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We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level
energy by means of a multi-petawatt laser such as the 3.5-kJ, 500-fs PETawatt Aquitane Laser (PETAL) at
French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield
acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration
to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 × 1015

cm−3 with a channel depth Δn/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble
regime with a0 � 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding.
The third option is a hybrid concept that employs a ponderomotive channel created by a long leading
pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated,
optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length
and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the
self-guiding. For the production of high-quality beams with 1%-level energy spread and a 1π-mm-mrad-
level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced
injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron
radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius
numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum
energy of 90 GeV.
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doi: 10.3788/COL201311.013501.

1. Introduction

In this decade, vital researches on laser-driven plasma-
based acceleration (LPA) concept[1], high-energy, high-
quality electron beams with energies of the GeV-level
in a cm-scale plasma[2−4], qualities of a 1%-level energy
spread[5], a 1π-mm-mrad-level transverse emittance[6],
and a 1-fs-level bunch duration[7], ensure that the sta-
bility of reproduction is as high as that of present high-
power ultra-short-pulse lasers[8,9]. These high-energy
high-quality particle beams make possible a wide range
of applications in fundamental researches, medical and
industrial uses. For many applications of laser wakefield
accelerators, stability and controllability of the beam
performance such as beam energy, energy spread, emit-
tance and charge are indispensable as well as compact
and robust features of the accelerator system. In par-
ticular, there are great interests in applications for high
energy physics and astrophysics that explore unprece-
dented high-energy frontier phenomena, for which laser
plasma accelerator concepts provide us with promising
tools if beam-quality issues are figured out as well as an
achievable highest energy and intensity requirements.

To date, most of experimental results have been ob-
tained from interaction of ultrashort laser pulses, τL =
30–80 fs with a short-scale plasma such as a few mm long
gas jet and a few cm long plasma channel at the plasma
density in the range of ne = 1018 − 1019 cm−3, where a

large amplitude plasma wave of the order of 100 GV/m
is excited and traps energetic electrons to be efficiently
accelerated inside a wake to high-energies of the order of
1 GeV. The leading experiments that demonstrated the
production of quasi-monoenergetic electron beams[10−12]

have been elucidated in terms of self-injection and succes-
sive acceleration of electrons in the nonlinear wakefield,
referred to as a “bubble” that is a region where plasma
electrons are blown out by radiation pressure of a laser
pulse with the relativistic intensity[13,14]. The self-
injection is a robust method relying on self-focusing
and self-compression that occur during the propagation
of relativistic laser pulses. In this mechanism, initially
heated electrons with large transverse momentum are
injected into nonlinear wakefields that excite betatron
oscillation of accelerated electrons due to strong focusing
field. Hence, suppressing the self-injection and the dete-
rioration of beam qualities, high-quality electron beams
have been produced with controlled injection schemes
such as colliding optical injection[15,16], density-transition
injection[17,18] and ionization-induced injection[19−21], in
the quasi-linear regime of wakefields driven by a laser
pulse with a moderate intensity. These injection schemes
provide us with high-quality electron beam injectors for a
front end of large-scale laser-plasma accelerators, aiming
at acceleration up to the 100 GeV-level energy.

Recently, two-staged laser-plasma acceleration has
been successfully demonstrated in combination with
ionization-induced injection[22,23]. Based on recent re-
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sults on vital experiments and large-scale particle-in-cell
(PIC) simulations[24], the design considerations and the
feasibility studies on applications for high-energy frontier
collider with the TeV-class center-of-mass energy have
been carried out[25,26]. Among these considerations, the
most critical issue is a choice of the operating plasma
density that is an underlying parameter for controlling
the size, the performance and the beam dynamics. Gen-
erally speaking, from the viewpoint of the beam qualities,
high energy regime is in favor of the low operating den-
sity, though such option leads to large size and high
laser peak power. Furthermore, the wall-plug electric
power required for running such TeV-range colliders is
remarkably reduced, compared to that for high operat-
ing density[26]. The state-of-the-art of PW-class lasers
allows us to study the feasibility of laser plasma acceler-
ators toward the TeV-range in a full scale.

Since the invention of laser plasma accelerator
concept[1], it has been envisaged that the advent of pow-
erful lasers generating pulses higher than the PW-level[27]
may make it possible to accelerate electron/positron
beams in a compact scale to the high-energy frontier in
the energy range from 100 GeV to 1 PeV[25,26,28−30],
where many of questions in fundamental physics can be
explored. However, although the current achievements
of LPA experiments break a 1 GeV barrier in several
cm-scale plasmas with the density of 1017 − 1018 cm−3

driven by ∼1-PW class lasers[3,4,31], it seems to be far
from reaching the high-energy frontier as long as the
state-of-the-art on LPAs is simply extrapolated toward
such energies. In this context, it is of practical impor-
tance to demonstrate the 100-GeV level acceleration in
a full scale that is reachable up to the 130 GeV Higgs
mass energy as timely drawn attention.

We consider a design of the laser plasma accelerator
experiment that will be carried out at CEA (French
Alternative Energies and Atomic Energy Commission)
Bordeaux, where a large scale laser named PETawatt
Aquitaine Laser (PETAL)[27] is capable of delivering a
laser pulse with energy of > 3.5 kJ, duration of 0.5–10
picoseconds at the wavelength λL = 1.053 μm. These
parameters guarantee a peak power of >7 PW and a
focused intensity I > 1020 W/cm2, i.e. the achievable
normalized vector potential,

a0 ≡ eA0/mec
2 � 0.855 × 10−9I1/2[W/cm2]λL[μm] > 9,

(1)
where A0 is the peak amplitude of the vector potential
and mec

2 is the electron rest energy. This capability al-
lows us to explore laser plasma acceleration operated in
the entire laser wakefield regime from the linear regime
to the nonlinear bubble regime.

A goal for the LPA experiment is to demonstrate
laser acceleration of a high-quality electron beam with
100-GeV level energy, relative energy spread of ∼1%
and normalized emittance of ∼1π mm-mrad, contain-
ing sufficiently detectable charge of the order of 100 pC
(∼ 109 electrons) per bunch within a 30-m long neutron
time-of-flight beamline outstretched from the 10-m di-
ameter Megajoule Laser (LMJ) target chamber, which
is placed in the radiation shielded area. It is conceiv-
able that there may be several routes to reach a final
goal, since it is still far from the current achievements on

the LPA experiments that have shown a benchmark re-
sult of 1-GeV quasi-monoenergetic e-beam acceleration
from a 3-cm gas-filled discharge capillary driven by a
40-TW, 40-fs (1.6-J) laser pulse at the plasma density
ne = 4.3×1018 cm−3[2] and a most recent result of highly
collimated (<1-mrad divergence) e-beam acceleration be-
yond 2 GeV with a continuous energy spread from a 7-cm
gas cell driven by a 150-J, 150-fs (1-PW) self-guided laser
pulse at the plasma density ne = 3.3×1017 cm−3[31]. Ac-
cording to the energy gain scaling on the plasma density
W ∝ n−1

e , a 100-GeV e-beam can be accelerated in the
broad density range of ne ∼ 6.6×1015−4.3×1016 cm−3,
while the required accelerator length is roughly inferred
to be Lacc ∼ 25− 30 m from the scaling of the dephasing
length Ldp ∝ n

−3/2
e .

On the basis of a rough estimate of the operating
plasma density and the accelerator size, we evaluate pa-
rameters of LPAs in this paper. The remainder of this
paper is organized as follows. Section II presents an
analysis of the wave equation describing the propaga-
tion of a relativistic laser pulse in plasma channels to
derive the matched conditions for the laser spot radius
and the group velocity. Section III presents the design of
the injector relying on the ionization-induced injection
mechanism and three options of laser plasma accelera-
tors that are based on the scaling of the channel-guided
LPA in the quasi-linear regime, the self-guided LPA in
the bubble regime, and a hybrid concept composed of a
ponderomotive-channel creator pulse followed by a LPA
driving pulse, respectively. In Sec. IV, electron beam dy-
namics of acceleration and betatron motion is analyzed
for each design case, taking into account radiation reac-
tion force due to betatron radiation. Section V presents
discussions and a summary of the design options.

