DOI QR코드

DOI QR Code

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate

금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율

  • Lee, Chang-Won (Department of Applied Optics, School of Basic Sciences, Institute of Advanced Optics and Photonics, Hanbat National University)
  • 이장원 (한밭대학교 고등광공학연구소 기초과학부 응용광학과)
  • Received : 2021.02.19
  • Accepted : 2021.05.06
  • Published : 2021.06.25

Abstract

A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

산업용으로 이용하는 대면적 그래핀 시트는 주로 Cu foil 위에서 화학증기증착법(chemical vapor deposition, CVD)을 이용하여 성장된다. 그러나 모든 면적에서 균일하게 성장되는 것은 아니므로, 품질이 불만족스러운 그래핀 필름을 제외시키는 과정이 필수적으로 요구된다. 비침습적인 반사형 광학적인 방법을 사용하면, 그래핀의 성장프로세스 도중이나 성장 후에 빠르고 편리하게 분류할 수 있다. 본 논문에서는 국소적인 그래핀 필름의 파장별 반사 대비율(reflectance contrast)이 그래핀의 품질과 밀접한 관련이 있어 품질이 불만족스러운 그래핀 필름을 제외시키는 데에 효과적인 데이터로 이용될 수 있음을 밝혔다. 파장별 반사 대비율을 계산하기 위해서, 화학적 퍼텐셜(chemical potential)과 전자간 널뛰기(hopping) 에너지, 그리고 온도 등의 요소가 성장된 그래핀의 광학적 반사 대비율에 어떠한 영향을 미치는지 조사하였다.

Keywords

Acknowledgement

이 논문은 2018년 한밭대학교 교내학술연구비의 지원으로 수행되었습니다.

References

  1. F. Schwierz, "Graphene transistors," Nat. Nanotechnol. 5, 487- 496 (2010). https://doi.org/10.1038/nnano.2010.89
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  3. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  4. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009). https://doi.org/10.1103/RevModPhys.81.109
  5. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  6. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  7. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nat. Nanotechnol. 4, 839-843 (2009). https://doi.org/10.1038/nnano.2009.292
  8. T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nat. Photonics 4, 297-301 (2010). https://doi.org/10.1038/nphoton.2010.40
  9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706-710 (2009). https://doi.org/10.1038/nature07719
  10. D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, "Direct visualization of large-area graphene domains and boundaries by optical birefringency," Nat. Nanotechnol. 7, 29-34 (2012). https://doi.org/10.1038/nnano.2011.198
  11. V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, "Seamless stitching of graphene domains on polished copper (111) foil," Adv. Mater. 27, 1376-1382 (2015). https://doi.org/10.1002/adma.201404541
  12. D. Ding, H. Hibino, and H. Ago, "Grain boundaries and gas barrier property of graphene revealed by dark-field optical microscopy," J. Phys. Chem. C 122, 902-910 (2018). https://doi.org/10.1021/acs.jpcc.7b10210
  13. J. H. Kang, J. Moon, D. J. Kim, Y. Kim, I. Jo, C. Jeon, J. Lee, and B. H. Hong, "Strain relaxation of graphene layers by Cu surface roughening," Nano Lett. 16, 5993-5998 (2016). https://doi.org/10.1021/acs.nanolett.6b01578
  14. X. H. Kong, H. X. Ji, R. D. Piner, H. F. Li, C. W. Magnuson, C. Tan, A. Ismach, H. Chou, and R. S. Ruoff, "Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy," Appl. Phys. Lett. 103, 043119 (2013). https://doi.org/10.1063/1.4816752
  15. X. Wu, G. Zhong, and J. Robertson, "Nondestructive optical visualisation of graphene domains and boundaries," Nanoscale 8, 16427-16434 (2016). https://doi.org/10.1039/c6nr04642h
  16. L. A. Falkovsky and S. S. Pershoguba, "Optical far-infrared properties of a graphene monolayer and multilayer," Phys. Rev. B 76, 153410 (2007). https://doi.org/10.1103/physrevb.76.153410
  17. T. Stauber, N. M. R. Peres, and A. K. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Phys. Rev. B 78, 085432 (2008). https://doi.org/10.1103/physrevb.78.085432
  18. S. Cheon, C.-W. Lee, C.-W. Baik, and H. Jeong, "Tunable optical responses of a graphene-gold nanoparticle composite for visible light," New Phys. 67, 684-695 (2017). https://doi.org/10.3938/NPSM.67.684
  19. D. J. Kim, C.-W. Lee, Y. Suh, H. Jeong, I. Jo, J. Moon, M. Park, Y. S. Woo, and B. H. Hong, "Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis," 2D Mater. 7, 045014 (2020). https://doi.org/10.1088/2053-1583/aba1d5
  20. L. Hao and L. Sheng, "Optical conductivity of multilayer graphene," Solid State Commun. 149, 1962-1966 (2009). https://doi.org/10.1016/j.ssc.2009.07.034
  21. S. Kim, S. Shin, T. Kim, H. Du, M. Song, C. Lee, K. Kim, S. Cho, D. H. Seo, and S. Seo, "Robust graphene wet transfer process through low molecular weight polymethylmethacrylate," Carbon 98, 352-357 (2016). https://doi.org/10.1016/j.carbon.2015.11.027
  22. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Phys. Chem. Chem. Phys. 13, 20836-20843 (2011). https://doi.org/10.1039/c1cp22347j
  23. X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, "Role of hydrogen in graphene chemical vapor deposition growth on a copper surface," J. Am. Chem. Soc. 136, 3040-3047 (2014). https://doi.org/10.1021/ja405499x
  24. Y. Jin, B. Hu, Z. Wei, Z. Luo, D. Wei, Y. Xi, Y. Zhang, and Y. Liu, "Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil," J. Mater. Chem. A 2, 16208-16216 (2014). https://doi.org/10.1039/C4TA02557A