WATER MASERS IN THE ANDROMEDA GALAXY. I. A SURVEY FOR WATER MASERS, AMMONIA, AND HYDROGEN RECOMBINATION LINES

, , , and

Published 2016 July 18 © 2016. The American Astronomical Society. All rights reserved.
, , Citation Jeremy Darling et al 2016 ApJ 826 24 DOI 10.3847/0004-637X/826/1/24

0004-637X/826/1/24

ABSTRACT

We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66α recombination line toward 506 luminous compact 24 μm emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ∼10 μas yr−1 astrometry. No new water masers, ammonia lines, or H66α recombination lines were detected individually or in spectral stacks reaching rms noise levels of ∼3 mJy and ∼0.2 mJy, respectively, in 3.1–3.3 km s−1 channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

The dominant galaxies in the Local Group, the Milky Way and the Andromeda galaxy (M31), are likely to merge in ${5.86}_{-0.72}^{+1.61}$ Gyr (van der Marel et al. 2012b). The key quantity for this prediction is the transverse velocity of M31 with respect to the Galaxy. Sohn et al. (2012) and van der Marel et al. (2012a) used Hubble Space Telescope observations of thousands of M31 stars referenced to hundreds of compact background galaxies in three fields (near the major and minor axes and in the Giant Southern Stream) over five to seven years to constrain the tangential velocity of M31 to ≤34.3 km s−1 (1σ). The consistency of the M31-Milky Way velocity with a radial orbit, infalling at −109.3 ± 4.4 km s−1 (van der Marel et al. 2012a), provides a new estimate of the Local Group timing mass of (4.93 ± 1.63) × 1012 M (van der Marel et al. 2012a); although van der Marel et al. (2012a) derive a best estimate of (3.17 ± 0.57) × 1012 M, citing cosmic variance as an uncertainty floor on the timing argument estimation of the Local Group mass. The transverse velocity of M31 is thus essential to our understanding of the Local Group's future (and past) dynamical evolution, as well as the density profiles and distribution of dark matter halos (Peebles et al. 2001; Loeb et al. 2005; Reid et al. 2009).

The Sohn et al. (2012) and van der Marel et al. (2012a, 2012b) results can be independently verified and possibly refined using maser proper motions in M31. Molecular masers, while small in number, are compact high brightness temperature light sources arising in the molecular ring of M31 that provide ∼10 microarcsecond (μas) astrometry using very long baseline interferometry (VLBI). Brunthaler et al. (2005, 2007) have measured the proper motions of the Galactic analog 22 GHz water (H2O) masers discovered in M31's satellite galaxies M33 (first by Churchwell et al. 1977) and IC 10 (Henkel et al. 1986), obtaining their three-dimensional velocities with respect to the Milky Way. Brunthaler et al. (2005) also measured the proper rotation of M33, which provides a geometric determination of its distance via a "rotational parallax." The same can be done with masers in M31 (Darling 2011).

Detecting Galactic analog masers of any type in M31 is challenging due to its distance and large angular size. The M31 distance reduces Galactic maser flux densities by a factor of ∼104, so only the brightest Galactic masers could be detected in M31, provided that surveys are sensitive to ∼10 mJy spectral lines (Darling 2011). The large angular size of M31—the molecular ring is roughly 2° × 0fdg5—implies that surveys for masers, particularly H2O, need to be pointed in order to reach adequate sensitivity. New radio telescope facilities with larger collecting areas or larger fields of view than are currently available may improve this situation.

Sullivan (1973) may have made the first search for H2O masers in M31, making no detections toward the nucleus and "emission nebula #132." Greenhill et al. (1995) and Imai et al. (2001) report pointed H2O maser surveys toward H ii regions in M31, reaching 1σ rms noise levels of 29 and 70 mJy, respectively. Claussen & Beasley (2011, private communication) surveyed the nuclear region and most of the molecular ring using the Very Large Array, making no H2O maser detections and reaching an rms noise of 30 mJy per beam. Sjouwerman et al. (2010) detected the first maser of any type in M31, a Class II methanol (CH3OH) maser at 6.7 GHz, but no associated water maser was detected (see also Darling 2011, and this work). Finally, Darling (2011) conducted a survey of 206 compact 24 μm sources in the molecular ring with ∼3 mJy rms noise per 3.3 km s−1 channel and detected five water masers. The water maser non-detections prior to 2011 were all consistent with the aggregate star formation rate of M31, and these surveys were not sufficiently sensitive to detect a typical Galactic maser at the distance of M31 (Brunthaler et al. 2006). The historical lack of Galactic analog water maser detections in M31 has simply been a problem of sensitivity and of locating likely sites of maser activity, both of which now have remedies.

In this paper, we describe an extension of the Darling (2011) Green Bank Telescope3 (GBT) H2O maser survey to include an additional 300 unresolved 24 μm sources in M31. We also report on the simultaneous observation of two ammonia (NH3) lines and one hydrogen radio recombination line (H66α) toward all 506 locations in the combined surveys. In a companion paper, we examine the physical conditions most likely to produce detectable H2O maser emission in M31 (Amiri & Darling 2016, Paper II).

