Skip to main content
Log in

Trait positive affect is associated with hippocampal volume and change in caudate volume across adolescence

  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

Trait positive affect (PA) in childhood confers both risk and resilience to psychological and behavioral difficulties in adolescence, although explanations for this association are lacking. Neurodevelopment in key areas associated with positive affect is ongoing throughout adolescence, and is likely to be related to the increased incidence of disorders of positive affect during this period of development. The aim of this study was to prospectively explore the relationship between trait indices of PA and brain development in subcortical reward regions during early to mid-adolescence in a community sample of adolescents. A total of 89 (46 male, 43 female) adolescents participated in magnetic resonance imaging assessments during both early and mid-adolescence (mean age at baseline = 12.6 years, SD = 0.45; mean follow-up period = 3.78 years, SD = 0.21) and also completed self-report measures of trait positive and negative affect (at baseline). To examine the specificity of these effects, the relation between negative affect and brain development was also examined. The degree of volume reduction in the right caudate over time was predicted by PA. Independent of time, larger hippocampal volumes were associated with higher PA, and negative affect was associated with smaller left amygdala volume. The moderating effect of negative affect on the development of the left caudate varied as a function of lifetime psychiatric history. These findings suggest that early to mid-adolescence is an important period whereby neurodevelopmental processes may underlie key phenotypes conferring both risk and resilience for emotional and behavioral difficulties later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517.

    PubMed  Google Scholar 

  • Adinoff, B. (2004). Neurobiologic processes in drug reward and addiction. Harvard Review of Psychiatry, 12, 305–320.

    PubMed Central  PubMed  Google Scholar 

  • Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537–551.

    PubMed  Google Scholar 

  • Aldridge, J. W., & Berridge, K. C. (2010). Neural coding of pleasure: “Rose-tinted glasses” of the ventral pallidum. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain (pp. 62–73). New York, NY: Oxford University Press.

    Google Scholar 

  • Armitage, P., Berry, G., & Matthews, J. N. S. (2002). Statistical methods in medical research (4th ed.). Oxford, UK: Blackwell Science Ltd.

    Google Scholar 

  • Australian Bureau of Statistics. (2011). Socioeconomic indexes for areas. Retrieved 22 August, 2011, from www.abs.gov.au/ausstats/abs@.nsf/mf/2039.0/

  • Babalola, K. O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., & Rueckert, D. (2009). An evaluation of four automatic methods of segmenting the subcortical structures in the brain. NeuroImage, 49, 1435–1447. doi:10.1016/j.neuroimage.2009.05.029

    Google Scholar 

  • Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161–8165. doi:10.1523/jneurosci.1554-07.2007

    PubMed  Google Scholar 

  • Balu, D. T., & Lucki, I. (2009). Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology. Neuroscience & Biobehavioral Reviews, 33, 232–252. doi:10.1016/j.neubiorev.2008.08.007

    Google Scholar 

  • Baxter, M. G., & Murray, E. A. (2002). The amygdala and reward. Nature Reviews Neuroscience, 3, 563–573. doi:10.1038/nrn875

    PubMed  Google Scholar 

  • Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.

    PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of false discovery rate under dependency. Annals of Statistics, 29, 1165–1188.

    Google Scholar 

  • Berridge, K. C. (2003). Pleasures of the brain. Brain and Cognition, 52, 106–128.

    PubMed  Google Scholar 

  • Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199, 457–480.

    PubMed Central  PubMed  Google Scholar 

  • Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “Liking”, “wanting”, and learning. Current Opinion in Pharmacology, 9, 65–73.

    PubMed Central  PubMed  Google Scholar 

  • Blood, A., & Zatorre, R. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 11818–11823.