2. Propagation of relativistic laser
pulses in plasma channels

Consider propagation of the laser beam in a parabolic
density channel of the form

n(r) = n0 + Δn
r2

r2
0

= n0 +
1

πrer2
m

r2

r2
m

= n0

(
1 +

r2

r2
ch

)
,

(2)
where r0 is the laser spot radius, rm is the matched ra-
dius, and rch is the channel radius at which the plasma
density doubles[32,33]. These radii are related to the chan-
nel depth Δn as

rm = r0

(
Δnc

Δn

)1/4

=
(

r2
ch

πren0

)1/4

, and

r0 = rch

(
Δn

n0

)1/2

, (3)

where Δnc = 1/(πrer
2
0) is the critical channel depth. The

wave equation for the normalized vector potential de-
scribing the three-dimensional evolution of a laser pulse
of duration τL in a fully ionized plasma can be written
as[34] (

∇2 − ∂2

c2∂t2

)
a = k2(1 − η2)a, (4)
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where a is the normalized vector potential with the
Coulomb gauge ∇a = 0, k = ω/c is the free-space wave-
number along the propagation direction. The (squared)
refractive index for linearly polarized electromagnetic
waves in the long pulse limit (ckpτL � 1) is given by[32]

η2(r, z) = 1 − k2
p

k2γL

[
1 +

1
k2
p

∇2
⊥γL +

r2

r2
ch

]
, (5)

where kp = (4πrene)1/2 is the plasma wavenumber eval-
uated with the unperturbed on-axis density n0 and the
the classical electron radius re = e2/mc2 , and γL =
(1 + a2/2)1/2 is the relativistic factor of the laser inten-
sity for the linear polarization. In Eq. (5), the first term
represents free-space propagation, and three terms in the
square bracket correspond to relativistic self-focusing,
ponderomotive channeling and a preformed plasma chan-
nel, respectively.

The wave Eq. (4) is simplified by changing the in-
dependent variables (z, t) into (z, ζ), where z = z and
ζ = z − βgct as[

∇2
⊥ + 2

∂2

∂z∂ζ
+ (1 − β2

g)
∂2

∂ζ2
+

∂2

∂z2

]
a

=
k2
p

γL

[
1 +

1
k2
p

∇2
⊥γL +

r2

r2
ch

]
a, (6)

where βg = vg/c and vg is the linear pulse group velocity.
Denoting a = a(r, ζ) exp(ikζ)ex+c.c. and k = βgω/c, the
wave equation becomes[

∇2
⊥ + 2

(
ik +

∂

∂ζ

)
∂

∂z
+ (1 − β2

g)
∂2

∂ζ2
+

∂2

∂z2

]
a

= k2

[
1 − 1

β2
g

+
k2
p

k2γL

(
1 +

1
k2
p

∇2
⊥γL +

r2

r2
ch

)]
a. (7)

For a short pulse of length cτL propagating in a plasma
channel, the operators scale as ∇⊥ ∼ 1/r0, ∂/∂ζ ∼
1/cτL, ∂/∂z ∼ 1/ZR, and 1 − β2

g ∼ ω2
p/ω2 + 4/k2r2

0 =
ω2

p/ω2+r2
0/Z

2
R, where ZR = kr2

0/2 is the Rayleigh length.
In analysis of Eq. (7), the last term on the left hand side
is neglected, provided |∂2a/∂z2| � 2|∂2a/∂ζ∂z|, assum-
ing cτL � 2ZR, and |∂2a/∂z2| � (1 − β2

g)|∂2a/∂ζ2|,
assuming (cτL)2/r2

0 � 1 + k2
pr2

0/4[35]. Assuming the
paraxial approximation and no group velocity disper-
sion effects, i.e., |∂2a/∂ζ∂z| � k|∂a/∂z|, which implies
kcτL � 1, and (1 − β2

g)|∂2a/∂ζ2| � 2k|∂a/∂z|, which
implies kcτL � (1 + k2

pr2
0/4)1/2, the wave equation can

be reduced to(
∇2

⊥ + 2ik
∂

∂z

)
a

= k2

[
1 − 1

β2
g

+
k2
p

k2γL

(
1 +

1
k2
p

∇2
⊥γL +

r2

r2
ch

)]
a. (8)

The wave equation with the standard paraxial form can
be solved by employing the source-dependent expansion

(SDE) method[36,37], rewriting Eq. (8) in cylindrical co-
ordinates (r, φ, z) as[

1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂φ2
+ 2ik

∂

∂z

]
a(r, φ, z) = S(r, φ, z),

(9)
where S(r, φ, z) is the source function given by

S(r, φ, z) = k2

[
1 − 1

β2
g

+
k2
p

k2γL

(
1 +

1
k2
p

∇2
⊥γL +

r2

r2
ch

)]
· a(r, φ, z). (10)

Here a(r, φ, z) is expanded with the general solution in
cylindrical coordinates (r, φ, z) of the Laguerre-Gaussian
modes as

a(r, φ, z) =
∑
m

∑
p

Cm,p(φ, z)Dp
m(r, z), (11)

where m = 0, 1, 2, · · · , p = 0, 1, 2, · · · are mode numbers
and

Cm,p(φ, z) = am(z) exp(iθm(z) + ipφ), (12)

Dp
m(r, z) =

(
2r2

r2
s (z)

)p/2

Lp
m

(
2r2

r2
s (z)

)
· exp

[
−(1 − iα(z))

r2

r2
s (z)

]
, (13)

and Lp
m(x) = (exx−p/m!)∂m(e−xxm+p)/∂xm are the

generalized Laguerre polynomials, e.g. L0
0 = 1 and

L0
1 = 1 − x. Assuming that the fundamental amplitude

a0(z) is dominant, i.e., |a0(z)| � |am>0(z)|, substi-
tuting Eqs. (11)–(13) into Eqs. (9) and (10) yields the
equations[32,34,38,39]

∂(a0rs)
∂z

= 0, (14)

α =
krs

2
∂rs

∂z
, (15)

∂2rs

∂z2
− 8k2

p

k2rsa2
0

(
1 −

√
1 + a2

0/2 + 2 ln

√
1 + a2

0/2 + 1
2

)

− 8
k2r3

s a
2
0

ln(1 + a2
0/2)

+
2k2

prs

k2r2
ch

[
4
a2
0

(
1 −

√
1 + a2

0/2 + ln

√
1 + a2

0/2 + 1
2

)

+ 4F3(1/2, 1, 1, 1; 2, 2, 2;−a2
0/2)

]
= 0, (16)

∂θ

∂z
=

k

2

(
1
β2

g

− 1
)
− 4 ln(1 + a2

0/2)
kr2

s a
2
0

− 4k2
p

ka2
0

ln

√
1 + a2

0/2 + 1
2
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+
k2
pr2

s

2kr2
ch

[
8
a2
0

(
1 −

√
1 + a2

0/2 + ln

√
1 + a2

0/2 + 1
2

)

+ 4F3(1/2, 1, 1, 1; 2, 2, 2;−a2
0/2)

]
, (17)

where a0(z) is the laser amplitude, rs(z) is the spot size,
α(z) is the phase front curvature, θ(z) is the phase shift
and pFq denotes the generalized hypergeometric series of
order q and class q − p + 1. In the limit of a2

0 � 1, the
laser spot radius Eq. (16) and the phase shift Eq. (17)
become[33,35]

∂2rs

∂z2
=

4
k2r3

s

(
1 − r4

s

r4
m

)
, (18)

∂θ

∂z
= −2

k

(
1
r2
s

− 1
r2
m

)
, (19)

where rm is the matched spot radius and the phase ve-
locity is assumed to satisfy

ω2

c2k2
=

1
β2

g

= 1 +
k2
p

k2
+

4
k2r2

m

, (20)

which is the conventional dispersion relation for an elec-
tromagnetic wave with spot radius rm in a homogeneous
plasma with plasma frequency ωp, i.e., ω2 = c2k2 + ω2

p +
4c2/r2

m, and implies the group velocity[35]

β2
g =

(
1
c

∂ω

∂k

)2

=
c2k2

ω2
= (1 +

k2
p

k2
+

4
k2r2

m

)−1

≈ 1 − k2
p

k2
− 4

k2r2
m

. (21)

The spot radius and phase Eqs. (18) and (19) indicate
that no variation of the spot size and the phase occur for
the matched condition, i.e., rs = rm = r0.