Throughout this manuscript, we use heliocentric velocities (optical definition) and assume the following about M31: a systemic velocity of −300 km s−1 (de Vaucouleurs et al. 1991), a distance of 780 kpc (McConnachie et al. 2005), and central coordinates 00:42:44.3, +41:16:09 (J2000).

2. SAMPLE SELECTION

A Spitzer 24 μm map of M31 (Gordon et al. 2008) guided the GBT observations in two important ways: source selection and completeness. The association of water masers with (ultra)compact H ii regions is well known, but the molecular gas as traced by optically thick CO emission does not necessarily indicate these regions. Likewise, Hα-selected H ii regions may select against dust-enshrouded ultra-compact H ii regions (but see Amiri & Darling 2016). Compact 24 μm emission, however, is a good indicator of likely sites of H2O maser emission, and there is a rough relationship between far-IR emission and water maser luminosity (Jaffe et al. 1981; Urquhart et al. 2011; although the latter relies on bolometric luminosities). We therefore selected compact 24 μm sources associated with the dusty molecular—and presumably star-forming—regions in M31 ("compact" means unresolved at the 23.5 pc resolution of the Spitzer map). However, this method can also select objects that are unlikely to produce water masers, such as planetary nebulae, giant stars, and background galaxies.

We constructed a catalog of 506 unresolved 24 μm sources working from the brightest down to the point where most of the 24 μm emission becomes extended, about 4 MJy steradian−1 at peak specific intensity. Although this pointed survey does not include all star formation in M31, it does include the majority of likely locations for strong H2O maser activity. By working down in luminosity through the catalog of compact 24 μm sources, we have surveyed a large fraction of the total ongoing star formation in the galaxy (e.g., Tabatabaei & Berkhuijsen 2010; Ford et al. 2013) and thus most of the likely H2O-bearing regions (Amiri & Darling 2016). Figure 1 shows the 24 μm map of M31 with the 506 pointing centers and primary beam size for our GBT water maser survey, including the masers detected by Darling (2011).

Figure 1.

Figure 1. Spitzer 24 μm map of M31 (Gordon et al. 2008). The circles indicate the 506 pointing centers (the circles are to scale, showing the 33'' FWHM beam). Crosses mark the masers detected by Darling (2011) and are enlarged for clarity. Colors indicate the systemic (green), redshifted (red), and blueshifted (blue)(green), redshifted (red), and blueshifted (blue) spectrometer tuning centers at −300, −100, and −500 km s−1, respectively. The image spans 2fdg5 × 0fdg6.

Standard image High-resolution image

3. OBSERVATIONS AND DATA REDUCTION

Darling (2011) observed 206 24 μm sources in M31 using the GBT in 2010 October through December. The ${6}_{16}\mbox{--}{5}_{23}$ 22.23508 GHz ortho-water maser line observations were reported in Darling (2011), but simultaneous observations of the para-ammonia (NH3) rotational ground-state inversion transitions in the metastable states (J, K) = (1, 1) and (2, 2) at 23.6945 and 23.72263 GHz, respectively, and the hydrogen recombination line H66α at 22.36417 GHz were not. We subsequently observed all four of these lines toward an additional 300 24 μm sources in 2011 October through 2012 January. The telescope configuration was identical to that described by Darling (2011): a 632–674 km s−1 (50 MHz) bandpass was centered, for each of the four observed transitions, on a heliocentric velocity of −300 km s−1 for 239 sources in the central parts of the galaxy and along the minor axis, on −100 km s−1 for 136 sources in the redshifted northeast wedge of the galaxy, and on −500 km s−1 for 131 sources in the blueshifted southwest wedge of the galaxy (Figure 1 and Table 1).

