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1 Introduction
The ordering of observed values is a common oper-
ation in many aspects of our lives. In general, we
might be interested in organizing various things: an
instructor might be interested in classifying students
based on their test grades, a sports coach might be
interested in assembling a sports team based on the
best performance of the candidate players, an item
can be assigned to the customer with the highest bid,
etc. For an understanding of the distributions and the
characteristics linked to these order values, modeling
through random variables is necessary. The concept
of ordered random variables is vast and plays a ma-
jor role in simple statistical measures like the range,
the median and the percentiles etc. The ordered ran-
dom variables are based upon different models de-
pending upon how the ordering is being done. For
instance, when observations in a sample are arranged
in increasing order, then we use order statistics, which
is the oldest model of ordered random variables.

The distributional and moment properties of or-
dered random variables from a particular survival dis-
tribution, the power Ailamujia (PA) distribution, are
discussed in this paper. In order to inspire this goal, a
look back at the PA distribution is needed. The expo-
nential, Lomax, and gamma distributions are the most
widely used in reliability data processing, but they are
not always the best in all cases. Therefore, manymod-
ern distributions for different types of engineering ap-
plications have been introduced in recent years. The

Ailamujia distribution, introduced by [1], is one of the
simplest and most promising distributions in this re-
gard, constituting a flexible right-skewed alternative.
The power transformation process is used to create
the PA distribution, which is an expansion of the Ail-
amujia distribution. It was conjointly developed in
the works of [2] and [3]. The characteristics of these
works are described below. To begin, a random vari-
ableX has the PAdistribution if its probability density
function (pdf) has the following form:

f(x) = θ2βx2β−1e−θxβ

, x > 0,

and f(x) = 0 forx ≤ 0, where θ andβ are two strictly
positive tuning parameters, and the related cumulative
distribution function (cdf) can be expressed as

F (x) = 1− (1 + θxβ)e−θxβ

, x > 0,

where F (x) = 0 for x ≤ 0. The standard properties
of the PAdistribution, such as moments (ordinary and
incomplete), mode, median, Shanon’s entropy and
the distributional based on order statistics, are stud-
ied in [2]. For the development of the PA model, the
maximum likelihood approach is used. It is shown
that the PA model accommodates two distinct types
of medical data. In [3], complementary properties
such as stochastic orders, probability weighted mo-
ments, stress-strength reliability coefficient, and Tsal-
lis’ entropy are demonstrated. In addition, some gen-
eral PA classes of distributions are created. Then, the
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PA model was developed to consider two different
types of data: full data and data with censorship. A
goodness-of-fit statistical test that allows the process-
ing of right-censored data is built, in particular. The
researchers then looked at four separate data sets, two
of which were related to the Covid-19 outbreak.

Despite these in-depth investigations, certain dis-
tributional and moment properties of order, reversed
order and upper record statistics based on the PA dis-
tribution remain unknown, which is the subject of
this article. The use of moments of order statistics
is well documented in mathematical literature. They
can be used in mathematical modeling, statistical in-
ferences, decision methods, and nonparametric statis-
tics, to name a few. For certain types of distributions
in general, or for some particular distributions, sev-
eral authors have developed many recurrence formu-
las for diverse moments of order statistics. See [4],
[5], [6] and [7]. Moments of order statistics are often
used to obtain the best linear unbiased estimates for
some parameters of distributions based on complete
and ‘type-II censored’ samples. In this regard, we re-
fer the reader to [8] and [9]. Similar observations can
be made with the upper record statistics introduced by
[10]; their moments can be useful in a variety of sta-
tistical applications, such as sporting and sporting ac-
tivities, oil and gas studies, and bioscience. See [11],
[12] and [13], and the references therein.

The following portions make up the article. Sec-
tion 2 is devoted to diverse moments of the order and
reversed order statistics for the PA distribution, dis-
cussing expressions and recurrence relationships. The
moments of the upper record statistics for the PA dis-
tribution are established in Section 3.

2 Order statistics
[14, Chapter 2] contains all of the general formulas
included in this portion, which remains quite classi-
cal. The contributions consist of applying them to the
PA distribution via various approaches.