    Google Scholar 

  • Boccardi, M., Frisoni, G. B., Hare, R. D., Cavedo, E., Najt, P., Pievani, M., . . . Tiihonen, J. (2011). Cortex and amygdala morphology in psychopathy. Psychiatry Research—Neuroimaging, 193, 85–92. doi:10.1016/j.pscychresns.2010.12.013

  • Bora, E., Harrison, B. J., Davey, C. G., Yücel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42, 671–681. doi:10.1017/S0033291711001668

    PubMed  Google Scholar 

  • Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L. G., … ADNI Study. (2008). Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage, 39, 1752–1762. doi:10.1016/j.neuroimage.2007.10.026

  • Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D., & Hyman, S. E. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19, 591–611.

    PubMed  Google Scholar 

  • Bryant, F. (2003). Savoring Beliefs Inventory (SBI): A scale for measuring beliefs about savouring. Journal of Mental Health, 12, 175–196. doi:10.1080/0963823031000103489

    Google Scholar 

  • Calder, A. J., Lawrence, A. D., & Young, A. W. (2001). Neuropsychology of fear and loathing. Nature Reviews Neuroscience, 2, 352–363.

    PubMed  Google Scholar 

  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67, 319–333. doi:10.1037/0022-3514.67.2.319

    Google Scholar 

  • Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 1041–1052. doi:10.1176/appi.ajp.160.6.1041

    PubMed Central  PubMed  Google Scholar 

  • Churchwell, J. C., Carey, P. D., Ferrett, H. L., Stein, D. J., & Yurgelun-Todd, D. A. (2012). Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Developmental Neuroscience, 34, 310–317.

    PubMed Central  PubMed  Google Scholar 

  • Clarkson, M. J., Ourselin, S., Nielsen, C., Leung, K. K., Barnes, J., Whitwell, J. L., … Alzheimer’s Disease Neuroimaging Initiative. (2009). Comparison of phantom and registration scaling corrections using the ADNI cohort. NeuroImage, 47, 1506–1513. doi:10.1016/j.neuroimage.2009.05.045

  • Cohen, M. X., Young, J., Baek, J.-M., Kessler, C., & Ranganath, C. (2005). Individual differences in extraversion and dopamine genetics predict neural reward responses. Cognitive Brain Research, 25, 851–861. doi:10.1016/j.cogbrainres.2005.09.018

    PubMed  Google Scholar 

  • Colder, C., & Chassin, L. (1997). Affectivity and impulsivity: Temperament risk for adolescent alcohol involvement. Psychology of Addictive Behaviors, 11, 83–97.

    Google Scholar 

  • Crawford, J. R., & Henry, J. D. (2004). The positive and negative affect schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43, 245–265.

    PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.

    PubMed  Google Scholar 

  • de la Fuente-Fernández, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J., & Stoessl, A. J. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research, 136, 359–363.

    PubMed  Google Scholar 

  • Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.

    PubMed  Google Scholar 

  • Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077.

    PubMed  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39, 1–38.

    Google Scholar 

  • Dennison, M., Whittle, S., Yücel, M., Vijayakumar, N., Kline, A., Simmons, J., & Allen, N. B. (2013). Mapping subcortical brain maturation during adolescence: Evidence of hemisphere- and sex-specific longitudinal changes. Developmental Science, 16, 772–791. doi:10.1111/desc.12057

    PubMed  Google Scholar 

  • DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820–828. doi:10.1177/0956797610370159

    PubMed Central  PubMed  Google Scholar 

  • Diamond, L., & Aspinwall, L. (2003). Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motivation and Emotion, 27, 125–156. doi:10.1023/a:1024521920068

    Google Scholar 

  • Diggle, P., Heagerty, P., Liang, K., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Doyon, W. M., Anders, S. K., Ramachandra, V. S., Czachowski, C. L., & Gonzales, R. A. (2005). Effect of operant self-administration of 10% ethanol plus 10% sucrose on dopamine and ethanol concentrations in the nucleus accumbens. Journal of Neurochemistry, 93, 1469–1481. doi:10.1111/j.1471-4159.2005.03137.x

    PubMed  Google Scholar 

  • Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., & Mathis, C. A. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.