Using X = rs/âr̂ and a0 = X−1, where â and r̂ are the
vacuum amplitude and the minimum spot size at focus,
respectively, the equation for the laser beam envelope is
written as[32,34,38,39]

∂2X

∂z2
+

1
â4Z2

R

∂V

∂X
= 0, (22)

where V is defined by

∂V

∂X
= −64

P

Pc
X
(
1 −

√
1 + X−2/2

+2 ln

√
1 + X−2/2 + 1

2

)
− 2 ln(1 + X−2/2)

X
+ 2NchX

·
[
4X2

(
1 −

√
1 + X−2/2 + ln

√
1 + X−2/2 + 1

2

)

+ 4F3(1/2, 1, 1, 1; 2, 2, 2;−X−2/2)

]
, (23)

and ZR = kr̂2/2 is the Rayleigh length in vacuum, and
P/Pc = k2

pâ2r̂2/32 is the ratio of the laser beam power to

the critical power for the relativistic self-focusing at the
plasma density n0, given by Pc = 17nc/n0(GW), and

Nch =
(

16
kprch

P

Pc

)2

(24)

is a dimensionless focusing strength parameter that in-
dicates both relativistic and channel focusing. Equation
(22) represents the motion of a “particle” represented by
X , in an effective potential V (X, P/Pc, Nch) and can be
integrated as

1
2

(
dX

dz

)2

+
1

â4Z2
R

V = const. (25)

The phase Eq. (17) is rewritten as[32]

∂θ

∂z
=

k

2

(
1
β2

g

− 1
)
− 1

â2ZR

{
64

P

Pc
X2 ln

√
1 + X−2/2 + 1

2

+ 2 ln(1 + X−2/2)− NchX2

·
[
8X2

(
1 −

√
1 + X−2/2 + ln

√
1 + X−2/2 + 1

2

)

+ 4F3(1/2, 1, 1, 1; 2, 2, 2;−X−2/2)

]}
. (26)

Equations (22) and (26) describes the evolution of the
scaled spot radius X(z) = rs(z)/âr̂ and the phase θ (z)
with the initial conditions rs = ri, (∂rs/∂z)i, and θi at
z = 0. The matched condition for the beam propagating
with a constant spot size, i.e., the equilibrium solution
rs = r0 = r̂ is derived from ∂V/∂X = 0 at X = 1/a0 in
Eq. (23). The matched spot radius rm = r0 is given by

k2
pr2

m = ln(1 + a2
0/2)

×
{√

1 + a2
0/2 − 1 − 2 ln

√
1 + a2

0/2 + 1
2

+
Δn

n0

[
1 −

√
1 + a2

0/2 + ln

√
1 + a2

0/2 + 1
2

+
a2
0

4 4F3(1/2, 1, 1, 1; 2, 2, 2;−a2
0/2)

]}−1

, (27)

and the matched power Pm is

Pm =
k2
pr2

ma2
0

32
Pc, (28)

where r2
0/r2

ch = Δn/n0 is used. For the matched con-
dition, the phase velocity is derived from ∂θ/∂z = 0 at
X = 1/a0 in Eq. (26) as

ω2

c2k2
=

1
β2

g

= 1 +
k2
p

k2

[
8
a2
0

(√
1 + a2

0/2 − 1 − ln

√
1 + a2

0/2 + 1
2

)

+
Δn

n0
4F3(1/2, 1, 1, 1; 2, 2, 2;−a2

0/2)
]

. (29)

013501-4



COL 11(1), 013501(2013) CHINESE OPTICS LETTERS January 10, 2013

In the limit of a2
0 � 1, Eq. (29) becomes Eq. (20).

Hence, the group velocity leads to

β2
g =

c2k2

ω2
≈ 1 − k2

p

κchk2
, (30)

where a reduction factor of the group velocity is defined
as

κch(a2
0, Δn/n0)

=
a2
0

8

[(√
1 + a2

0/2 − 1 − ln

√
1 + a2

0/2 + 1
2

)

+
Δn

n0

a2
0

8 4F3(1/2, 1, 1, 1; 2, 2, 2;−a2
0/2)

]−1

. (31)

For the matched condition due to the self-guiding and
the ponderomotive channeling, the spot radius and the
group velocity are given by Eqs. (27) and (30), respec-
tively, where the channel depth is set to Δn = 0. Figure
1 shows the dimensionless matched spot radius kprm

and the reduction factor of the group velocity κch as a
function of a0 for the normalized channel depth Δn/n0,
including the self-guiding Δn/n0 = 0.

3. Design of large scale laser
plasma accelerators

A laser plasma accelerator is composed of a gas jet
or a short gas cell (injector) followed by a long uniform
low-density plasma or preformed plasma channel (accel-
erator).

3.1 Injectors employing the ionization-
induced injection

To date, successfully demonstrated are several injection
schemes[8−18] that produce high-quality electron beams
with small energy spread, low transverse emittance and
high stability. For a large scale LPA experiment, e-
beams may be produced and accelerated in the injec-
tor stage by the same driving laser pulse as that in the

Fig. 1. The dimensionless matched spot radius kprm and the
reduction factor of the group velocity κch as a function of a0

for the normalized channel depth Δn/n0, including the self-
guiding case Δn/n0 = 0.

accelerator stage, relying on the robust self-injection
mechanism. Here we consider the ionization-induced in-
jection scheme[19−22,40].

A mechanism of the ionization-induced trapping is elu-
cidated by the fact that likely trapped are a number of
electrons that are produced from impurity of gas with a
large difference of the ionization potential between the
outer shell electrons and the inner shell ones such as Ni-
trogen, of which two K-shell electrons are ionized by the
optical field ionization over the barrier suppression ion-
ization (BSZ) threshold

IBSI =
cU4

i

128πe6Z2
≈ 2.2 × 1015

Z2

(
Ui

27.21

)4

(W/cm2)

≈ 1.04 × 1019(1.62 × 1019) W/cm2
, (32)

for the Nitrogen ionization state N6+ (N7+), where Z
is the charge state and the ionization potential Ui =
552.057(667.029) eV, corresponding to ath ≈ 2.9(3.6),
whereas the outer shell electrons up to N5+ are ionized
below the intensity of IBS � 1.47×1016(9×1015) W/cm2

for the N5+ (N4+) ionization potential of 97.888 (77.472)
eV and can be considered pre-ionized in the leading front
of the laser pulse before the bubble formation. Hence the
inner shell electrons are produced only near the peak in-
tensity of the laser pulse, which is located near the bubble
center on the propagation axis, where the wake potential
is a maximum and the expelling ponderomotive force of
the laser pulse is a minimum. Contrary to pre-ionized
free electrons, whose trajectories move along a narrow
sheath with radius RB outside the bubble, the ionized
electrons emitted from the inner shell move close to the
bubble axis toward the back of the bubble where the wake
potential is a minimum, and eventually trapped into the
wakefield when electrons gain a sufficient kinetic energy
required for trapping. This mechanism occurs at the in-
tensity as low as the optical field ionization threshold for
the inner shell electrons of impurity gas and significantly
increases the trapped charge. As trapping occurs close to
the bubble axis, amplitudes of the betatron oscillation af-
ter trapping decrease compared to the self-injection from
the electron sheath. Recent experiments[19−22] support
the ionization-induced trapping mechanism that reduces
the self-injection threshold to P/Pc ∼ 1.4 (ath ∼ 1.6) for
9:1 He:N2 gas mixture of ne ∼ 1.4×1019 cm−3, increases
4∼5 times the charge for 1.2% N2 98.8% He gas mixture
of ne ∼ 2× 1019 cm−3 with the 30-TW, 30-fs laser pulse,
and produces significantly collimated electron beams.