2.1 Univariate case
Some general properties of order statistics are de-
veloped below. Let X1, X2, . . . , Xn be n indepen-
dent random variables with a common distribution.
The corresponding cdf and pdf of this common dis-
tribution are denoted by F (x) and f(x), respectively.
Now, we arrange these random variables in increas-
ing order of magnitude to obtain ordered random
variables denoted by X1:n, X2:n, . . . , Xn:n such that
P (X1:n ≤ X2:n ≤ . . . ≤ Xn:n) = 1. These random
variables are called order statistics. In full generality,
for any r = 1, 2, . . . , n, the pdf of Xr:n is given as

fr:n(x) = Cr:nf(x)[F (x)]r−1[1− F (x)]n−r,

x ∈ R,

where Cr:n = n!/[(n − r)!(r − 1)!]. In particular,
if r = 1, this pdf reduces to f1:n(x) = nf(x)[1 −
F (x)]n−1 and, if r = n, it reduces to fn:n(x) =
nf(x)F (x)n−1. In the context of the PA distribution,
it comes.

fr:n(x) = Cr:nθ
2βx2β−1[1− (1 + θxβ)e−θxβ

]r−1×
(1 + θxβ)n−re−(n−r+1)θxβ

, x > 0, (1)

and fr:n(x) = 0 for x ≤ 0.
Also, for the ‘two extreme order statistics’, we get

f1:n(x) = nθ2βx2β−1(1 + θxβ)n−1e−θxβn, x > 0

and f1:n(x) = 0 for x ≤ 0, and

fn:n(x) = nθ2βx2β−1[1− (1 + θxβ)e−θxβ

]n−1e−θxβ

,

x > 0,

and fn:n(x) = 0 for x ≤ 0.
The exact expression of the pth moment ofXr:n is

investigated in the following result.

Proposition 2.1 Let p be a positive integer and
µp
r:n = E(Xp

r:n) be the pth moment of Xr:n. Then,
µp
r:n can be expressed as

µp
r:n = Cr:nθ

−p/β
r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)k
1

(k + n− r + 1)p/β+2+v
Γ

(
p

β
+ 2 + v

)
,

where
(
b
a

)
denotes the usual binomial coefficient and

Γ(x) denotes the usual gamma function.

Proof: First, by Equation (1), we have

µp
r:n =

∫ +∞

−∞
xpfr:n(x)dx

= Cr:nθ
2β

∫ +∞

0
xp+2β−1[1− (1 + θxβ)e−θxβ

]r−1×

(1 + θxβ)n−re−(n−r+1)θxβ

dx.

Now, we need to develop at the best the power func-
tion of the form (1 + a)b. By applying the binomial
formula twice in a row, we get

[1− (1 + θxβ)e−θxβ

]r−1(1 + θxβ)n−re−(n−r+1)θxβ

=

r−1∑
k=0

(
r − 1

k

)
(−1)k(1 + θxβ)k+n−re−(k+n−r+1)θxβ

=

r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
(−1)kθv×

xβve−(k+n−r+1)θxβ

.
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Therefore, upon integration of the suitable function,
it comes

µp
r:n = Cr:nθ

2β

r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)kθv
∫ +∞

0
xp+(2+v)β−1e−(k+n−r+1)θxβ

dx.

Making the transformations y = θxβ and z = (k+
n− r + 1)y in a row, we obtain

µp
r:n = Cr:nθ

−p/β
r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)k
∫ +∞

0
yp/β+1+ve−(k+n−r+1)ydy

= Cr:nθ
−p/β

r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)k
1

(k + n− r + 1)p/β+2+v
Γ

(
p

β
+ 2 + v

)
.