Table 1.  M31 Line Survey Results

Object H2O NH3 NH3 H66α Vobs VCO Object H2O NH3 NH3 H66α Vobs VCO
    (1, 1) (2, 2)           (1, 1) (2, 2)      
(J2000) (mJy) (mJy) (mJy) (mJy) (km s−1) (km s−1) (J2000) (mJy) (mJy) (mJy) (mJy) (km s−1) (km s−1)
003838.7+402613.5a 2.0 2.4 2.3 2.2 −500 ... 003849.2+402551.7a 3.2 2.7 2.6 3.2 −500 ...
003852.5+401904.9 2.0 2.1 2.4 2.0 −500 ... 003904.8+402927.4 1.2 1.3 1.5 1.3 −500 ...
003906.7+403704.5 3.5 2.8 3.0 3.0 −500 ... 003909.8+402705.0 2.1 2.1 2.1 2.0 −500 ...
003910.2+403725.6 3.2 2.8 4.2 2.9 −500 ... 003914.6+404157.9 2.1 2.2 2.3 2.1 −500 ...
003916.1+403629.5 3.0 2.6 2.8 2.9 −500 ... 003918.9+402158.4 0.7 0.6 0.6 0.5 −500 ...
003930.2+402106.4 3.7 2.6 3.0 3.5 −500 ... 003933.2+402215.6 3.2 2.8 2.8 3.2 −500 ...
003935.2+404814.6 2.1 2.1 2.1 2.2 −500 ... 003937.5+402011.5 3.4 2.9 2.9 3.2 −500 ...
003938.9+401921.3 2.5 2.3 2.4 2.4 −500 ... 003939.1+405018.3 1.9 2.3 2.0 2.0 −500 ...
003939.8+402856.3 3.1 2.8 2.8 3.1 −500 ... 003941.5+402133.7 1.7 2.1 2.2 2.3 −500 ...
003941.9+402045.6 2.0 2.0 2.1 2.1 −500 ... 003943.0+402039.9 2.1 2.4 2.5 2.3 −500 ...
003944.5+402030.4 3.3 2.9 2.5 2.6 −500 ... 003945.2+402058.0 1.9 2.4 2.4 2.2 −500 ...
003948.5+403113.1 2.0 1.9 2.0 2.2 −500 ... 003950.5+402305.9 2.2 2.2 2.2 2.2 −500 ...
003950.9+402252.1b 1.9 2.1 2.2 2.0 −500 ... 003951.3+405306.1 1.9 2.1 2.1 2.2 −500 ...
003954.4+403820.4a 3.4 3.5 3.6 3.6 −500 ... 003956.8+402437.6 1.9 2.2 2.4 2.1 −500 ...
004000.3+405318.6 2.0 2.2 2.2 2.1 −500 ... 004004.7+405840.9 3.2 3.2 3.2 3.3 −500 ...
004010.4+404517.7 1.9 2.0 2.3 2.0 −500 −513 004020.3+403124.5 2.1 2.4 2.6 2.0 −500 ...
004020.5+403723.9 2.0 2.3 2.2 2.1 −500 −528 004023.8+403904.4 3.4 3.5 3.7 3.3 −500 −495
004026.2+403706.5 3.0 3.7 3.9 3.3 −500 ... 004030.9+404230.0 3.0 2.3 2.8 3.1 −500 −466
004031.2+403952.0 2.9 2.4 2.4 2.5 −500 ... 004031.3+404032.8 2.1 2.0 2.0 1.6 −500 −453
004031.7+404127.0 3.3 3.0 3.3 2.7 −500 −565 004032.5+405127.4 2.0 2.3 1.9 1.9 −500 −454
004032.6+403856.1 3.3 2.9 2.8 2.6 −500 −558 004032.7+403531.2 2.1 2.4 2.7 2.0 −500 −538
004032.7+403936.5 3.5 3.4 3.4 3.4 −500 −567 004032.7+410045.1 2.0 2.0 2.0 2.1 −500 ...
004032.8+405540.2 1.9 2.1 2.2 2.0 −500 −454 004032.9+403919.2 3.3 3.6 3.6 3.2 −500 −565
004033.0+404102.8 3.0 3.7 3.5 3.1 −500 −576 004033.3+403352.1 3.1 2.8 2.7 2.9 −500 ...
004033.8+403246.6 3.1 2.8 2.7 2.8 −500 ... 004034.7+403541.2 2.8 2.8 3.0 2.8 −500 −582
004035.1+403701.1 4.0 3.5 4.0 3.0 −500 −510 004035.8+403724.6 3.6 5.1 3.3 3.7 −500 ...
004036.0+403821.0 3.0 3.3 3.4 3.1 −500 ... 004036.1+410117.5 2.1 1.9 1.8 2.0 −500 ...
004036.3+403641.9 2.1 2.1 2.2 2.0 −500 −532 004036.3+405329.3 1.9 2.0 2.1 2.1 −500 −575
004036.8+403557.1 2.0 2.2 2.1 2.0 −500 −549 004038.0+403514.9 2.9 3.8 3.3 3.4 −500 −540