According to theoretical considerations on the
ionization-induced injection[40], for trapping electrons
ionized at the peak of the laser electric field, the min-
imum laser intensity is given by

1 − γ−1
p � 0.64a2

min, (33)

where γp = (nc/ne)1/2 is the Lorentz factor corre-
sponding to the plasma-wave phase velocity βp = (1 −
ω2

p/ω2)1/2. For the quasi-linear laser wakefield at ne ≈
7×1015 cm−3, the required minimum laser field is amin �
1.25. The maximum number of trapped electrons is satu-
rated to be approximately Nemax ∼ 5× 106 μm−2 at the
mixed gas length Lmix ≈ 1 000λL for the plasma density
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ne = 0.001nc with the nitrogen concentration of αN = 1%
and the laser parameters a0 = 2 and cτL ≈ 15λL due to
the beam loading effects and initially trapped particle
loss from the separatrix in the phase space. From the
PIC-simulation results[40], the number of trapped elec-
trons scales as

Ne(μm−2) ∼ 8 × 107αNkpLmix(ne/nc)1/2, (34)

for αNkpLmix � 2. The energy spread is also propor-
tional to both the mixed gas length and the nitrogen
concentration. For the quasi-linear laser wakefield case,
setting αN ≈ 2% and Lmix ≈ 15.7/kp ≈ 1 mm, the num-
ber of electrons trapped inside the bunch with radius
rb = 1/kp ≈ 64 μm is estimated as

Nb ∼ k2
pr2

b

4rene
Ne ≈ 7.1 × 106αNkpLmixk

2
pr2

b

(
nc

ne

)1/2

·
(

λL

1.053 μm

)2

≈ 8.4 × 108, (35)

which corresponds to the charge of Qb ∼ 135 pC.
This injector can produce the high-quality beam with
the relative energy spread of less than 1%. Accord-
ing to the 2D-PIC simulation for a0 = 2[40], the en-
ergy spread of a trapped electron beam may scale as
δE/E = 0.2(%)(Lmix/λL)(ne/1015 cm−3)−1/2, while
the transverse normalized emittance is estimated to be
εn0 ≈ 5 (μm)a1/2

0 (ne/1015 cm−3)−1/2.
Technically a gas jet with nozzle width of 1 mm is

attached at the upstream position from the entrance
of the accelerator plasma, taking into account match-
ing of the laser pulse to the plasma channel. In the
gas jet, the hydrogen gas density is set to be nH =
(1−αN)ne/(1+4αN) = 0.91ne and the nitrogen gas den-
sity nN = αNnH/(1−αN) = αNne/(1 + 4αN) = 0.0185ne

for αN = 0.02.

3.2 Laser plasma accelerators in the quasi-
linear regime

In the linear laser wakefield with the accelerating field
Ez = Ez0 cosΨ , equations of the longitudinal motion of
an electron with the normalized velocity βz = vz/c ≈ 1
and energy γ = E/mec

2 are given by[41]

dγ

dz
= kp

Ez0

E0
cosΨ , (36)

dΨ
dz

= kp

(
1 − βp

βz

)
≈ kp(1 − βg) ≈ kp

2γ2
b

, (37)

where Ψ = kp(z − vpt) + Ψ0 is a phase of the
plasma wave, E0 = mcωp/e is the nonrelativistic
wave-breaking field approximately given by E0 ≈
96(GV/m)(ne/1018(cm−3))1/2, βp = vp/c ≈ vg/c = βg

is the phase velocity vp of the plasma wave normalized
to c, and γg = (1 − β2

g)−1/2 � 1 is assumed. Integrating
Eqs. (36) and (37), the energy and phase of the electron

can be calculated as

γ(z) = γ0 + 2γ2
g

Ez0

E0
[sinΨ(z) − sinΨ0] and Ψ(z)

≈ kpz

2γ2
g

+ Ψ0. (38)

Setting the initial electron phase Ψ0 = 0 at z = 0, the
maximum energy gain is given by

Δγmax = γmax − γ0 = 2γ2
g

Ez0

E0
, (39)

at kpz = πγ2
g or z = λpγ2

g/2. As shown from Eq. (38),
setting Ψ0 = −π/2, the maximum energy gain reaches
Δγmax = 4γ2

gEz0/E0 at kpz = 2πγ2
g or z = λpγ2

g . How-
ever, electrons undergo both acceleration and focusing
only for 0 � Ψ � π/2. Hence, we define the dephas-
ing length as Ldp = λpγ2

g/2. Considering a driving laser
pulse of the normalized intensity a2

0 moving in a plasma
channel with the channel depth Δn at the group veloc-
ity βg = vg/c given by Eq. (30) with the corresponding
relativistic factor of

γ2
g =

1
1 − β2

g

≈ κch
k2

k2
p

= κch
ω2

ω2
p

= κch
nc

ne
= κchγ

2
g0, (40)

where γg0 = ω/ωp is the relativistic factor for the
group velocity in a uniform plasma and its reduction
factor κch is given by Eq. (31), the maximum energy
gain and the dephasing length are written as Δγmax =
2κchγ

2
g0(Ez0/E0) and Ldp = (λp/2)κchγ

2
go, respectively.

In the limit of a2
0 � 1, κch ≈ (1 + Δn/n0)−1.

In the quasi-linear regime, neglecting the beam loading,
the maximum accelerating field is given by[26]

Ez0

E0
� √

πa2
0

(
kpσL

4

)
exp

(
−k2

pσ
2
L

4

)
≈ 0.38a2

0, (41)

for a driving laser pulse with a Gaussian temporal profile
with the full-width at half-maximum (FWHM) length
cτL ∼ 0.375λp, i.e., kpσL =

√
2, where σL is the rms

pulse length. For a given laser pulse duration τL, the
operating plasma density is given by

ne =
2

k2σ2
L

nc =
2 ln 2
π2

(
λL

cτL

)2

nc

≈ 7 × 1015(cm−3)
(

500 fs
τL

)2

, (42)

where k = 2π/λL is the laser wave number. At this
plasma density, the energy gain is written as

Δγmax =
Wmax

mec2
= 2κchγ

2
g0

Ez0

E0
≈ 0.76κcha

2
0

nc

ne

= 1.09 × 105κcha2
0

( τL

500 fs

)2

. (43)

The normalized laser intensity a2
0 is restricted by the con-

dition that the dephasing length is shorter than the pump
depletion length, i.e., for kpσL =

√
2,

kpLdp = πκch
nc

ne
� kpLpd � 8.7

a2
0

nc

ne
, (44)
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Fig. 2. For the quasi-linear regime LPA, parameters of en-
ergy gain W (GeV), dephasing length Ldp(m), matched spot
radius rm(μm), matched peak power P (PW), and the ratio of
the peak power to the relativistic self-focusing critical power
P/Pc for the operating plasma density ne = 7 × 1015 cm−3

and the channel depth Δn/ne = 5, 10, 20% as a function of
the normalized vector potential a0.

where Lpd is the pump depletion length, at which the
total field energy becomes equal to half the initial laser
energy. In the limit of a2

0 � 1, this condition leads to
a0 � 1.66(1 + Δn/n0)1/2. Thus, the required accelerator
length Lacc can be set to be

Lacc = Ldp = κch
λp

2
nc

ne
=

π3λLκch

4
√

2(ln 2)3/2

(
cτL

λL

)3

≈ 28.9(m)κch

(
1.053 μm

λL

)2 ( τL

500 fs

)3

, (45)

where nc/ne is given by Eq. (42).
Parameters of energy gain W (GeV), dephasing length

Ldp(m), matched spot radius rm(μm), matched peak
power P (PW), and the ratio of the peak power to the
self- focusing critical power P/Pc are shown for the oper-
ating plasma density ne = 7×1015 cm−3 and the channel
depth Δn/ne = 5, 10, 20% in Fig. 2 as a function of the
normalized vector potential a0.