The desired result is established. �

Eventually, we can extract the gamma term of the
sum in the expression of µp

r:n by using the formula

Γ (p/β + 2 + v) = Γ (p/β)
∏v+2

j=1(p/β +2+ v− j).
Also, from Proposition 2.1, we derive the mean of

Xr:n as

µ1
r:n = Cr:nθ

−1/β
r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)k
1

(k + n− r + 1)1/β+2+v
Γ

(
1

β
+ 2 + v

)
and the variance of Xr:n as

V = Cr:nθ
−2/β

r−1∑
k=0

k+n−r∑
v=0

(
r − 1

k

)(
k + n− r

v

)
×

(−1)k
1

(k + n− r + 1)2/β+2+v
Γ

(
2

β
+ 2 + v

)
− [µ1

r:n]
2.

Other moments measures (moments skewness mea-
sures, moments kurtosis measures…) can be obtained
in a similar fashion.

The following result shows that the moments are
linked by a manageable recurrence relationship.

Proposition 2.2 The following recurrence relation-
ship holds:

µp
r:n = µp

r−1:n +
p

n− r + 1

1

θ2β

[
µp−2β
r:n + θµp−β

r:n

]
.

Proof: In full generality in terms of notation, it fol-
lows from [14, Theorem 2.10, Equation (2.57)] that

µp
r:n − µp

r−1:n = Cr:n
p

n− r + 1

∫ +∞

−∞
xp−1×

[F (x)]r−1[1− F (x)]n−r+1dx. (2)

Now, let us notice that, in the context of the PA dis-
tribution, we have θ2βx2β−1[1 − F (x)] = (1 +
θxβ)f(x) for x > 0, implying that

xp−1[F (x)]r−1[1− F (x)]n−r+1 =
1

θ2β
xp−2β×

[F (x)]r−1[1− F (x)]n−r{θ2βx2β−1[1− F (x)]}

=
1

θ2β
xp−2β[F (x)]r−1[1− F (x)]n−r(1 + θxβ)f(x)

=
1

θ2β

{
xp−2β[F (x)]r−1[1− F (x)]n−rf(x)

+ θxp−β[F (x)]r−1[1− F (x)]n−rf(x)

}
=

1

θ2β

{
xp−2βC−1

r:nfr:n(x)dx+ θxp−βC−1
r:nfr:n(x)

}
.

(3)

Hence, by combining Equations (2) and (3), we obtain

µp
r:n − µp

r−1:n =

p

n− r + 1

1

θ2β

[ ∫ +∞

0
xp−2βfr:n(x)dx

+ θ

∫ +∞

0
xp−βfr:n(x)dx

]
=

p

n− r + 1

1

θ2β

[
µp−2β
r:n + θµp−β

r:n

]
.

The desired result is established. �

The relationships among moments of order statis-
tics proved in Proposition 2.2 enable us to compute
certain moments of higher order statistics on the basis
of lower order statistics and/or on the basis of lower
order moments.

2.2 Bivariate case

We now focus on the bivariate case of the order statis-
tics. First, the general expression of the joint pdf of
(Xr:n, Xs:n) for r ≤ s is given as

fr,s:n(xr, xs) = Cr,s:nf(xr)f(xs)[F (xr)]
r−1×

[F (xs)− F (xr)]
s−r−1[1− F (xs)]

n−s, xr < xs,
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with (xr, xs) ∈ R2, where Cr,s:n = n!/[(r − 1)!(s−
r− 1)!(n− s)!]. In the context of the PA distribution,
it comes

fr,s:n(xr, xs) = Cr,s:nθ
4β2x2β−1

r x2β−1
s e−θxβ

r×
[1− (1 + θxβr )e

−θxβ
r ]r−1

× [(1 + θxβr )e
−θxβ

r − (1 + θxβs )e
−θxβ

s ]s−r−1×
(1 + θxβs )

n−se−(n−s+1)θxβ
s ,

xs > xr > 0,

and fr,s:n(xr, xs) = 0 when xs > xr > 0 is not
satisfied.

In particular, by taking r = 1 and s = n the joint
pdf of (X1:n, Xn:n) is readily written as

f1,n:n(x1, xn) = n(n− 1)θ4β2x2β−1
1 x2β−1

n ×

e−θxβ
1 e−θxβ

n [(1 + θxβ1 )e
−θxβ

1 − (1 + θxβn)e
−θxβ

n ]n−2,

xn > x1 > 0,

and f1,n:n(x1, xn) = 0 when xn > x1 > 0 is not
satisfied.