    PubMed  Google Scholar 

  • Ernst, M., & Fudge, J. L. (2009). A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience & Biobehavioral Reviews, 33, 367–382.

    Google Scholar 

  • Ersche, K. D., Barnes, A., Jones, P. S., Morein-Zamir, S., Robbins, T. W., & Bullmore, E. T. (2011). Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain, 134, 2013–2024. doi:10.1093/brain/awr138

    PubMed Central  PubMed  Google Scholar 

  • Ersche, K. D., Jones, P. S., Williams, G. B., Turton, A. J., Robbins, T. W., & Bullmore, E. T. (2012). Abnormal brain structure implicated in stimulant drug addiction. Science, 335, 601–604. doi:10.1126/science.1214463

    PubMed  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.

    PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.

    PubMed  Google Scholar 

  • Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827–850. doi:10.1017/S095457940505039X

    PubMed Central  PubMed  Google Scholar 

  • Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., & Dahl, R. E. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166, 64–73. doi:10.1176/appi.ajp.2008.07081336

    PubMed Central  PubMed  Google Scholar 

  • Forbes, E. E., Ryan, N. D., Phillips, M. L., Manuck, S. B., Worthman, C. M., Moyles, D. L., & Dahl, R. E. (2010). Healthy adolescents’ neural response to reward: Associations with puberty, positive affect, and depressive symptoms. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 162–172.

    PubMed Central  PubMed  Google Scholar 

  • Frazier, J. A., Hodge, S. M., Breeze, J. L., Giuliano, A. J., Terry, J. E., Moore, C. M., & Makris, N. (2008). Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophrenia Bulletin, 34, 37–46. doi:10.1093/schbul/sbm120

    PubMed Central  PubMed  Google Scholar 

  • Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19, 476–482. doi:10.1111/j.1467-9280.2008.02112.x

    PubMed  Google Scholar 

  • Gable, P. A., & Harmon-Jones, E. (2010). The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information. Emotion, 10, 599–603. doi:10.1037/a0018426

    PubMed  Google Scholar 

  • Gilbert, K. E. (2012). The neglected role of positive emotion in adolescent psychopathology. Clinical Psychology Review, 32, 467–481.

    PubMed  Google Scholar 

  • Greenough, W. T., & Black, J. E. (2011). Induction of brain structure by experience: Substrates for cognitive development. In M. R. Gunnar & C. A. Nelson (Eds.), Developmental behavioral neuroscience: The Minnesota Symposia on Child Psychology (2nd ed., Vol. 24). New York, NY: Routledge.

    Google Scholar 

  • Hamilton, J. P., Siemer, M., & Gotlib, I. H. (2008). Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry, 13, 993–1000.

    PubMed Central  PubMed  Google Scholar 

  • Han, X., & Fischl, B. (2007). Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Transactions on Medical Imaging, 26, 479–486.

    PubMed  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., & Fischl, B. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194. doi:10.1016/j.neuroimage.2006.02.051

    PubMed  Google Scholar 

  • Harmon-Jones, E., & Gable, P. A. (2008). Incorporating motivational intensity and direction into the study of emotions: Implications for brain mechanisms of emotion and cognition–emotion interactions. Netherlands Journal of Psychology, 64, 132–142. doi:10.1007/bf03076416

    Google Scholar 

  • Hatzigiakoumis, D. S., Martinotti, G., Giannantonio, M. D., & Janiri, L. (2011). Anhedonia and substance dependence: Clinical correlates and treatment options. Frontiers in Psychiatry, 2, 10. doi:10.3389/fpsyt.2011.00010

    PubMed Central  PubMed  Google Scholar 

  • Heinz, A., Schmidt, L. G., & Reischies, F. M. (1994). Anhedonia in schizophrenic, depressed, or alcohol-dependent patients—Neurobiological correlates. Pharmacopsychiatry, 27(Supp. 1), 7–10. doi:10.1055/s-2007-1014317

    PubMed  Google Scholar 

  • Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012). Individual differences in amygdala–medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. Journal of Neuroscience, 32, 18087–18100. doi:10.1523/jneurosci.2531-12.2012

    PubMed Central  PubMed  Google Scholar 

  • Jack, C. R., Twomey, C. K., Zinsmeister, A. R., Sharbrough, F. W., Petersen, R. C., & Cascino, G. D. (1989). Anterior temporal lobes and hippocampal formations: Normative volumetric measurements from MR images in young adults. Radiology, 172, 549–554.