3.3 Laser plasma accelerators in the bub-
ble regime

In the bubble (blowout) regime[13,14] for a0 � 2, since
an electron-evacuated cavity shape is determined by bal-
ancing the Lorentz force of the ion sphere exerted on the
electron sheath with the ponderomotive force of the laser
pulse, the bubble radius RB is approximately given as[14]

kpRB ≈ 2
√

a0. (46)

The maximum accelerating field is given by

Ez0

E0
=

1
2
αkpRB, (47)

where α ≈ 0.9 represents a factor taking into account
the difference between the simulation and theoretical es-
timation.

1) Self-guided case

The equations of longitudinal motion of an electron are
approximately written as

dγ

dz
= kp

Ez0

E0
(RB − ξ) =

1
2
αk2

pRB

(
1 − ξ

RB

)
, (48)

dξ

dz
= 1 − βB

βz
≈ 1 − βB ≈ 3

2γ2
g

, (49)

where ξ = z − vBt (0 � ξ � RB) is the longitudinal
coordinate of the bubble frame moving at the velocity
of vB = cβB ≈ vg − vetch and taking into account the
diffraction at the laser front that etches back at the ve-
locity of vetch ∼ c(ωp/ω)2[42]. Integrating the Eqs. (48)
and (49), the energy and phase of the electron can be
calculated as

γ(z) = γ0 +
1
3
αγ2

gk2
pRBξ(z)

(
1 − ξ(z)

2RB

)
, and

ξ(z) =
3z

2γ2
g

, (50)

where γ0 = γ(0) is the injection energy. Hence, the max-
imum energy gain is obtained from

Δγmax = γmax − γ0 ≈ 1
6
αγ2

gk2
pR2

B ≈ 2
3
αa0γ

2
g

=
2
3
ακselfa0

nc

ne
, (51)

at ζ = RB, i.e., the dephasing length Ldp for self-guided
bubble regime is

kpLdp ≈ 2
3
kpRBγ2

g =
4
3
√

a0κself
nc

ne
, (52)

where κself is given by

κself ≡ κch(a2
0, 0)

=
a2
0

8

(√
1 + a2

0/2 − 1 − ln

√
1 + a2

0/2 + 1
2

)−1

.

(53)

The operating plasma density is determined from Eq.
(51) as

ne =
2
3
ακselfa0

nc

Δγmax
≈ 3.4 × 1015(cm−3)κselfa0

·
(

1.053 μm
λL

)2(100 GeV
W/α

)
, (54)

and the accelerator length becomes

Lacc = Ldp ≈
√

3
2

(Δγmax/α)3/2

πκ
1/2
selfa0

λL

≈ 36(m)

κ
1/2
selfa0

(
λL

1.053 μm

)(
W/α

100 GeV

)3/2

. (55)

The dephasing length should be less than the pump
depletion length due to pulse-front erosion Lpd ∼
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cτLnc/ne � Ldp. Therefore, the pulse length is set to
be

cτL � 2
3π

√
a0κselfλp, or

kpσL � 2
3
κself

( a0

ln 2

)1/2

≈ 0.8κself
√

a0. (56)

This condition restricts the operating plasma density
to

ne �
(

2κselfλL

3πcτL

)2

a0nc

≈ 2.23 × 1015(cm−3)a0κ
2
self

(
500 fs

τL

)2

. (57)

Equations (54) and (57) suggest that the pulse duration
satisfies

τL � 405(fs)κ1/2
self

(
λL

1.053 μm

)(
W/α

100 GeV

)1/2

. (58)

for self-guiding a driving laser pulse.
For energy gain W = 100 GeV and α = 0.9, Fig-

ure 3 shows parameters of operating plasma density
ne(1015 cm−3), dephasing length Ldp(m), pump de-
pletion length Lpd(m), matched spot radius rm(μm),
matched peak power P (PW), and the ratio of the peak
power to the relativistic self-focusing critical power P/Pc

along with the dimensionless matched radius Rm = kprm

and the group velocity factor κself as a function of the
normalized vector potential a0.

2) Channel-guided case
For a driving laser pulse propagating in a plasma chan-

nel, the equations of an electron motion are given by set-
ting vB = cβB ≈ vg in Eq. (49), i.e., dζ/dz ≈ 1 − βB ≈
1/2γ2

g . Hence, the maximum energy gain results in

Δγmax = γmax − γ0 ≈ 1
2
αγ2

gk2
pR2

B ≈ 2αa0γ
2
g

= 2ακcha0
nc

ne
, (59)

Fig. 3. For the self-guiding LPA with energy gain W =
100 GeV and α = 0.9, parameters of operating plasma density
ne(×1015 cm−3), dephasing length Ldp(m), pump depletion
length Lpd(m), matched spot radius rm(μm), matched peak
power P (PW), and the ratio of the peak power to the rela-
tivistic self-focusing critical power P/Pc along with the dimen-
sionless matched radius Rm = kprm and the group velocity

factor κself as a function of the normalized vector potential
a0.

and the dephasing length is

kpLdp ≈ 2kpRBγ2
g = 4

√
a0κch

nc

ne
, (60)

where κch is given by Eq. (31). The operating plasma
density is determined by

ne = 2ακcha0
nc

Δγmax
≈ 1.03 × 1016(cm−3)κcha0

·
(

1.053 μm
λL

)2(100 GeV
W/α

)
, (61)

and the accelerator length becomes

Lacc = Ldp ≈ λL√
2πκ

1/2
ch a0

(
Δγmax

α

)3/2

≈ 20.5(m)

κ
1/2
ch a0

(
λL

1.053 μm

)(
W/α

100 GeV

)3/2

. (62)

The pump depletion length, at which the total field en-
ergy becomes half of the initial laser energy, is given by

Lpd ≈
√

π

2α2
a0σL

nc

ne
≈ 0.53

α2
a0cτL

nc

ne

≈ 7.8(m)
α2κch

(
W/α

100 GeV

)( τL

500 fs

)
. (63)

The requirement for the accelerator length Lacc = Ldp �
Lpd bounds the minimum pulse duration

τL � 1.3(ps)
α2κ

1/2
ch

a0

(
λL

1.053 μm

)(
W/α

100 GeV

)1/2

. (64)

3.4 Ponderomotive channel-guided laser
plasma accelerators

The radial ponderomotive force of a long laser pulse
(cτG > λp) propagating in an initially uniform plasma
can expel electrons from the axis, thus creating a density
channel, of which the relative density perturbation is
given by[34]

δn(r, z)
n0

=
1
k2
p

∇2
⊥

(
1 +

a2

2

)1/2

, (65)

assuming δn/n0 � −1. With a Gaussian radial profile,
a2 = a2

0 exp(−2r2/r2
0), the laser pulse creates a density

profile of

δn(r)
n0

= −Δnc

n0

a2
0 exp(−2r2/r2

0)

2
√

1 + a2
0e

−2r2/r2
0/2

·
[
1 − 2r2

r2
L

+
a2
0 exp(−2r2/r2

0)
2(1 + a2

0e
−2r2/r2

0/2)
r2

r2
0

]
, (66)

where Δnc = 1/(πrer
2
0) is the critical channel depth for

the spot radius r0 of the guiding laser pulse. Along the
axis on r = 0, the channel depth is

δn0 = |δn(0)| =
a2
0/2√

1 + a2
0/2

Δnc. (67)

013501-8



COL 11(1), 013501(2013) CHINESE OPTICS LETTERS January 10, 2013

The profile of the ponderomotive channel approximates
a parabolic density channel as

n(r) � n0 − δn0 + Δnpond
r2

r2
0

, (68)

where

Δnpond = δn0

[
1 −

(
1 + a2

0/2
1 + a2

0e
−2/2

)1/2

·
(

3e−2 − a2
0e

−4/2
1 + a2

0e
−2/2

)]
. (69)

for r � r0. Initially assuming a uniform plasma with
density n0 prior to propagating a self-guided laser pulse
that creates a ponderomotive channel with the operating
plasma density ne given by Eq. (42) in the quasi-linear
regime, or by Eq. (61) in the bubble regime, the initial
density n0 is given by

n0 = ne

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−1

, (70)

where RG ≡ kpr0 is the dimensionless matched spot ra-
dius for self-guiding, given by

R2
G = k2

p0r
2
0 =

ln(1 + a2
0/2)√

1 + a2
0/2 − 1 − 2 ln[(

√
1 + a2

0/2 + 1)/2]
.