004038.0+404728.3 2.0 2.2 2.1 2.0 −500 ... 004038.6+403814.7 2.9 3.7 3.6 3.3 −500 ...
004038.7+403533.2 2.3 2.2 2.3 2.3 −500 −541 004038.8+403431.0 3.4 3.5 3.3 3.0 −500 −504
004039.4+403730.5 3.4 4.4 3.2 3.3 −500 −547 004039.7+403457.9 2.2 2.2 2.2 2.3 −500 −525
004040.4+402709.8b 2.2 2.2 2.2 2.0 −500 ... 004041.6+405105.0 2.0 2.0 1.8 1.7 −500 ...
004042.1+403454.5 3.4 3.2 3.5 3.3 −500 −535 004043.3+404321.9 3.1 3.0 2.9 2.7 −500 −533
004043.6+403530.5 3.3 2.9 2.8 3.2 −500 −552 004043.7+405251.5 2.0 2.0 2.2 2.1 −500 −445
004044.2+404446.4 3.0 2.8 3.1 2.5 −500 ... 004045.7+405134.5 1.9 1.8 2.2 1.8 −500 ...
004046.4+405541.9 3.0 2.7 2.5 2.6 −500 −519 004046.5+405606.4 2.8 2.7 2.5 2.8 −500 −544
004047.3+405903.2 2.0 2.0 2.1 2.0 −500 −497 004050.0+405938.5 1.7 2.3 2.2 2.0 −500 −502
004051.6+410006.5 2.9 2.5 2.5 2.5 −500 −503 004051.7+403602.3 2.1 2.2 2.3 2.2 −500 ...
004051.9+403249.7 3.4 3.8 3.4 2.9 −500 ... 004053.0+403218.0 3.8 3.8 3.5 3.7 −500 −480
004055.1+403703.2 3.8 4.0 3.6 3.4 −500 −530 004057.3+403607.0 2.2 2.3 2.4 2.2 −500 ...
004058.2+410302.3 1.9 2.2 2.0 2.1 −500 −476 004058.3+403711.1 2.1 2.2 2.1 2.1 −500 −510
004058.4+405325.2 2.2 2.3 2.4 2.0 −500 ... 004058.4+410217.9 1.9 2.2 2.1 1.9 −500 −473
004058.4+410225.9 2.0 2.1 2.0 2.1 −500 −474 004058.6+404558.0 2.1 2.0 1.8 2.1 −500 −506
004058.6+410332.3 3.0 2.8 3.0 3.1 −500 −466 004059.1+410233.1 2.1 2.4 2.3 2.2 −500 −477
004059.8+403652.4 4.8 4.2 3.3 3.0 −500 −497 004100.6+410334.0 3.7 3.0 3.0 3.2 −500 −461
004101.6+410405.8 2.3 2.2 2.1 2.1 −500 −457 004102.0+410254.9 1.7 1.9 1.9 1.9 −500 −480
004102.3+410431.7 2.1 2.4 2.2 2.0 −500 −449 004102.7+410344.5 2.1 2.1 2.4 1.9 −500 −456
004103.1+403749.9 2.3 2.4 2.3 2.0 −500 −502 004104.8+410534.6 1.8 1.2 1.2 1.3 −500 −458
004107.2+410410.0 2.0 2.1 2.2 2.2 −500 −459 004107.6+404812.5 3.5 2.9 2.8 3.0 −500 −526
004108.6+410437.9 1.2 1.3 1.2 1.2 −500 −452 004109.1+404852.7 3.0 3.6 3.9 3.4 −500 −490
004109.2+404910.3 3.1 3.6 3.7 3.3 −500 −518 004110.4+404949.5 3.1 3.0 3.5 3.0 −500 −555
004110.6+410516.4 2.2 2.6 2.2 2.2 −500 −450 004112.5+410609.7 3.4 2.6 2.9 2.5 −300 −435
004113.7+403918.6 2.2 2.2 2.3 2.2 −500 −477 004113.8+410814.6 2.0 2.1 2.2 2.0 −300 −422
004113.9+410736.1 2.2 2.0 2.2 2.0 −300 −431 004114.8+410923.7 3.8 3.0 3.3 3.4 −300 −413
004115.9+404011.6 3.1 2.8 2.6 2.7 −500 −448 004119.1+404857.4 3.6 3.1 3.2 3.4 −500 −473
004119.5+411948.8 3.9 3.3 3.1 3.0 −300 ... 004120.0+410821.5 3.0 2.7 2.8 2.6 −300 ...
004120.9+403414.0 2.4 2.7 2.6 2.5 −500 ... 004121.2+411947.8 2.5 2.7 2.5 2.5 −300 ...
004121.7+404947.7 1.4 1.5 1.6 1.4 −500 −520 004123.2+405000.6 3.4 3.3 2.9 3.0 −500 −518
004124.1+411124.1 3.1 3.7 3.7 3.7 −300 −398 004124.8+411154.6 3.4 2.9 2.7 2.6 −300 −407
