(nπtβ).

Conditions show that :

t2β =

∞∑
n=1

bn(r1e
r1

1
α − r2er2

1
α ) sin(nπtβ).

Using the β−Fractional Fourier series of t2β , we find
that :

bn =
2β

pβ

∫ p

0
t2β sin(nπtβ)

dt

t1−β

=
2β

pβ

∫ p

0
t3β−1 sin(nπtβ)dt

Now we have to use this variable change u = tβ and
du = βtβ−1 to get :

bn =
2β

pβ

∫ pβ

0
t3β−1 sin(nπu)

t1−β

β
du

=
2

pβ

∫ pβ

0
u2 sin(nπu)du.

Then :

bn =
2

pβ

[
−u2 cos(nπu)

nπ
+ 2u

sin(nπu)

n2π2
+ 2

cos(nπu)

n3π3

]pβ
0

.

Thus :

bn = −2pβ
cos(nπpβ)

nπ
+4

sin(nπpβ)

n2π2
+4

cos(nπpβ)

pβn3π3
− 4

pβn3π3
.

Therefore :

U(x, t) =
∞∑
n=1

bn(er1
xα

α − er2
xα

α ) sin(nπβ
tβ

β
).

Where :

bn = −2pβ
cos(nπpβ)

nπ
+4

sin(nπpβ)

n2π2
+4

cos(nπpβ)

pβn3π3
− 4

pβn3π3
.

5 Application

Now, as an application we will use fractional Fourier
series to solve the Conformable Fractional heat partial
differential equation as demonstrated in the example
below.

Example 14

∂α

∂tα

(
∂αu(x, t)

∂tα

)
= c2

∂2u(x, t)

∂x2
(1)

0 < t , 0 < x < L

u(0, t) = 0 (2)
u(L, t) = 0 (3)
∂u

∂x
(0, t) = t2α (4)

u(x, 0) = 0 (5)

Solution:
Let us use separation of variables technique.
So let u(x, t) = P (x)Q(t), substitute in the equation
to get

P (x)Q2α(t) = c2P 2(x)Q(t).

Since x and t are independent variables, then we get

Q2α(t)

Q(t)
=
c2P 2(x)

P (x)
= λ.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.48 Ahmed Bouchenak, Khalil Roshdi, Alhorani Mohammed

E-ISSN: 2224-2880 466 Volume 20, 2021



for some constant λ.
Consequently,

Q2α(t)− λQ(t) = 0 (6)
c2P 2(x)− λP (x) = 0 (7)

We start with equation (7), P 2(x)−λP (x) = 0. Then
the auxiliary equation of equation (7) is r2 − λ

c2
= 0.

Now there are three possibilities for λ :

Case (i) : λ = 0. Then r = 0, so the solution
is P (x) = c1 + c2x.
Using condition (2), we get c1 = 0, again using
condition (3), we get c2 = 0.
So P (x) = 0. Hence, no non trivial solution when
λ = 0.

Case (ii) : λ = µ2 > 0. So r = +µ
λ , r = −µ

λ , then
the solution is P (x) = c1 sinh µ

c x+ c2 cosh µ
c x.

Using condition (2) and (3), we get c1 = 0 and
c2 = 0, so P (x) = 0.
Finally, no non trivial solution when λ > 0.

Case (iii) : λ = −µ2 < 0. so r = +iµλ , r = −iµλ ,
then the solution is P (x) = c1 sin µ

c x+ c2 cos µc x.
Using condition (2), we get c2 = 0, also condition
(3), we get
P (L) = c1 sin µ

cL = 0, so sin µ
cL = 0.

Hence, µ = c
Lnπ, n = 1, 2, 3, .... which gives that

λ = −( cLnπ)2, n= 1,2,3,...
Thus

Pn(x) = cn sin(
nπ

L
x) (8)

Now, we return back to equation (6),

Q2α(t)− λQ(t) = 0.

So
Q2α(t) + (

c

L
nπ)2Q(t) = 0.

Its auxiliary equation is r2+( cLnπ)2 = 0, thus we get
two distinct complex solution

r1 = i
c

L
nπ, r2 = −i c

L
nπ

and since the real part equal 0, the solution is given
as follow:

Q(t) = b1 cos(
c

L
nπ

tα

α
) + b2 sin(

c

L
nπ

tα

α
).

Condition (5) implies that b1 = 0.
So

Q(t) = b2 sin(µ
tα

α
).

Hence,

Qn(t) = bn sin(nπ
c

L

tα

α
) (9)

Combining (8) and (9) to get

u(x, t) =

∞∑
n=1

an sin(
nπ

L
x) sin(nπ

c

L

tα

α
).

Now, using condition (4), ∂u∂x(0, t) = t2α, to get

t2α =

∞∑
n=1

an
nπ

L
sin(nπ

c

L

tα

α
).

Using the α−Fractional Fourier series of t2α, we find
that

an =
2α

pα

∫ p

0
t2α sin(n

tα

α
)
dt

t1−α

=
2α

pα

∫ p

0
t3α−1 sin(n

tα

α
)dt.

By using the substitution u = tα, and du = αtα−1dt,
then

an =
2α

pα

∫ pα

0
t3α−1 sin(n

u

α
)
t1−α

α
du

=
2

pα

∫ pα

0
t2α sin(n

u

α
)du

=
2

pα

∫ pα

0
u2 sin(n

u

α
)du.

Consequently

an =
2

pα

[
−u2 cos(

n

α
u).

α

n
+ 2u sin(

n

α
u).

α2

n2

]pα
0

+
2

pα

[
2 cos(

n

α
u).

α3

n3

]pα
0

=
2

pα

[
−p2α cos(

n

α
pα).

α

n
+ 2pα sin(

n

α
pα).

α2

n2

]
+

2

pα

[
2 cos(

n

α
pα).

α3

n3

]
− 2

α3

n3

= −2pα cos(
n

α
pα).

α

n
+ 4 sin(

n

α
pα).

α2

n2

+
4

pα
cos(

n

α
pα).

α3

n3
− 2

α3

n3
.

Therefore

u(x, t) =

∞∑
n=1

an sin(
nπ

L
x) sin(nπ

c

L

tα

α
).
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Where

an = −2pα cos(
n

α
pα).

α

n
+ 4 sin(

n

α
pα).

α2

n2

+
4

pα
cos(

n

α
pα).

α3

n3
− 2

α3

n3
.

IN our paper, we use the mathematica coding
programm to see the α−Fractional Fourier series
approximation and the classical Fourier series ap-
proximation of functions.

The figures bellow represent the solution of
Conformable Fractional heat partial differential
equation with three different terms.

Figure 10: u(x,t) Approximation, 1 term.

Figure 11: u(x,t) Approximation, 50 terms.

Figure 12: u(x,t) Approximation, 100 terms.

6 Conclusion
The results explained in the previous sections show
that the separation variables with fractional Fourier
series technique solves some difficult problems that
cannot be solved with classical methods, also we
can use the conformable fractional Fourier series
approximation to approach some functions.

Closing remark:
(i) In the Example 11, α = 1

2 give best approximation
of the function f(t) then α = 1

4 .
(ii) Is the α−Fractional Fourier series give best
approximation of functions then the classical Fourier
series and vice versa ?
(iii) What is the value of α which give the best and
perfect approximation in α−Fractional Fourier series
approximation ? and how to fix it ?
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