    PubMed  Google Scholar 

  • Jones, F. L., & McMillan, J. (2001). Scoring occupational categories for social research: A review of current practice, with Australian examples. Work, Employment & Society, 15, 539–563. doi:10.1177/09500170122119147

    Google Scholar 

  • Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., & Dale, A. (2006). Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage, 30, 436–443. doi:10.1016/j.neuroimage.2005.09.046

    PubMed  Google Scholar 

  • Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children—present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.

    PubMed  Google Scholar 

  • Keedwell, P. A., Andrew, C., Williams, S. C. R., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58, 843–853.

    PubMed  Google Scholar 

  • Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593–602. doi:10.1001/archpsyc.62.6.593

    PubMed  Google Scholar 

  • Kim, G., Walden, T., Harris, V., Karrass, J., & Catron, T. (2007). Positive emotion, negative emotion, and emotion control in the externalizing problems of school-aged children. Child Psychiatry and Human Development, 37, 221–239. doi:10.1007/s10578-006-0031-8

    PubMed  Google Scholar 

  • Klimstra, T. A., Hale, W. W., Raaijmakers, Q. A., Branje, S. J., & Meeus, W. H. (2009). Maturation of personality in adolescence. Journal of Personality and Social Psychology, 96, 898–912. doi:10.1037/a0014746

    PubMed  Google Scholar 

  • Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, RC159.

    PubMed  Google Scholar 

  • Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., & Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.

    PubMed  Google Scholar 

  • Kringelbach, M. L., & Berridge, K. C. (2009). Toward a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 13, 479–487.

    PubMed Central  PubMed  Google Scholar 

  • Kringelbach, M. L., & Berridge, K. C. (2010). Functional neuroanatomy of pleasure and happiness. Discovery Medicine, 9, 579–587.

    PubMed Central  PubMed  Google Scholar 

  • Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., & Schwartz, G. E. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35, 1437–1444. doi:10.1016/S0028-3932(97)00070-5

    PubMed  Google Scholar 

  • Lee, L., & Robok, G. W. (2002). Anxiety and depression in children: A test of the positive-negative affect model. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 419–426.

    PubMed  Google Scholar 

  • Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718–729.

    Google Scholar 

  • Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., & Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 1065–1073. doi:10.1016/j.neuroimage.2007.03.053

    PubMed Central  PubMed  Google Scholar 

  • Leung, K. K., Clarkson, M. J., Bartlett, J. W., Clegg, S., Jack, C. R., Jr., Weiner, M. W., … Alzheimer’s Disease Neuroimaging Initiative. (2010). Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection. NeuroImage, 50, 516–523. doi:10.1016/j.neuroimage.2009.12.059

  • Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York, NY: Wiley.

    Google Scholar 

  • Liu, Z., Richmond, B. J., Murray, E. A., Saunders, R. C., Steenrod, S., Stubblefield, B. K., … Ginns, E. I. (2004). DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proceedings of the National Academy of Sciences, 101, 12336–12341. doi:10.1073/pnas.0403639101

  • Lonigan, C. J., Phillips, B. M., & Hooe, E. S. (2003). Relations of positive and negative affectivity to anxiety and depression in children: Evidence from a latent variable longitudinal study. Journal of Consulting and Clinical Psychology, 71, 465–481.