004125.4+404200.4 3.7 3.2 3.1 3.3 −500 −448 004126.1+404959.1 3.7 3.2 3.3 3.5 −500 −502
004126.5+411206.9 3.0 3.0 2.8 2.8 −300 −400 004127.3+404242.7 2.0 2.3 2.3 2.2 −500 −443
004128.1+404155.2 2.0 2.4 2.1 2.2 −500 −462 004128.1+411222.6 3.6 4.0 4.4 3.2 −300 −389
004129.2+411242.8 4.2 4.2 4.1 3.6 −300 −417 004129.3+404218.9 2.2 2.3 2.2 2.2 −500 −440
004129.5+411006.3 4.0 3.9 4.4 3.8 −300 ... 004129.8+405059.5 2.2 1.6 1.7 1.7 −500 −463
004129.8+412211.1a 3.1 3.0 2.8 2.9 −300 ... 004130.3+410501.7 3.1 3.0 3.4 3.1 −500 −477
004131.9+411331.5 3.8 4.4 4.1 4.1 −300 −401 004135.7+405009.3 2.4 2.8 2.8 2.4 −500 ...
004136.9+403805.6 2.2 2.4 2.2 2.3 −500 ... 004137.0+405142.5 3.3 3.3 3.0 3.5 −500 −432
004138.6+404401.2 3.4 3.1 3.0 3.1 −500 −426 004141.3+411916.7 2.4 2.3 2.6 2.5 −300 ...
004143.6+410840.1 2.0 2.0 2.1 2.0 −500 −404 004144.6+411658.1 3.9 4.4 4.1 3.9 −300 −365
004145.0+404746.4 2.2 2.5 2.4 2.4 −500 ... 004146.7+411846.6 3.3 2.8 3.1 3.0 −300 −308
004147.4+411942.4 3.9 4.3 4.4 4.1 −300 −359 004148.2+411903.8 3.6 3.2 4.5 3.1 −300 −358
004149.6+411953.8 2.4 2.7 2.5 2.3 −300 −387 004151.3+412500.7 2.8 2.6 2.7 2.4 −300 ...
004151.6+404620.5 2.0 2.4 2.1 2.1 −500 ... 004151.9+412442.1 3.3 3.1 3.3 3.6 −300 ...
004154.5+404718.9 2.2 2.3 2.2 2.1 −500 −414 004159.4+405720.8 2.1 1.7 1.7 1.8 −500 ...
004200.6+404747.8 2.2 2.5 2.4 2.3 −300 ... 004200.9+405217.2 2.1 2.2 2.2 2.1 −500 −407
004201.5+404115.7a 2.3 2.4 2.5 2.3 −300 ... 004202.4+412436.0 1.1 1.1 1.2 1.3 −300 −323
004202.9+412232.4 1.1 1.3 1.2 1.1 −300 −353 004203.9+404907.1 2.6 2.1 2.1 2.4 −300 ...
004204.9+404936.6 2.2 2.4 2.2 2.5 −300 ... 004206.7+405621.5 2.0 2.3 2.0 2.0 −500 ...
004208.5+405720.2 2.0 2.0 2.1 2.1 −500 ... 004208.5+412409.8 2.2 2.2 2.1 2.1 −300 −330
004208.7+405052.1 2.2 2.1 2.3 2.0 −300 −444 004208.8+412639.9 3.2 2.8 2.9 2.7 −300 ...
004208.9+412329.8a 2.3 2.7 2.2 2.1 −300 −335 004209.0+412442.3 2.3 2.3 2.3 2.3 −300 −291
004209.5+412705.5 2.1 2.4 2.3 2.0 −300 ... 004209.5+412832.3 3.3 2.9 3.1 2.6 −300 ...
004209.8+412412.2 2.2 2.3 2.2 2.3 −300 −331 004210.3+412529.3 2.1 2.7 2.4 2.5 −300 −345
004210.7+412322.3a 2.2 2.0 2.3 2.4 −300 −302 004211.2+412442.6 2.4 2.1 2.3 2.3 −300 −295
004211.6+411909.4 2.7 2.8 2.4 2.6 −300 ... 004212.3+412415.7 2.9 2.7 2.7 2.6 −300 −330
004213.8+405117.7 3.9 3.4 3.7 3.5 −300 −406 004214.8+412508.9 2.8 3.0 2.8 2.6 −300 −316
004218.1+412631.1 2.4 2.1 2.6 2.5 −300 −274 004218.7+412751.8 2.7 2.7 2.5 2.6 −300 −330
004220.6+412749.0 3.1 2.6 2.6 2.7 −300 −321 004221.7+412827.6 2.8 4.0 3.2 2.7 −300 −263
004224.8+412758.7 2.9 3.0 3.0 2.8 −300 −307 004225.9+412831.9 2.9 2.7 2.7 2.9 −300 −302
004226.1+410548.2a 3.8 3.0 2.9 2.9 −500 −494 004226.4+412811.2 3.4 2.5 2.3 3.1 −300 −290
004227.6+412019.6 2.1 2.3 2.1 2.0 −300 −226 004227.9+413258.5a 2.5 2.7 2.7 2.5 −300 ...