These functions, which are novel in the literature,
can be used to model a wide range of bidimensional
phenomena, particularly those found in random sys-
tems.

The following result is about a recurrence relation-
ship involving the product moments of order statistics
for the PA distribution.

Proposition 2.3 Let p and q be positive integers and
µp,q
r,s:n = E(Xp

r:nX
q
s:n) be the (p, q)th product moment

of (Xr:n, Xs:n). Then, µp,q
r,s:n satisfies the following

relationship:

µp,q
r,s:n =

µp,q
r,s−1:n +

q

n− s+ 1

1

θ2β

[
µp,q−2β
r,s:n + θµp,q−β

r,s:n

]
.

Proof: In full generality, it follows from [14, The-
orem 2.10, Equation (2.58)] that

µp,q
r,s:n − µp,q

r,s−1:n = Cr,s:n
q

n− s+ 1
×∫ +∞

−∞

{∫ +∞

xr

xprx
q−1
s f(xr)[F (xr)]

r−1×

[F (xs)− F (xr)]
s−r−1[1− F (xs)]

n−s+1dxs

}
dxr.

(4)

Since the PA distribution implies that θ2βx2β−1[1 −
F (x)] = (1 + θxβ)f(x) for x > 0, we get

xprx
q−1
s f(xr)[F (xr)]

r−1[F (xs)− F (xr)]
s−r−1×

[1− F (xs)]
n−s+1

=
1

θ2β
xprx

q−2β
s f(xr)[F (xr)]

r−1×

[F (xs)− F (xr)]
s−r−1[1− F (xs)]

n−s×
{θ2βx2β−1

s [1− F (xs)]}

=
1

θ2β
xprx

q−2β
s f(xr)[F (xr)]

r−1×

[F (xs)− F (xr)]
s−r−1[1− F (xs)]

n−s(1 + θxβs )f(xs)

=
1

θ2β

{
xprx

q−2β
s f(xr)[F (xr)]

r−1×

[F (xs)− F (xr)]
s−r−1[1− F (xs)]

n−sf(xs)+

+ θxprx
q−β
s f(xr)[F (xr)]

r−1[F (xs)− F (xr)]
s−r−1×

[1− F (xs)]
n−s(1 + θxβs )f(xs)

}
=

1

θ2β

{
xprx

q−2β
s C−1

r,s:nfr,s:n(xr, xs)

+ θxprx
q−β
s C−1

r,s:nfr,s:n(xr, xs)

}
. (5)

Therefore, by putting Equations (4) and (5) together,
we obtain

µp,q
r,s:n − µp,q

r,s−1:n =
q

n− s+ 1

1

θ2β
×[ ∫ +∞

−∞

{∫ +∞

xr

xprx
q−2β
s fr,s:n(xr, xs)dxs

}
dxr

+ θ

∫ +∞

−∞

{∫ +∞

xr

xprx
q−β
s fr,s:n(xr, xs)dxs

}
dxr

]
=

q

n− s+ 1

1

θ2β

[
µp,q−2β
r,s:n + θµp,q−β

r,s:n

]
.

The stated result is here. �

2.3 Reversed order statistics

The preceding theory can be applied to so-called
reversed order statistics, which appear when
X1, . . . , Xn are arranged in decreasing order
(see [14, Chapter 2.11]). That is, by denoting them
sas X1(re):n, X2(re):n, . . . , Xn(re):n, they satisfy

P (X1(re):n ≥ X2(re):n ≥ . . . ≥ Xn(re):n) = 1. They
are useful for modeling phenomena involving data
in descending order of magnitude, such as student
grades from highest to lowest, city population in
millions, and so on. For any r = 1, 2, . . . , n, it
is certain that Xr(re):n = Xn−r+1:n. Therefore,
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in full generality, the pdf of Xr(re):n is given as

fr(re):n(x) = fn−r+1:n(x), that is

fr(re):n(x) = Cr:nf(x)[F (x)]n−r[1− F (x)]r−1,

x ∈ R.