(71)
The channel depth normalized to ne is calculated as

Δnpond

ne
=

2a2
0

R2
G

√
1 + a2

0/2

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−1

·
[
1 −

(
1 + a2

0/2
1 + a2

0e
−2/2

)1/2(
3e−2 − a2

0e
−4/2

1 + a2
0e

−2/2

)]
.

(72)

With the channel depth Eq. (72), the matched radius
and power of the driving laser pulse propagating through
the ponderomotive channel are calculated from Eqs. (27)
and (28), respectively, where a0 = aD and aD is the nor-
malized vector potential of the driving laser pulse. Fig-
ure 4 shows an electron density profile n(r)/n0 created
by a Gaussian laser pulse with a0 = aG = 1.4 and the
parabolic density approximation given by Eq. (68).

The matched spot radius of the guiding laser pulse is
given by

r0 =
RG

kp0
=

λL

2π
RG

√
nc

n0
≈ 168(μm)RG

(
1015 cm−3

n0

)1/2

,

(73)
and the required matched power of the guiding laser pulse
becomes

PG =
k2
p0r

2
0a

2
0

32
Pc = 0.534(PW)a2

0R
2
G

·
(

1.053 μm
λL

)2(1015cm−3

n0

)
. (74)

Fig. 4. (Color online) An electron density profile n(r)/n0

(blue solid line) created by a Gaussian laser pulse (red solid
line) with aG = 1.4 and the parabolic density approximation
(black dashed line) given by Eq. (68) are plotted as a func-
tion of r/r0, where r0 is the spot radius of the guiding laser
pulse. A driving laser pulse (red dashed line) with aD = 1.4
matched to the channel depth Δn/n0 = 20% is also plotted.

The pulse duration τG is determined from the pump
depletion length due to pulse-front erosion LGpd ∼
cτGnc/n0 � Lacc, where Lacc is the accelerator length,
given by Eq. (45) in the quasi-linear regime, or by Eq.
(62) in the bubble regime, i.e.,

τG � κchλp0

2c

(
n0

ne

)3/2

=
κchλL

2c

√
nc

n0

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−3/2

≈ 1.76(ps)κch

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−3/2

·
(

1015 cm−3

n0

)1/2

, (75)

for the quasi-linear regime, or

τG � 4
√

a0κch

ckp0

(
n0

ne

)3/2

=
2κch

√
a0λL

πc

√
nc

n0

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−3/2

≈ 2.24(ps)κch
√

a0

(
1 − 2a2

0

R2
G

√
1 + a2

0/2

)−3/2

·
(

1015 cm−3

n0

)1/2

, (76)

for the bubble regime, respectively. The required pulse
energy for the guiding laser pulse is

UG = PGτG � 0.94(kJ)κcha2
0R

2
G

·
(

1 − 2a2
0

R2
G

√
1 + a2

0/2

)−3/2(
1.053 μm

λL

)2
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·
(

1015 cm−3

n0

)3/2

, (77)

for the quasi-linear regime, or

UG = PGτG � 1.2(kJ)κcha
5/2
0 R2

G

·
(

1 − 2a2
0

R2
G

√
1 + a2

0/2

)−3/2(
1.053 μm

λL

)2

·
(

1015cm−3

n0

)3/2

, (78)

for the bubble regime, respectively. Figure 5 shows pa-
rameters of ponderomotive channel and the guiding laser
pulse that can guide a driving laser pulse at the on-axis
plasma density ne = 7 × 1015 cm−3 as a function of nor-
malized vector potential a0 of the guiding laser pulse.

4. Electron beam dynamics and
betatron radiation

Beams that undergo transverse focusing forces F⊥ =
−mec

2K2x, in plasma waves exhibit the betatron oscil-
lation, where x is the transverse amplitude of betatron
oscillation and K is a focusing constant exerted from
transverse wakefields. The betatron motion of electrons
emits synchrotron radiation that affects energy loss and
transverse emittance of the electron beam via the radia-
tion reaction force. The motion of an electron traveling
along z-axis in the accelerating force eEz and the radial

Fig. 5. Parameters of ponderomotive channel and a guiding
laser pulse that can guide a driving laser pulse at the on-axis
plasma density ne = 7×1015 cm−3 as a function of normalized
vector potential a0 of the guiding laser pulse. Here, n0 is the
initial uniform plasma plasma density in a unit of 1015 cm−3,
RG = kpr0 is the dimensionless matched spot radius for self-
guiding, r0 is the matched spot radius in a unit of 100 μm,
Δn/ne is the ponderomotive channel depth normalized to the
on-axis plasma density in percent, Δn/Δnc is the ratio of the
ponderomotive channel depth to the critical channel depth in
percent, PG is the peak power of a guiding laser pulse in a
unit of PW, PG/Pc is the ratio of the peak power to the rela-
tivistic self-focusing critical power, τG is the minimum pulse
duration given by Eq. (75) in a unit of ps, and UG is the
corresponding pulse energy given by Eq. (77) in a unit of kJ,
respectively.

force eEr from the plasma wave evolves according to

dux

cdt
= −K2x +

FRAD
x

mc2
,
duz

cdt
= kp

Ez

E0
+

FRAD
z

mc2
, (79)

where F RAD is the radiation reaction force and u =
p/mc is the normalized electron momentum. The classi-
cal radiation reaction force[43], is given by

F rad

mcτR
=

d
dt

(
γ

du

dt

)
+ γu

[(
dγ

dt

)2

−
(

du

dt

)2
]

, (80)

where γ = (1 + u2)1/2 is the relativistic Lorentz fac-
tor of the electron and τR = 2re/3c � 6.26 × 10−24 s.
Since the scale length of the radiation reaction, i.e.,
cτR = 2re/3 � 1.9 fm, is much smaller than that of the
betatron motion, i.e., ∼ λpγ1/2, assumming that the ra-
diation reaction force is a perturbation and uz � ux, the
equations of motion Eq. (79) are approximately written
as[44]

dux

dt
� −cK2x − c2τRK2ux(1 + K2γx2),

duz

dt
� ωp

Ez

E0
− c2τRK4γ2x2,

dx

dt
=

cux

γ
� c

ux

uz
. (81)

Finally, the particle dynamics is obtained from the fol-
lowing coupled equations[29,30,44],

d2x

dt2
+
(

ωp

γ

Ez

E0
+ τRc2K2

)
dx

dt
+

c2K2

γ
x = 0, (82)

and
dγ

dt
= ωp

Ez

E0
− τRc2K4γ2x2, (83)

where the second damping term proportional to τRc2K2

results in the linear damping of the betatron motion and
the first one induces the nonlinear damping in conjunc-
tion with the energy evolution. The radiated power in
the classical limit is given by[43]

PRAD =
2e2γ2

3c

[(
du

dt

)2

−
(

dγ

dt

)2
]

=
2e2γ2

3m2c3
[|Fext|2 − |Fext · u/γ|2], (84)

using mcdγ/dt = Fext · u/γ, where Fext is the external
force on the electron. As the force is transverse only, i.e.,
Fext = F⊥ex and for a relativistic electron with u2

x � γ2,
the radiated power can be written as[30]

PRAD =
2e2γ2

3m2c3
F 2
⊥ =

2
3
ce2γ2K4x2 = mc4τRK4γ2x2,

(85)
with F⊥ = −mc2K2x.