004228.1+405657.7a 2.7 2.3 2.4 2.3 −300 −427 004228.3+412911.4a 3.1 2.9 2.6 3.1 −300 −297
004228.4+412852.4a 1.2 1.3 1.5 1.4 −300 −285 004229.8+410550.6 2.9 2.6 2.5 2.6 −300 ...
004230.1+412904.0a 2.8 2.5 2.6 2.6 −300 −282 004230.3+412935.9 4.0 3.0 3.2 3.3 −300 −277
004230.9+405714.6a 3.0 2.8 2.9 3.2 −300 −396 004232.1+412936.5 2.6 2.5 2.5 2.5 −300 −264
004232.3+413008.7 2.7 2.4 2.7 2.6 −300 −277 004232.7+411143.6 2.0 2.1 2.1 2.1 −300 ...
004234.2+413007.3 3.0 2.4 3.0 2.6 −300 −267 004235.0+404838.1 2.2 2.3 2.4 2.2 −300 ...
004235.3+413224.4 2.4 2.6 2.5 2.7 −300 −265 004235.6+413149.0 3.2 2.8 2.6 2.8 −300 −316
004236.4+413308.7 2.6 2.6 2.5 2.7 −300 −245 004236.9+410158.0 2.5 2.4 2.4 2.4 −300 −419
004237.4+414158.3a 1.8 2.1 2.1 2.3 −300 ... 004238.6+413150.5 3.7 2.9 2.9 2.8 −300 −268
004238.9+413135.6 2.9 2.9 2.6 3.3 −300 −276 004240.1+410222.7 3.5 2.8 2.7 2.6 −300 −458
004240.9+405910.8 2.4 2.6 2.4 2.3 −300 −367 004241.3+412246.7 4.1 3.1 3.2 3.4 −300 ...
004241.7+411435.0a 3.4 4.0 3.8 3.5 −300 ... 004241.7+413245.4 2.5 2.7 2.5 2.5 −300 −265
004241.9+405155.2a 3.6 3.3 3.5 3.7 −300 ... 004242.1+410303.0 2.7 2.4 2.7 2.5 −300 −348
004242.5+410001.4 3.0 3.0 2.9 3.2 −300 −372 004242.5+413155.2 3.9 3.2 3.4 3.3 −300 −266
004242.6+411722.5a 4.0 3.7 3.6 3.3 −300 ... 004242.9+413159.8 3.7 3.6 3.6 3.8 −300 −269
004244.1+413259.2 3.4 2.5 2.9 2.9 −300 −258 004244.4+411608.5a 3.7 3.4 3.2 3.6 −300 ...
004244.9+413338.6 2.3 2.7 2.7 2.5 −300 −245 004245.0+405448.3 2.2 2.3 2.6 2.5 −300 ...
004245.2+413316.7 2.6 2.6 2.6 2.6 −300 −257 004245.3+411656.9a 3.6 3.6 3.8 4.0 −300 ...
004246.2+410111.4 2.4 2.3 2.4 2.1 −300 −428 004246.8+414447.0 2.2 2.1 2.0 2.0 −300 ...
004247.0+411618.4a 3.8 3.9 3.7 3.9 −300 ... 004247.0+413333.0 4.0 3.1 3.3 3.1 −300 −248
004247.5+413131.1 2.6 2.4 2.5 2.5 −300 ... 004247.9+413400.5 3.1 3.0 3.1 2.9 −300 −254
004248.2+411651.7a 3.6 3.9 4.0 3.6 −300 ... 004249.1+411554.6a 3.8 3.6 4.0 3.5 −300 ...
004249.1+411945.9a 3.1 2.8 2.4 2.6 −300 ... 004249.1+413440.0 2.3 2.7 2.6 2.5 −300 −244
004249.3+412507.5 3.2 2.6 2.7 2.7 −300 −171 004251.0+413507.8 3.2 2.6 3.0 3.0 −300 −242
004252.3+410014.8 2.1 2.0 2.0 1.9 −300 ... 004252.4+410120.7 2.8 2.9 2.9 2.4 −300 −331
004253.0+413526.7 2.6 2.4 2.4 2.4 −300 −251 004253.5+413516.2 2.4 2.4 2.3 2.3 −300 −254
004254.4+405832.8 2.3 2.4 2.6 3.0 −300 ... 004256.9+413728.1 1.6 1.7 1.8 1.4 −300 −304
004258.2+410015.9 3.1 2.5 2.5 2.8 −300 ... 004258.8+413456.2 1.9 2.0 2.0 2.0 −300 −212
004259.1+413741.3 1.9 2.2 2.1 1.9 −300 −268 004259.4+413722.5 2.0 2.2 2.2 1.8 −300 −273
004259.4+413732.1 2.0 2.1 2.1 1.8 −300 −265 004300.0+413526.2 2.0 2.0 2.1 1.9 −300 −184
004300.0+413654.2 2.5 2.4 2.3 2.1 −300 −248 004301.0+413627.9 1.4 1.3 1.3 1.2 −300 −248