    PubMed  Google Scholar 

  • Lyubomirsky, S., King, L., & Diener, E. (2005). The benefits of frequent positive affect: Does happiness lead to success? Psychological Bulletin, 131, 803–855. doi:10.1037/0033-2909.131.6.803

    PubMed  Google Scholar 

  • Marchand, W. R., & Yurgelun-Todd, D. (2010). Striatal structure and function in mood disorders: A comprehensive review. Bipolar Disorders, 12, 764–785. doi:10.1111/j.1399-5618.2010.00874.x

    PubMed  Google Scholar 

  • McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105–122. doi:10.1146/annurev.neuro.22.1.105

    PubMed  Google Scholar 

  • Merikangas, K. R., He, J., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., … Swendsen, J. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). Journal of the American Academy of Child and Adolescent Psychiatry, 49, 980–989. doi:10.1016/j.jaac.2010.05.017

  • Morey, R. A., Petty, C. M., Xu, Y., Pannu Hayes, J., Wagner, H. R., II, Lewis, D. V., & McCarthy, G. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45, 855–866. doi:10.1016/j.neuroimage.2008.12.033

    PubMed Central  PubMed  Google Scholar 

  • Morey, R. A., Selgrade, E. S., Wagner, H. R., Huettel, S. A., Wang, L., & McCarthy, G. (2010). Scan–rescan reliability of subcortical brain volumes derived from automated segmentation. Human Brain Mapping, 31, 1751–1762. doi:10.1002/hbm.20973

    PubMed Central  PubMed  Google Scholar 

  • Narum, S. (2006). Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics, 7, 811. doi:10.1007/s10592-006-9189-7

    Google Scholar 

  • Nestler, E. J., & Carlezon, J. W. A. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59, 1151–1159.

    PubMed  Google Scholar 

  • O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.

    PubMed  Google Scholar 

  • O’Doherty, J., Kringelbach, M. L., Rolls, E., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.

    PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi:10.1016/0028-3932(71)90067-4

    PubMed  Google Scholar 

  • Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of the septal area and other regions of the rat brain. Journal of Comparative Physiology and Psychology, 47, 419–427.

    Google Scholar 

  • Orvaschel, H. (1994). Schedule for affective disorder and Schizophrenia for School-Aged children: epidemiologic version. Unpublished manual.

  • Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29, 11772–11782. doi:10.1523/jneurosci.1242-09.2009

    PubMed  Google Scholar 

  • Peciña, S., & Berridge, K. C. (2005). Hedonic hot spot in nucleus accumbens shell: Where do mu-opioids cause increased hedonic impact of sweetness? Journal of Neuroscience, 25, 11777–11786.

    PubMed  Google Scholar 

  • Peciña, S., Smith, K. S., & Berridge, K. C. (2006). Hedonic hotspots in the brain. Neuroscientist, 12, 500–511.

    PubMed  Google Scholar 

  • Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., & Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166, 702–710. doi:10.1176/appi.ajp.2008.08081201

    PubMed Central  PubMed  Google Scholar 

  • Reuter, M., & Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage, 57, 19–21. doi:10.1016/j.neuroimage.2011.02.076

    PubMed Central  PubMed  Google Scholar 

  • Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53, 1181–1196.

    PubMed Central  PubMed  Google Scholar 

  • Rogers, W. H. (1993). Regression standard errors in clustered samples. Stata Technical Bulletin, 13, 19–23.

    Google Scholar 

  • Russo, S., & Nestler, E. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14, 609–625. doi:10.1038/nrn3381

    PubMed  Google Scholar 

  • Sanfilipo, M. P., Benedict, R. H. B., Zivadinov, R., & Bakshi, R. (2004). Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: The proportion vs. residual method. NeuroImage, 22, 1732–1743.

    PubMed  Google Scholar 

  • Sattler, J. M., & Dumont, R. (2004). Assessment of children: WISC-IV and WPPSI-III supplement. La Mesa, CA: Sattler.

