DOI QR코드

DOI QR Code

Development of an Eye Patch-Type Biosignal Measuring Device to Measure Sleep Quality

수면의 질을 측정하기 위한 안대형 생체신호 측정기기 개발

  • 안창선 (가천대학교 바이오의료기기학과) ;
  • 임재관 ((주)엑스큐브) ;
  • 정봉수 (대구경북첨단의료산업진흥재단) ;
  • 김영주 (가천대학교 바이오의료기기학과)
  • Received : 2022.12.15
  • Accepted : 2023.04.04
  • Published : 2023.05.31

Abstract

The three major sleep disorders in Korea are snoring, sleep apnea, and insomnia. Lack of sleep is the root of all diseases. Some of the most serious potential problems associated with sleep deprivation are cardiovascular problems, cognitive impairment, obesity, diabetes, colitis, prostate cancer, etc. To solve these problems, the Korean government provided low-cost national health insurance benefits for polysomnography tests in July 2018. However, insomnia patients still have problems getting treated in terms of time, space, and economic perspectives. Therefore, it would be better for insomnia patients to be allowed to test at home. The measuring device can measure six biosignals (eye movement, tossing and turning, body temperature, oxygen saturation, heart rate, and audio). A gyroscope sensor (MPU9250, InvenSense, USA) was used for eye movement, tossing, and turning. The input range of the sensor was in 258°/sec to 460°/sec, and the data range was in the input range. Body temperature, oxygen saturation range, and heart rate were measured by a sensor (MAX30102, Analog Devices, USA). The body temperature was measured in 30 ℃ to 45 ℃, and the oxygen saturation range was 0% for the unused state and 20 % to 90 % for the used state. The heart rate measurement range was in 40 bpm to 180 bpm. The measurement of audio signal was performed by an audio sensor (AMM2742-T-R, PUIaudio, USA). The was -42 dB ±1 dB frequency range was 20 Hz to 20 kHz. The measured data was successfully received in wireless network conditions. The system configuration was consisted of a PC and a mobile app for bio-signal measurement and data collection. The measured data was collected by mobile phones and desktops. The data collected can be used as preliminary data to determine the stage of sleep and perform the screening function for sleep induction and sleep disturbances. In the future, this convenient sleep measurement device could be beneficial for treating insomnia.

우리나라 3대 수면 질환으로는 코골이, 수면무호흡증, 불면증이 있다. 수면 부족은 만병의 근원이며 수면 부족으로 인한 질병은 심혈관계 질환, 인지장애, 비만, 당뇨, 대장염, 전립선암에 이르기까지 다양하게 나타난다. 수면 관리 중요성을 인식한 정부도 2018년 7월부터 수면다원검사를 국민건강보험 혜택을 적용해서 작은 부담으로 검사를 받아볼 수 있도록 하고 있다. 그럼에도 불구하고 불면증 환자는 시간적·공간적·경제적 부담감을 해소하고 일상생활 속에서 수면의 질을 관리할 필요가 있다. 이러한 문제를 해결하기 위해서 본 논문에서는 병원이 아닌 일상생활 속에서 수면관리에 활용할 수 있는 안대형 생체신호 측정기기를 개발하였다. 측정기기에서는 6개 생체신호(안구동작, 뒤척임, 체온, 산소포화도, 심박수, 오디오)를 측정할 수 있다. 사용되는 센서로는 안구동작, 뒤척임은 자이로스코프센서(MPU9250, InvenSense, 미국)가 사용되었다. 센서값 입력 범위는 258~460°/sec 단위로 조정되며, 입력 범위값 내에서 작동상태를 확인하였다. 체온, 산소포화도, 심박수는 센서(MAX30102, Analog Devices, 미국)를 사용하였다. 체온은 30~45℃ 작동상태를 확인했으며, 산소포화도 사용범위는 미사용상태는 0%이고 사용상태는 20~90%의 작동상태를 확인하였다. 심박수의 범위는 40~180 bpm에서 작동상태를 확인하였다. 오디오 신호는 센서(AMM2742-T-R, PUIaudio, 미국)를 통해서 생체신호를 측정하며 감도는 -42±1 dB이며 주파수 범위는 20~20 kHz에서의 작동상태를 확인하였다. 시스템 구성은 생체신호 측정기기와 데이터수집 장치로 PC 및 모바일 애플리케이션으로 구성되었다. 측정된 데이터는 모바일과 PC로 수집되며 수집된 데이터는 수면의 단계를 판단하고 수면 유도와 수면장애에 대한 사전 선별기능을 진행할 수 있는 기초자료로 사용될 수 있다. 앞으로 간편하게 가정에서 불면증 환자들에게 수면의 질을 측정할 수 있게 되어 불면증 환자들의 치료에 도움이 될 것으로 예상한다.