004301.5+413717.2 2.8 2.6 2.7 2.6 −300 −244 004301.9+413655.2 1.8 2.1 2.2 1.9 −300 −234
004302.5+413740.5 3.5 3.3 3.2 3.7 −300 −241 004302.5+414910.5 2.1 2.0 2.2 2.0 −300 ...
004303.4+413719.3 1.8 2.0 2.0 1.8 −300 −245 004304.3+413739.5 2.0 2.3 2.2 1.9 −300 −232
004304.8+410554.0 2.7 2.3 2.6 2.5 −300 −374 004305.7+413749.8 2.0 1.9 1.8 1.9 −300 −220
004306.7+410213.4 2.2 2.4 2.4 2.4 −300 ... 004306.9+413807.1 3.3 2.6 2.8 2.9 −300 −170
004308.2+410156.8 1.3 1.5 1.5 1.5 −300 ... 004309.7+413849.3 1.8 1.9 2.3 2.1 −300 −216
004310.0+413751.6b 1.8 2.0 2.0 2.0 −300 −226 004310.5+410426.8 2.3 2.4 2.6 2.6 −300 ...
004311.1+413743.3 1.8 2.2 2.1 2.2 −300 −174 004311.3+410459.5 3.6 3.3 3.5 3.7 −300 −380
004311.6+411245.5 2.5 2.4 2.3 2.9 −300 ... 004312.4+410125.2 2.3 2.6 2.5 2.3 −300 ...
004312.5+413747.4 1.8 2.1 2.0 2.0 −300 ... 004312.7+410531.5 1.2 1.3 1.3 1.4 −300 −319
004313.2+410632.4 2.3 2.5 2.3 2.6 −300 −339 004314.0+413906.3 1.9 2.5 2.4 1.9 −300 ...
004314.2+410033.9a 2.4 2.3 2.3 2.3 −300 ... 004315.2+414947.4 2.0 2.6 2.4 2.3 −300 ...
004317.9+410252.8 1.5 1.4 1.4 1.5 −300 ... 004320.1+410611.1 1.4 1.2 1.2 1.3 −300 −328
004320.8+414038.5 2.1 2.3 2.2 2.1 −300 −224 004321.7+414033.2 2.3 2.3 2.2 2.5 −300 −261
004322.0+414116.5 2.1 2.2 2.1 2.0 −300 −193 004324.1+414124.7 2.0 1.6 1.8 1.8 −300 ...
004324.3+414418.7 1.9 1.7 1.7 1.9 −300 ... 004324.4+410802.9 2.5 2.4 2.3 2.1 −300 −312
004325.6+410206.4a 4.4 3.8 3.2 3.9 −300 ... 004326.4+410508.4 2.4 2.3 2.3 2.1 −300 ...
004328.2+414122.1 1.6 1.8 1.9 2.1 −300 ... 004328.6+411818.0 3.9 4.0 3.9 3.9 −300 −299
004329.2+414848.0b 1.2 1.4 1.5 1.4 −300 −226 004330.4+412757.0 2.6 2.6 2.5 2.3 −100 ...
004330.4+414432.5 2.4 2.2 2.1 2.4 −300 −231 004331.2+414222.9 2.1 2.2 2.2 2.0 −300 −215
004331.3+414243.6 1.8 2.0 1.9 2.2 −300 −248 004332.1+414251.8 1.2 1.2 1.3 1.5 −300 −242
004332.4+414227.5 1.7 1.7 1.9 2.0 −300 −211 004332.5+410907.0a 2.6 3.1 2.7 2.7 −300 −320
004333.6+411432.3 2.8 2.7 2.4 2.7 −300 −306 004334.9+410953.6 3.8 3.2 3.4 3.9 −300 −308
004338.7+411222.1 2.4 2.6 2.6 2.7 −300 −243 004339.1+411018.4 2.5 2.5 2.8 3.1 −300 −315
004339.3+411001.1 2.8 2.9 2.7 2.6 −300 −306 004339.4+412229.2a 2.3 2.3 2.3 2.3 −300 ...
004339.7+414534.9 2.0 2.3 2.1 2.3 −300 ... 004340.8+411152.7 2.6 2.4 2.7 2.6 −300 −280
004341.5+414224.3a 2.5 2.5 2.6 2.2 −300 ... 004341.6+411135.3 2.8 2.5 2.5 2.5 −300 −307
004341.7+412302.9 2.5 2.7 2.6 2.3 −300 −173 004341.7+414519.4 2.0 1.6 1.6 1.7 −300 −156
004341.7+415313.0a 2.0 2.4 2.2 2.0 −300 ... 004343.4+414521.6 2.1 2.1 2.3 2.2 −300 −142
004343.9+411137.6 1.3 1.2 1.4 1.1 −300 −295 004344.6+412321.3 2.4 2.4 2.4 2.6 −300 −168
004346.3+414418.5 3.8 3.3 3.3 3.5 −300 −194 004346.8+411239.7 2.9 2.6 2.4 2.7 −300 −262
004348.1+411133.2 3.2 2.9 3.0 3.0 −300 −297 004349.0+415657.7 3.6 4.1 4.1 4.1 −300 −246