    Google Scholar 

  • Schimmack, U. (2007). Methodological issues in the assessment of the affective component of subjective well being. In A. Ohn & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 96–110). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Schott, B. H., Seidenbecher, C. I., Fenker, D. B., Lauer, C. J., Bunzeck, N., Bernstein, H.-G., & Düzel, E. (2006). The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging. Journal of Neuroscience, 26, 1407–1417. doi:10.1523/jneurosci.3463-05.2006

    PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.

    PubMed  Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions in Medical Imaging, 17, 87–97.

    Google Scholar 

  • Smith, K. S., & Berridge, K. C. (2005). The ventral pallidum and hedonic reward: Neurochemical maps of sucrose “liking” and food intake. Journal of Neuroscience, 25, 8637–8649. doi:10.1523/jneurosci.1902-05.2005

    PubMed  Google Scholar 

  • SPSS for Mac. (2011). SPSS Release 19. Chicago: IBM.

  • StataCorp. (2011). Stata statistical software: Release 12. College Station, TX: StataCorp LP.

    Google Scholar 

  • Steinberg, L. (2004). Risk taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 51–58. doi:10.1196/annals.1308.005

    PubMed  Google Scholar 

  • Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78–106.

    PubMed Central  PubMed  Google Scholar 

  • Swerdlow, N. R., & Koob, G. F. (1987). Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striatopallido-thalamic function. Behavioral and Brain Sciences, 10, 197–208. doi:10.1017/S0140525X00047488

    Google Scholar 

  • Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., Richardson, G., … Alzheimer’s Disease Neuroimaging Initiative. (2013). Brain development and aging: Overlapping and unique patterns of change. NeuroImage, 68, 63–74. doi:10.1016/j.neuroimage.2012.11.039

  • Tugade, M. M., Fredrickson, B. L., & Feldman Barrett, L. (2004). Psychological resilience and positive emotional granularity: Examining the benefits of positive emotions on coping and health. Journal of Personality, 72, 1161–1190. doi:10.1111/j.1467-6494.2004.00294.x

    PubMed Central  PubMed  Google Scholar 

  • Urošević, S., Collins, P., Muetzel, R., Lim, K., & Luciana, M. (2012). Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Developmental Psychology, 45, 1488–1500. doi:10.1037/a0027502

    Google Scholar 

  • Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., & Pappas, N. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44, 175–180. doi:10.1002/syn.10075

    PubMed  Google Scholar 

  • Wacker, J., Dillon, D. G., & Pizzagalli, D. A. (2009). The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. NeuroImage, 46, 327–337.

    PubMed Central  PubMed  Google Scholar 

  • Wang, D., & Doddrell, D. M. (2005). Method for a detailed measurement of image intensity nonuniformity in magnetic resonance imaging. Medical Physics, 32, 952–960.

    PubMed  Google Scholar 

  • Watson, D., Clark, A. S., & Carey, G. (1988a). Positive and negative affectivity and their relation to anxiety and depressive disorders. Journal of Abnormal Psychology, 97, 346–353.

    PubMed  Google Scholar 

  • Watson, D., Clark, L. A., & Tellegen, A. (1988b). Development and validation of brief measures of positive and negative affect: The PANAS scale. Journal of Personality and Social Psychology, 54, 1063–1070. doi:10.1037/0022-3514.54.6.1063

    PubMed  Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817–830.

    Google Scholar 

  • Whittle, S., Allen, N. B., Lubman, D. I., & Yücel, M. (2006). The neurobiological basis of temperament: Towards a better understanding of psychopathology. Neuroscience & Behavioral Reviews, 30, 511–525. doi:10.1016/j.neubiorev.2005.09.003

    Google Scholar 

  • Whittle, S., Yap, M. B., Yücel, M., Fornito, A., Simmons, J. G., Barrett, A., … Allen, N. B. (2008). Prefrontal and amygdala volumes are related to adolescents’ affective behaviors during parent–adolescent interactions. Proceedings of the National Academy of Sciences, 105, 3652–3657. doi:10.1073/pnas.0709815105