Hence, in the setting of the PA distribution, it comes

fr(re):n(x) = Cr:nθ
2βx2β−1×

[1− (1 + θxβ)e−θxβ

]n−r(1 + θxβ)r−1e−rθxβ

,×
x > 0,

and fr(re):n(x) = 0 for x ≤ 0.
Moreover, the general expression of the joint

pdf of (Xr(re):n, Xs(re):n) for r ≤ s is given as

fr(re),s(re):n(xr, xs) = fn−s+1,n−r+1:n(xs, xr) for

xs < xr, with (xr, xs) ∈ R2, that is

fr(re),s(re):n(xr, xs) = Cr,s:nf(xr)f(xs)×
[F (xs)]

n−s[F (xr)− F (xs)]
s−r−1[1− F (xr)]

r−1,

xs < xr,

with (xr, xs) ∈ R2. In the context of the PA distribu-
tion, it comes

fr(re),s(re):n(xr, xs) = Cr,s:nθ
4β2x2β−1

r x2β−1
s ×

e−θxβ
s [1− (1 + θxβs )e

−θxβ
s ]n−s×

[(1 + θxβs )e
−θxβ

s − (1 + θxβr )e
−θxβ

r ]s−r−1×
(1 + θxβr )

r−1e−rθxβ
r , xr > xs > 0,

and fr(re),s(re):n(xr, xs) = 0 when xr > xs > 0 is
not satisfied.

The following proposition presents moments re-
sults on reversed order statistics for the PA distribu-
tion.

Proposition 2.4 Let p and q be positive integers,
µp
r(re):n

= E(Xp
r(re):n

) be the pth moment of Xr(re):n

and µp,q
r(re),s(re):n

= E(Xp
r(re):n

Xq
s(re):n

) be the

(p, q)th product moment of (Xr(re):n, Xs(re):n).

• The exact expression of µp
r(re):n

is

µp
r(re):n

= Cr:nθ
−p/β

n−r∑
k=0

k+r−1∑
v=0

(
n− r

k

)
×(

k + r − 1

v

)
(−1)k

1

(k + r)p/β+2+v
×

Γ

(
p

β
+ 2 + v

)
.

• The following recurrence relationship holds:

µp
r(re):n

=

µp
r(re)−1:n +

p

r

1

θ2β

[
µp−2β
r(re):n

+ θµp−β
r(re):n

]
.

• The following recurrence relationship holds:

µp,q
r(re),s(re):n

= µp,q
r(re),s(re)−1:n+

p

r

1

θ2β

[
µp,q−2β
r(re),s(re):n

+ θµp,q−β
r(re),s(re):n

]
.

Proof: The proof of the first item is derived from
the following formula:

µp
r(re):n

= E(Xp
n−r+1:n) = µp

n−r+1:n

and Proposition 2.1; this proposition is thus applied
with n − r + 1 instead of r. The two other items are
deduced from the following formula:

µp,q
r(re),s(re):n

= E(Xp
n−r+1:nX

q
n−s+1:n)

= E(Xq
n−s+1:nX

p
n−r+1:n) = µq,p

n−s+1,n−r+1:n,

where the inequalityXn−s+1:n ≤ Xn−r+1:n has been
taken into account, and Propositions 2.2 and 2.3, re-
spectively. The stated result is established. �

To our knowledge, the general formulas on mo-
ments of reverse order statistics used in the proof of
Proposition 2.4 are novel in the literature and can be
reused for other purposes.