Corresponding to Eqs. (82) and (83) describing a single
particle dynamics with radiation damping, the envelope
equation of the rms beam radius σb is written as[29,30]

d2σb

dz2
+
(

kp

γ

Ez

E0
+ τRcK2

)
dσb

dz
+

K2

γ
σb − ε2

0

σ3
b

= 0,

(86)

dγ

dz
= kp

Ez

E0
− 2τRcK4γ2σ2

b, (87)

013501-10



COL 11(1), 013501(2013) CHINESE OPTICS LETTERS January 10, 2013

Fig. 6. Numerical solutions of (a) normalized energy Γ =
γ/(2χγ2

g), (b) dimensionless beam radius Σ , (c) relative radia-

tive energy loss ΔγRAD/(2χγ2
g), and (d) an estimate of the di-

mensionless normalized emittance given by Eq. (94) over the
dephasing length Ldp, i.e., 0 � Ψ � π/2, for the quasi-linear
regime LPA, a0 = 1.4, ne = 7 × 1015 cm−3, Δn/ne = 20%,
χ = Ez0/E0 = 0.745, R = kprL = 2.36, κch = 0.913, γ0 = 196
(Wi = 100 MeV), and Ω0 = kpεn0/γ0 = 2.12 × 10−4.

where ε0 = εn0/γ0 is the initial geometrical emittance at
the injection energy γ0 for the normalized emittance εn0.
The evolution of energy and beam size can be obtained
from the solutions of the coupled Eqs. (86) and (87). For
simplicity, using the dimensionless variables, Σ ≡ kpσb,
ζ ≡ kpz and Ω0 ≡ kpε0, the coupled equations are rewrit-
ten as

d2Σ
dζ2

+
(

1
γ

Ez

E0
+ τRωp

K2

k2
p

)
dΣ
dζ

+
1
γ

K2

k2
p

Σ − Ω2
0

Σ3
= 0,

(88)

dγ

dζ
=

Ez

E0
− 2τRωp

K4

k4
p

γ2Σ2. (89)

where

τRωp =
2
3
kpre =

4π

3
re

λL

(
nc

ne

)−1/2

≈ 1.118× 10−11
( ne

1015 cm−3

)1/2

. (90)

4.1 Beam dynamics in the quasi-linear
regime

In the quasi-linear regime, the accelerating field Ez/E0

and the focusing constant K exerted by the wakefields
driven by a Gaussian laser pulse with spot radius rL are
expressed by

Ez

E0
= χ cosΨ and

K2

k2
p

� 4χ

R2
sinΨ , (91)

where Ψ(ζ) ≈ ζ/2γ2
g is the dephasing phase of the

wakefield,χ ≡ Ez0/E0 = 0.38a2
0 is the normalized am-

plitude of the accelerating filed, as shown in Eq. (41),
and R = kprL is the dimensionless spot radius of the
driving laser pulse. Substituting Eq. (91) into Eqs. (88)
and (89), the coupled equations result in

d2Σ
dΨ2

+

(
cosΨ

Γ
+

8τRωpχγ2
g

R2
sinΨ

)
dΣ
dΨ

+
8γ2

g

ΓR2
Σ sinΨ − 4γ4

gΩ
2
0

Σ3
= 0, (92)

dΓ
dΨ

= cosΨ − 128τRωpγ
4
gχ3

R4
Γ 2Σ2 sin2 Ψ , (93)

where Γ ≡ γ/(2χγ2
g) indicates the energy normalized to

the maximum energy gain Δγmax = 2χγ2
g as shown in

Eq. (39), R2 = k2
pr2

m and γ2
g = κchγ2

g0 = κchnc/ne

are given by Eqs. (27) and (40), respectively, for laser
wakefield acceleration in a plasma channel. The beam
energy γ = 2χγ2

gΓ and radius σb = Σ/kp are obtained
from numerically integrating the coupled Eqs. (92) and
(93) over 0 � Ψ � π/2, provided with the initial condi-
tions Σ0 = kpσb0, dΣ/dΨ = 0 and Γ0 = γ0/(2χγ2

g) at
Ψ = 0.

Figure 6 shows the numerical solution of normalized
energy Γ and dimensionless beam radius Σ over the de-
phasing length Ldp, i.e., 0 � Ψ � π/2, for a0 = 1.4,
ne = 7 × 1015 cm−3 and Δn/ne = 20%. It is found
that the maximum energy approximately reaches 94 GeV
and the equilibrium beam radius becomes σbeq ≈ 23 μm,
which decreases as a result of radiative energy loss of ∼6%
and damps due to betatron radiation in a plasma focus-
ing channel. The normalized emittance corresponding to
the equilibrium beam radius is estimated as

kpεn ≈ γkpε = γkp

∣∣∣∣σb
dσb

dz

∣∣∣∣ = χ

∣∣∣∣ΓΣ
dΣ
dΨ

∣∣∣∣ , (94)

where ε is the geometrical emittance. The equilibrium
normalized emittance is obtained to be εneq ∼ 38 μm
from Fig. 6. The evolution of the beam energy W (GeV)

Fig. 7. The evolution of the beam energy W (GeV) and
the relative energy loss to the maximum energy gain,
ΔγRAD/(2χγ2

g) for the quasi-linear regime LPA. Curves are
plotted for the energy W = 100 GeV, the channel depth
Δn/ne = (i) 5%, (ii) 10%, (iii) 20% case, and the energy
W = 130 GeV case, the channel depth Δn/ne = (iv) 5% , (v)
10% , (vi) 20% case, respectively.
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and the relative energy loss to the maximum energy
gain, ΔγRAD/(2χγ2

g) are shown in Fig. 7 for the chan-
nel depth Δn/ne = 5, 10, 20% and the design energy
W = 100, 130 GeV cases. As shown in Fig. 7, radiative
energy loss increases as the channel depth increases.

4.2 Beam dynamics in the bubble regime

In the bubble or blowout regime[13,14], plasma electrons
radially expelled by the radiation pressure of the laser
pulse form a sheath with the thickness of the order of the
plasma skin depth c/ωp outside the ion sphere, which is
remaining unshielded behind the laser pulse moving at
relativistic velocity. As described in Eq. (47), the lon-
gitudinal field is given by |Ez/E0| = (1/2)αkpξ, where
0 � ξ � RB. The transverse fields are composed of the
electric fields from the ion sphere Erion/E0 = kpr/2,
the radial plasma current ErEM/E0 = −kpr/4 and
the magnetic field from the radial plasma current
BθEM/E0 = −kpr/4. The total focusing field on a
beam electron is Er − Bθ = (1/2)mc2k2

pr. Hence, the
accelerating field and the focusing constant are given by

Ez

E0
=

1
2
α(kpRB − kpξ) = αχ

(
1 − ζ

ζdp

)
, and

K2

k2
p

=
1
2
,

(95)

where χ = Ez0/E0 = a
1/2
0 , 0 � ζ � ζdp and ζdp =

(4/3)χγ2
g is the dimensionless dephasing length for self-

guiding case with γ2
g = κself(nc/ne), while ζdp = 4χγ2

g is
one for the plasma channel case with γ2

g = κch(nc/ne).
Using s = ζ/ζdp and Eq. (95), the coupled Eqs. (88) and
(89) become

d2Σ
ds2

+ 2
(

1 − s

Γ
+

1
4
τRωpζdp

)
dΣ
ds

+
ζdp

χΓ
Σ − ζ2

dpΩ
2
0

Σ3
= 0,

(96)

dΓ
ds

= 2(1 − s) − 1
4
τRωpχζ2

dpΓ
2Σ2, (97)

where Γ = 2γ/(αχζdp) is the dimensionless energy
normalized to the maximum energy gain Δγmax =
(1/2)αχζdp = (2/3)αa0γ

2
g for the self-guiding case as

shown in Eq. (51) or Δγmax = 2αa0γ
2
g for the plasma

channel case as shown in Eq. (59), respectively. For
the bubble regime, the evolutions of the beam energy
γ = (1/2)αχζdpΓ and radius σb = Σ/kp are obtained
from numerically integrating the coupled Eqs. (96) and
(97) over 0 � s � 1, provided with the initial conditions
Σ0 = kpσb0, dΣ/ds = 0, and Γ0 = 2γ0/(αχζdp) at s = 0.