  • Whittle, S., Yap, M. B. H., Yücel, M., Sheeber, L., Simmons, J. G., Pantelis, C., & Allen, N. B. (2009). Maternal responses to adolescent positive affect are associated with adolescents’ reward neuroanatomy. Social Cognitive and Affective Neuroscience, 4, 247–256. doi:10.1093/scan/nsp012

    PubMed Central  PubMed  Google Scholar 

  • Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. NeuroImage, 96, 67–72. doi:10.1016/j.neuroimage.2014.03.072

    PubMed  Google Scholar 

  • Williams, R. L. (2000). A note on robust variance estimation for cluster-correlated data. Biometrics, 56, 645–646.

    PubMed  Google Scholar 

  • Wills, T. A., Sandy, J. M., Shinar, O., & Yaeger, A. (1999). Contributions of positive and negative affect to adolescent substance use: Test of a bidimensional model in a longitudinal study. Psychology of Addictive Behaviors, 13, 327–338. doi:10.1037/0893-164x.13.4.327

    Google Scholar 

  • Wittmann, B. C., Bunzeck, N., Dolan, R. J., & Düzel, E. (2007). Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage, 38, 194–202.

    PubMed Central  PubMed  Google Scholar 

  • Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45, 459–467.

    PubMed  Google Scholar 

  • Wohr, M., Kehl, M., Borta, A., Schanzer, A., Schwarting, R. K., & Hoglinger, G. U. (2009). New insights into the relationship of neurogenesis and affect: tickling induces hippocampal cell proliferation in rats emitting appetitive 50-kHz ultrasonic vocalizations. Neuroscience, 163, 1024–1030. doi:10.1016/j.neuroscience.2009.07.043

    PubMed  Google Scholar 

  • Wooldridge, J. M. (2000). Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.

    Google Scholar 

  • Yamamuro, T., Senzaki, K., Iwamoto, S., Nakagawa, Y., Hayashi, T., Hori, M., & Urayama, O. (2010). Neurogenesis in the dentate gyrus of the rat hippocampus enhanced by tickling stimulation with positive emotion. Neuroscience Research, 68, 285–289. doi:10.1016/j.neures.2010.09.001

    PubMed  Google Scholar 

  • Yap, M. B. H., Allen, N. B., & Ladouceur, C. D. (2008). Maternal socialization of positive affect: The impact of invalidation on adolescent emotion regulation and depressive symptomatology. Child Development, 79, 1415–1431. doi:10.1111/j.1467-8624.2008.01196.x

    PubMed  Google Scholar 

  • Zheng, W., Chee, M. W. L., & Zagorodnov, V. (2009). Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. NeuroImage, 48, 73–83.

    PubMed  Google Scholar 

Download references

Author note

This work was in part presented at the Society for Research in Adolescence (SRA) 13th Biennial Conference, Vancouver, Canada, March 8–10, 2012. No authors report competing interests. This research was supported by grants from the Colonial Foundation, the National Health and Medical Research Council (NHMRC; Australia; Program Grant No. 350241), and the Australian Research Council (Discovery Grant No. DP0878136). S.W. is supported by an NHMRC Career Development Fellowship (ID: 1007716). M.D. was supported by an Australian Postgraduate Award. M.Y. is supported by an NHMRC Fellowship (ID: 1021973). Our neuroimaging analysis was facilitated by the Neuropsychiatry Imaging Laboratory at the Melbourne Neuropsychiatry Centre. The authors thank the Brain Research Institute and Royal Children’s Hospital for support in acquiring the neuroimaging data, as well as the families who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Allen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennison, M., Whittle, S., Yücel, M. et al. Trait positive affect is associated with hippocampal volume and change in caudate volume across adolescence. Cogn Affect Behav Neurosci 15, 80–94 (2015). https://doi.org/10.3758/s13415-014-0319-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-014-0319-2

Keywords

Navigation