3 Upper record statistics
All the general formulas used in this section can be
found in [14, Chapter 3].

3.1 Univariate case
Records play an important role in real-world appli-
cations such as data from weather stations, sporting
data, economic data, and strength data. Chandler’s
seminal work (see [10]) raises the possibility of us-
ing upper record statistics in statistical inference. The
upper record statistics’ mathematical context is de-
scribed below. Let us consider (Xn)n≥1 a sequence of
independent random variables with the same distribu-
tion. Let us denote by F (x) and f(x) the related cdf
and pdf of this common distribution, respectively, and
Xi:n be the ith order statistic as described in the pre-
vious section. For fixed k ≥ 1, we introduce Uk(n)
for n ≥ 1 by

Uk(n+ 1) =

min{j > Uk(n) : Xj:j+k−1 > XUk(n):Uk(n)+k−1}
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for n ≥ 2, and Uk(1) = 1. Then, we set

Y (k)
n = XUk(n):Uk(n)+k−1, n ≥ 1.

The random variable Y
(k)
n is called the kth upper

record statistic. Then, in full generality, the pdf of

Y
(k)
n is readily written as

fY (k)
n

(x) =
kn

(n− 1)!
[R(x)]n−1[1− F (x)]k−1f(x),

x ∈ R,

where R(x) = − ln[1 − F (x)], corresponding to the
cumulative hazard rate function related to F (x).

In the context of the PA distribution, it is given as

fY (k)
n

(x) =
θ2βkn

(n− 1)!
x2β−1(1 + θxβ)k−1e−kθxβ×[

θxβ − ln(1 + θxβ)
]n−1

, x > 0,

and fY (k)
n

(x) = 0 for x ≤ 0.

To the best of our knowledge, there is no equiva-
lent in the literature, and it can be easily expanded by
assuming that n and k are real numbers greater than
1.

It is difficult to have an explicit expression for the

moment of Y
(k)
n due to the logarithmic term. As a re-

sult, we use the knowledge from lower ordermoments
to compute moments of special order for upper record
statistics in the spirit of defining recurrence connec-
tions.

The following proposition shows that themoments

of Y
(k)
n are linked by a simple recurrence relationship.

Proposition 3.1 Let p be a positive integer and

µp
K(n) = E([Y

(k)
n ]p) be the pth moment of Y

(k)
n .

Then, the following recurrence relationship holds:

µp
K(n) = µp

K(n−1) +
1

θ2β

p

k

[
µp−2β
K(n) + θµp−β

K(n)

]
.

Proof: We begin by invoking [14, Theorem 3.1,
Equation (3.24)], result initially established by [15].
It can be formulated as

µp
K(n) − µp

K(n−1) =

pkn−1

(n− 1)!

∫ +∞

−∞
xp−1[1− F (x)]k[R(x)]n−1dx. (6)

By using the following relationship inherent to the PA
distribution: θ2βx2β−1[1 − F (x)] = (1 + θxβ)f(x)

for x > 0, it comes

xp−1[1− F (x)]k =
1

θ2β
xp−2β[1− F (x)]k−1×

{θ2βx2β−1[1− F (x)]}

=
1

θ2β
xp−2β[1− F (x)]k−1(1 + θxβ)f(x)

=
1

θ2β

[
xp−2β[1− F (x)]k−1f(x)+

θxp−β[1− F (x)]k−1f(x)

]
. (7)

Hence

pkn−1

(n− 1)!
xp−1[1− F (x)]k[R(x)]n−1 =

1

θ2β

p

k

[
xp−2β kn

(n− 1)!
[R(x)]n−1[1− F (x)]k−1f(x)

+ θxp−β kn

(n− 1)!
[R(x)]n−1[1− F (x)]k−1f(x)

]
=

1

θ2β

p

k

[
xp−2βfY (k)

n
(x) + θxp−βfY (k)

n
(x)
]
. (8)

It follows from Equations (6) and (8) that

µp
K(n) − µp

K(n−1) =

1

θ2β

p

k

[ ∫ +∞

0
xp−2βfY (k)

n
(x)dx

+ θ

∫ +∞

0
xp−βfY (k)

n
(x)dx

]
=

1

θ2β

p

k

[
µp−2β
K(n) + θµp−β

K(n)

]
.