Keywords

References

  1. N. B. Belloc and L. Breslow, "Relationship of physical health status and health practices," Preventive Medicine, Vol.1, No.3, pp.409-421, 1972. https://doi.org/10.1016/0091-7435(72)90014-X
  2. W. Choi et al., "A Study on the Status and Characteristics of Sleep Disorders and Coexisting Diseases Using National Health Insurance Data," National Health Insurance Service Ilsan hospital, 2015.
  3. K. Kang, "Hot nights, three major sleep disorders," Korea Plus [Internet], http://www.kplus.kr/news/articleView.html? idxno=4955. 2010.
  4. B. Lee, "Lack of sleep is the root cause of all diseases," MaeKyung Media. [Internet], https://www.mk.co.kr/news/ it/view/2011/06/355276. 2011.
  5. H.-J. Lee and L. Kim, "Effects of chronic insufficient sleep on society," Sleep Medicine and Psychophysiology, Vol.10, No.2, pp.77-83, 2003.
  6. C. Yang, "Polysomnography and multiple sleep latency test," Korean Neurological Association Spring Conference, pp.10-26, 2001.
  7. E. Niedermeyer and F. L. D. Silva, "Electroencephalography: Basic Principles, Clinical Applications, and Related Fields," Lippincott Williams & Wilkins, 2004.
  8. M. Brown, M. Marmor, Vaegan, E. Zrenner, M. Brigell, and M. Bach, "ISCEV Standard for Clinical Electro-oculography (EOG) 2006," Documenta Ophthalmologica, Vol.113, No.3, pp.205-212, 2006. https://doi.org/10.1007/s10633-006-9030-0
  9. D. Nam, J. M. Cha, and K. Park, "Next-generation wearable biosensors developed with flexible bio-chips," Micromachines, Vol.12, No.1, pp.64, 2021.
  10. A. Feather, D. Randall, and M. Waterhouse, "Kumar and clark's clinical medicine," 10th ed., Elsevier, pp.1033-1038, 2020.
  11. J. M. Haynes, "The ear as an alternative site for a pulse oximeter finger clip sensor," Respiratory Care, Vol.52, No.6, pp.727, 2007.
  12. M. R. Lujan, I. Perez-Pozuelo, and M. A. Grandner, "Past, present, and future of multisensory wearable technology to monitor sleep and circadian rhythms," Frontiers in Digital Health, Review, Vol.3, 2021.
  13. J. D. Stone et al., "Evaluations of commercial sleep technologies for objective monitoring during routine sleeping conditions," Nature and Science of Sleep, Vol.12. pp.821, 2020.
  14. Richtek, "RT6150A/RT6150B Current Mode Buck-Boost Converter," Richtek Technology Corporation. [Internet], https://www.richtek.com/Products/Switching%20Regulators/Buck-Boost%20Converter/RT6150ART6150B?sc_lang=en. 2022.
  15. Microchip, "ATmega32U4," Microchip Technology Inc. [Internet], https://www.microchip.com/en-us/product/ATmega32U4. 2022.
  16. Analog Devices, "MAX30102," Analog Devices, Inc. [Internet], https://www.analog.com/en/products/max30102.html#product-overview. 2023.
  17. TI, "TPS79318-EP," Texas Instruments Incorporated. [Internet], https://www.ti.com/product/TPS79318-EP?keyMatch=TPS79318. 2022.
  18. InvenSense, "MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS MotionTracking Device," InvenSense Inc. [Internet], https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/. 2022.
  19. PUIaudio, "AMM2742-T-R," PUI Audio Inc. [Internet], https://www.puiaudio.com/products/amm-2742-t-r/. 2022.
  20. A. Lopez, F. Ferrero, and O. Postolache, "An affordable method for evaluation of ataxic disorders based on electrooculography," Sensors, Vol.19, No.17, pp.3756, 2019.