DOI QR코드

DOI QR Code

A Study of the Dependence on Incidence Angle of the Sensitivity of an Extraordinary Optical Transmission Sensor

특이 광 투과 센서에서 민감도의 입사각 의존성 연구

  • Kwon, Yongjae (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Seunghun (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Taeyeon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 권용재 (부산대학교 인지메카트로닉스공학과) ;
  • 이승훈 (부산대학교 인지메카트로닉스공학과) ;
  • 김태연 (부산대학교 인지메카트로닉스공학과) ;
  • 김규정 (부산대학교 인지메카트로닉스공학과)
  • Received : 2021.02.10
  • Accepted : 2021.03.22
  • Published : 2021.06.25

Abstract

In this research, we have investigated the sensitivity of an extraordinary optical transmission sensor depending on the angle of incident light. Three types of light, including a collimated beam and focused beams (4× and 10×), were designed for the sensor system. To compare the sensitivity of the sensor, we measured transmittance spectra using deionized water (n=1.333) and refractive-index-matching oils (n=1.360 and 1.380). Those spectra were analyzed in terms of redshifting of the peak, so that we could determine the sensitivity. The sensitivity tended to increase when the collimated beam is used on the system, and we have concluded that the sensitivity could be affected by the incidence angle on an extraordinary optical transmission sensor.

본 논문에서는 특이 광 투과 현상 센서에서 보조 파장 홀 패턴에 입사되는 광원의 각도 조절을 통해 센서의 민감도를 측정 및 분석하여 이를 극대화할 수 있는 방법을 고안하였다. 입사파 광원을 평행화된 광원과 각도가 서로 다른 두 개의 집속화된 광원 총 3개의 광원을 시스템적으로 설계하여 서로 다른 각도로 보조 파장 홀 패턴에 입사되게 제작하였다. 그리고 증류수(n=1.333)와 굴절률 정합액(n=1.360, 1.380)을 사용하여 투과 스펙트럼을 측정하고 센서의 민감도를 계산한 결과 평행화된 광원을 사용하였을 때 센서의 민감도가 향상됨을 확인하였다.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. M. Asif, M. Ajmal, G. Asharf, N. Muhammad, A. Aziz, T. Iftikhar, J. Wang, and H. Liu, "The role of biosensors in coronavirus disease-2019 outbreak," Curr. Opin. Electrochem. 23, 174-184 (2020). https://doi.org/10.1016/j.coelec.2020.08.011
  2. J. R. Choi, "Development of point-of-care biosensors for COVID-19," Front. Chem. 8, 517 (2020). https://doi.org/10.3389/fchem.2020.00517
  3. R. Samson, G. R. Navale, and M. S. Dharne, "Biosensors: frontiers in rapid detection of COVID-19," 3 Biotech. 10, 385 (2020).
  4. S. Bahl, M. Javaid, A. K. Bagha, R. P. Singh, A. Haleem, R. Baishya, and R. Suman, "Biosensors applications in fighting COVID-19 pandemic," Apollo Medicine 17, 221-223 (2020).
  5. S. K. Metkar and K. Girigoswami, "Diagnostic biosensors in medicine-a review," Biocatal. Agric. Biotechnol. 17, 271-283 (2019). https://doi.org/10.1016/j.bcab.2018.11.029
  6. A. Banerjee, S. Maity, and C. H. Mastrangelo, "Nanotechnology for biosensors: a review," arXiv: 2101.02430 (2021).
  7. A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, "A comprehensive review on plasmonic-based biosensors used in viral diagnostics," Commun. Biol. 4, 70 (2021). https://doi.org/10.1038/s42003-020-01615-8
  8. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944). https://doi.org/10.1103/PhysRev.66.163
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  10. J.-H. Choe and J. T. Kim, "Design of vanadium dioxide-based plasmonic modulator for both TE and TM modes," IEEE Photon. Technol. Lett. 27, 514-517 (2014). https://doi.org/10.1109/LPT.2014.2384020
  11. J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, "Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films," J. Appl. Phys. 107, 073101 (2010). https://doi.org/10.1063/1.3327217
  12. X. Zhang, G. Liu, Z. Liu, Y. Hu, Z. Cai, X. Liu, G. Fu, and M. Liu, "Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays," Opt. Eng. 53, 107108 (2014). https://doi.org/10.1117/1.oe.53.10.107108
  13. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, "A new generation of sensors based on extraordinary optical transmission," Acc. Chem. Res. 41, 1049-1057 (2008). https://doi.org/10.1021/ar800074d
  14. W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X.-X. Zhang, "Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications," Nanoscale 6, 7917-7923 (2014). https://doi.org/10.1039/c4nr01001a
  15. M. Irannejad and B. Cui, "Effects of refractive index variations on the optical transmittance spectral properties of the nanohole arrays," Plasmonics 8, 1245-1251 (2013). https://doi.org/10.1007/s11468-013-9540-z
  16. B. Dionne, L. Guyot, S. Patskovsky, R. Gordon, and M. Meunier, "Intensity based surface plasmon resonace sensor using a nanohole rectangular array," Opt. Express 19, 15041-15046 (2011). https://doi.org/10.1364/OE.19.015041
  17. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, "Degeneracy breaking of Wood's anomaly for enhanced refractive index sensing," ACS Photonics 2, 615-621 (2015). https://doi.org/10.1021/acsphotonics.5b00091
  18. M. Couture, Y. Liang, H. Richard, R. Faid, W. Peng, and J. Masson, "Tuning the 3D plasmon field of nanohole arrays," Nanoscale 5, 12399-12408 (2013). https://doi.org/10.1039/c3nr04002j
  19. N. Anh, B. Chun, S. Choi, D. Kim, S. Kim, and Y. Kim, "Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy," Nature Phys. 15, 132-137 (2019). https://doi.org/10.1038/s41567-018-0330-6