The desired result is established. �

3.2 Bivariate case

We now explore the bivariate case. First, the general

expression of the joint pdf of (Y
(k)
m , Y

(k)
n )withn ≤ m

is specified as

f(Y (k)
m ,Y

(k)
n )(xm, xn) =

kn

(m− 1)!(n−m− 1)!
r(xm)f(xn)[R(xm)]m−1×

[R(xn)−R(xm)]n−m−1[1− F (xn)]
k−1,

xm < xn,

with (xm, xn) ∈ R2, where r(x) = f(x)/[1− F (x)]
denotes the hazard rate function related to F (x). In
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the setting of the PA distribution, we get

f(Y (k)
m ,Y

(k)
n )(xm, xn) =

kn

(m− 1)!(n−m− 1)!
×

θ4β2 x2β−1
m

1 + θxβm
x2β−1
n [θxβm − ln(1 + θxβm)]m−1×[

θ(xβn − xβm) + ln

(
1 + θxβm

1 + θxβn

)]n−m−1

×

(1 + θxβn)
k−1e−kθxβ

n , xn > xm > 0,

and f(Y (k)
m ,Y

(k)
n )(xm, xn) = 0 when xn > xm > 0 is

not satisfied.

The following result establishes a relationship be-
tween the product moments of the kth upper record
statistic.

Proposition 3.2 Let p and q be positive integers and

µp,q
K(m,n) = E([Y

(k)
m ]p[Y

(k)
n ]q) be the (p, q)th product

moment of (Y
(k)
m , Y

(k)
n ). Then, µp,q

r,s:n satisfies the fol-
lowing relationship:

µp,q
K(m,n) = µp,q

K(m,n−1) +
1

θ2β

q

k

[
µp,q−2β
K(m,n) + θµp,q−β

K(m,n)

]
.

Proof: By virtue of [14, Theorem 3.1, Equation
(3.25)], we have

µp,q
K(m,n) − µp,q

K(m,n−1) =
qkn−1

(m− 1)!(n−m− 1)!
×∫ +∞

−∞

{∫ +∞

xm

xpmxq−1
n r(xm)[R(xm)]m−1×

[R(xn)−R(xm)]n−m−1[1− F (xn)]
kdxn

}
dxm.

(9)

For the PA distribution precisely, proceeding as in
Equation (7), we get

xq−1
n [1− F (xn)]

k =

1

θ2β

[
xq−2β
n [1− F (xn)]

k−1f(xn)

+ θxq−β
n [1− F (xn)]

k−1f(xn)

]
.

Therefore

qkn−1

(m− 1)!(n−m− 1)!
xpmxq−1

n r(xm)×

[R(xm)]m−1[R(xn)−R(xm)]n−m−1[1− F (xn)]
k

=
1

θ2β

q

k

[
xpmxq−2β

n

kn

(m− 1)!(n−m− 1)!
r(xm)×

[R(xm)]m−1[R(xn)−R(xm)]n−m−1×
[1− F (xn)]

k−1f(xn)+

θxpmxq−β
n

kn

(m− 1)!(n−m− 1)!
r(xm)[R(xm)]m−1×

[R(xn)−R(xm)]n−m−1[1− F (xn)]
k−1f(xn)

]
=

1

θ2β

q

k

[
xpmxq−2β

n f(Y (k)
m ,Y

(k)
n )(xm, xn)

+ θxpmxq−β
n f(Y (k)

m ,Y
(k)
n )(xm, xn)

]
. (10)

The combination of Equations (10) and (9) gives

µp,q
K(m,n) − µp,q

K(m,n−1) =
1

θ2β

q

k
×[ ∫ +∞

−∞

{∫ +∞

xm

xpmxq−2β
n ×

f(Y (k)
m ,Y

(k)
n )(xm, xn)dxn

}
dxm

+ θ

∫ +∞

−∞

{∫ +∞

xm

xpmxq−β
n ×

f(Y (k)
m ,Y

(k)
n )(xm, xn)dxn

}
dxm

]
=

1

θ2β

q

k

[
µp,q−2β
K(m,n) + θµp,q−β

K(m,n)

]
.

The desired result is established. �

The findings for single and product moment of or-
der statistics, as well as upper record statistics for the
PAdistribution, may be used for a variety of statistical
reasons, which we can leave to future research.
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