Figure 8 shows the numerical solution of normalized
energy Γ and dimensionless beam radius Σ over the de-
phasing length Ldp for a0 = 4, ne = 1.87×1016 cm−3 and
Δn/ne = 0% (self-guiding). The maximum energy ap-
proximately results in 90 GeV and the equilibrium beam
radius becomes σbeq ≈ 17 μm. For the bubble regime
case, the normalized emittance corresponding to the equi-
librium beam radius is estimated as

kpεn ≈ kpγ

∣∣∣∣σr
dσr

dz

∣∣∣∣ =
αχ

2
Γ
∣∣∣∣Σ dΣ

ds

∣∣∣∣ , (98)

Fig. 8. Numerical solutions of (a) normalized energy Γ =
γ/(2αχ2γ2

g/3), (b) dimensionless beam radius Σ , (c) relative

radiative energy loss ΔγRAD/(2χ2γ2
g/3), and (d) an estimate

of the dimensionless normalized emittance given by Eq. (98)
over the dephasing length Ldp, i.e., 0 � s � 1, for the self-
guided bubble regime LPA, a0 = 4, ne = 1.87 × 1016 cm−3,
χ = Ez0/E0 = 2, α = 0.9, κself = 1.53, γ0 = 196
(Wi = 100 MeV), and Ω0 = kpεn0/γ0 = 3 × 10−4.

Fig. 9. The evolution of the beam energy W (GeV) as a
function of the acceleration length z(m) and the relative en-
ergy loss to the maximum energy gain, ΔγRAD/(2αa0γ

2
g/3)

for the self-guiding bubble regime LPA. Curves are plotted
for (i) a0 = 2, ne = 7.3 × 1015 cm−3, (ii) a0 = 3, ne =
1.2×1016 cm−3, (iii) a0 = 4, ne = 1.9×1016 cm−3, (iv) a0 = 6,
ne = 3.5 × 1016 cm−3, and (v) a0 = 8, ne = 5.5 × 1016 cm−3,
respectively, assuming α = 0.9.

which gives the equilibrium normalized emittance εneq ∼
4.7 μm, assuming α = 0.9. The evolution of the beam
energy W (GeV) and the relative energy loss to the max-
imum energy gain, ΔγRAD/(2αa0γ

2
g/3) are shown in Fig.

9 for a0 = 2, 3, 4, 6, 8. As shown in Fig. 9, the accelera-
tor length decreases with a0, while radiative energy loss
increases with a0.
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4.3 Radiative energy loss due to beta-
tron radiation

Assuming that the electron beam has an equilibrium
radius defined by

σ2
eq =

ε0

K
γ1/2 ≈ const., (99)

the radiative energy loss due to betatron radiation can
be estimated from

ΔγRAD ≈ 2ρ

∫ γM

γ0

dγ(γ2 + 2ργ4), (100)

where γM is the electron energy without radiation and a
coefficient of radiative loss

ρ ≡ τRωpk2
pσ2

eq

(
Ez

E0

)−1(
K

kp

)4

� 1, (101)

is assumed. Taking into account γ0 � γM and γM =
γ − ΔγRAD, the relative radiative energy loss becomes

ΔγRAD

γ
≈ 2

3
ργ2 1 + (6/5)ργ2

1 − 2ργ2(1 + 2ργ2)

=
2
3
ρ0γ

5/2 1 + (6/5)ρ0γ
5/2

1 − 2ρ0γ5/2(1 + 2ρ0γ5/2)
. (102)

where with the initial normalized emittance εn0

ρ0 ≡ τRωpΩ0

(
Ez

E0

)−1(
K

kp

)3

=
8
3
πr2

ene
εn0

γ0

(
Ez

E0

)−1(
K

kp

)3

= 66.5 × 10−15γ−1
0

(
εn0

1 μm

)( ne

1015 cm−3

)
·
(

Ez

E0

)−1(
K

kp

)3

. (103)

In the bubble regime wakefields driven by a0, the rela-
tive radiation loss is approximately given by

ΔγRAD

γ
≈ 0.136× 10−2a

−1/2
0

(
εn0

1 μm

)( ne

1015 cm−3

)
·
(

W

100 GeV

)5/2(
Wi

100 MeV

)−1

, (104)

where Wi is the injection energy. As an example, for a0 =
4, ne = 1.4× 1016 cm−3 and Wi = 100 MeV, the relative
energy loss at 100 GeV is approximatelyΔγRAD/γ ≈
1.0 × 10−2(εn0/1 μm).

5. Discussions and conclusions

We have considered the possible designs of LPAs for
reaching 100 GeV and 130 GeV, utilizing a large-scale
laser such as a 500-fs, 3.5-kJ pulse delivered from the
PETAL laser and the experimental facility at LMJ. A
goal of this experiment is to demonstrate acceleration

of 100-GeV-level electron beams with high-quality prop-
erties, such as a 1% energy spread and a 1π mm-mrad
normalized emittance. To accomplish the goal and sat-
isfy the guideline on the LPA scaling and laser facility,
we propose three LPA options: the channel-guided LPA
operated in the quasi-linear regime, the self-guided LPA
operated in the nonlinear bubble (or blowout) regime,
and the ponderomotive channel-guided LPA, which is a
hybrid concept composed of a self-guided channel cre-
ator pulse with a long duration and a large spot radius,
followed by the driving laser pulse for the quasi-linear
regime LPA with a shorter duration and a smaller ra-
dius than the creator pulse. As an electron injector in
the front end of large-scale LPAs that require the high-
quality beam injection with charge of ∼100 pC and low
emittance, the ionization-induced injection is suitable for
controlling trapped charge and energy spread, and keep-
ing the transverse beam emittance small, which turns
out to significant energy loss due to betatron radiation
from e-beams at high energies. The detailed parameters
on requirements of the laser pulse and plasma are listed
in Table 1.

Plasma waveguides for guiding ultraintense short laser
pulses in plasmas are produced by a number of methods,
including laser-induced hydrodynamic expansion[45−47],
pulsed discharges of an ablative capillary[4,5,48,49] or a
gas-filled capillary[50,51]. However, the length of such a
plasma channel has been limited to less than 10 cm and
the plasma density has been created for n0 � 1017 cm−3.
For a low-density (n0 ∼ 1014 − 1017 cm−3) large-scale
(∼1–10 m) plasma waveguide, proposed is a radio fre-
quency (RF) discharge plasma technique that creates
hollow electron density profiles by means of a quadrupole
rod antenna and helicon wave antennas. Possible advan-
tages of the RF discharge technique are stability and a
meter-scale length in addition to a long lifetime, high
production efficiency and high repetition rate over those
of laser-induced channels and capillary discharges. One
of disadvantages that have not been resolved includes the

Table 1. Parameters for 100-GeV Level Laser
Plasma Acceleration

Option A B C D E

W (GeV) 100 133 100 100 100

ne(×1015 cm−3) 7 7 12 35 8.2 7

Δn/ne(%) 20 20 0 0 0 20

Ldp(m) 26 27 12 5.1 45 26

a0 1.4 1.6 3 6 1.4 1.4

rm(μm) 180 168 110 41 253 180

kprm 2.83 2.63 2.3 1.5 4.3 2.83

P (PW) 1.21 1.37 2.1 1.2 2.4 1.21

P/Pc 0.49 0.55 1.5 2.4 1.1 0.49

τL(fs) 500 500 500 500 1 200 500

U(kJ) 0.61 0.69 1.1 0.6 2.6 0.61

σb(μm) 23 21 19 14 23

kpσb 0.36 0.34 0.40 0.48 0.36

ΔγRAD/γmax(%) 6 15 8 13 6
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use of high neutral gas pressure for producing high den-
sity plasma, where neutral gas remnants may change the
density profile due to further ionization at the moment
guided high-intensity laser pulses propagate in plasma
channels. To guide ultraintense laser pulses, plasma
channels must be produced in fully ionized gases with
low atomic number Z such as hydrogen or helium. How-
ever, at present none of them are available for the use of
large-scale LPAs at the low plasma density region over
the 30-m length, although researches and developments
of such plasma waveguides are vibrantly carried out.

In conclusion, possible experiments on large-scale laser
plasma acceleration are proposed, aiming at the 100-GeV
level electron beam acceleration by the use of large-scale
lasers such as the PETAL at CEA-LMJ delivering 3.5-
kJ, 500-fs pulses. The experiment explores laser-plasma
acceleration physics including the long propagation of rel-
ativistic laser pulses and electron beam dynamics associ-
ated with strong betatron radiation at the 100-GeV level
as well as feasibility of laser-based high energy particle
physics.
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