004349.4+411053.8 2.4 2.2 2.1 2.1 −300 ... 004351.4+414706.2 3.5 3.7 3.8 4.0 −300 ...
004351.4+415718.7 2.1 2.4 2.4 1.9 −300 ... 004352.5+412524.1 2.8 2.6 2.7 3.1 −100 −184
004352.5+414858.8 2.3 2.4 2.5 2.1 −300 ... 004353.9+415743.8 1.8 2.2 2.2 2.0 −300 ...
004354.8+414715.6 2.9 2.5 2.6 2.5 −300 ... 004354.9+412603.6 3.2 2.4 2.7 2.7 −100 −154
004355.1+411433.1 2.4 2.2 2.4 2.4 −300 ... 004355.2+412650.8 3.0 3.2 2.8 2.8 −100 −169
004355.8+411211.6b 4.1 3.5 3.0 3.9 −300 −249 004356.6+412629.6 2.4 2.1 2.0 1.8 −100 −145
004356.8+414831.6 3.6 3.4 3.5 3.8 −300 −169 004357.7+414854.0 3.1 2.6 2.8 2.6 −300 −154
004358.2+414726.9 3.0 2.3 2.6 2.3 −300 ... 004358.7+414837.5 3.0 2.5 2.6 2.4 −300 −116
004358.9+411742.1 2.6 2.4 2.5 2.1 −300 −291 004401.5+414909.6 3.8 3.6 3.6 3.3 −300 −166
004403.0+414954.7 3.1 2.9 2.8 2.4 −300 −168 004403.4+411708.2 2.2 2.3 2.3 2.5 −300 −291
004403.9+413414.8a 3.4 2.7 2.8 2.6 −100 ... 004404.2+412107.8 2.5 2.3 2.2 2.6 −300 −266
004404.9+415016.1 2.8 2.7 2.6 2.9 −300 −181 004405.2+412718.2 2.8 2.4 2.8 2.9 −100 −128
004405.7+411719.7 2.3 2.9 2.5 2.4 −300 −255 004406.4+412745.0 2.9 2.6 2.8 2.4 −100 −141
004407.0+412759.3 3.3 2.8 3.0 3.0 −100 −144 004407.8+412110.7 3.0 2.7 2.7 2.6 −300 −248
004409.2+413331.9 2.4 2.3 2.3 2.3 −100 −92 004409.5+411856.6 1.2 1.3 1.3 1.3 −300 −254
004410.5+420247.5a 2.9 2.7 3.0 2.6 −100 ... 004410.6+411653.4 2.2 2.4 2.4 2.3 −300 ...
004411.0+413206.3 2.1 2.4 2.5 2.5 −100 −127 004411.8+414747.5 2.2 2.3 2.1 1.8 −100 ...
004411.9+413356.4 2.1 2.3 2.2 2.3 −100 −80 004412.1+413320.5 2.8 3.1 2.7 2.8 −100 −103
004413.7+413413.5 2.2 2.2 2.4 2.2 −100 −80 004414.4+411742.3 2.4 2.7 2.4 2.3 −300 −266
004414.6+412840.3 2.3 2.5 2.5 2.7 −100 −113 004415.3+411905.7 2.9 2.5 3.8 2.7 −300 −236
004415.9+411717.6 2.1 2.2 2.4 2.2 −300 −252 004416.0+414950.7 3.1 2.7 3.0 2.7 −100 ...
004416.1+412105.4 2.3 2.4 2.5 2.2 −300 −244 004416.3+411730.9 2.4 2.6 2.4 2.4 −300 −182
004416.7+412444.1 2.1 2.3 2.2 2.1 −300 −277 004418.2+413406.6 2.8 2.8 2.8 2.8 −100 −152
004419.2+411930.9 2.9 2.5 2.5 2.7 −300 −242 004419.3+412247.0 2.4 2.6 2.5 2.5 −300 −275
004419.9+412201.2 3.2 2.7 2.5 2.7 −300 −272 004420.2+415101.5 3.4 2.5 2.6 2.8 −100 ...
004420.7+411751.0 2.3 2.6 2.7 2.2 −300 ... 004420.9+411835.7 2.5 2.5 2.5 2.4 −300 −254
004422.8+412529.1 2.1 2.3 2.2 2.1 −300 ... 004423.0+412050.9 3.3 2.9 3.0 2.7 −300 −245
004423.3+413842.6 2.8 2.6 3.0 2.7 −100 ... 004423.7+412437.3 3.3 2.5 2.5 2.6 −300 −233
004424.1+412117.3 2.9 2.8 2.7 2.9 −300 −218 004424.2+414918.9 3.2 2.4 2.5 2.7 −100 −102
004424.4+415120.5 1.7 2.0 2.1 2.0 −100 −164 004424.9+413739.1 2.1 2.1 1.9 1.8 −100 −66
004425.0+414942.6 1.8 2.2 2.1 1.9 −100 ... 004425.4+415006.1 1.8 2.2 2.1 2.1 −100 ...
004426.2+412054.1 2.4 2.1 2.1 2.0 −300 −226 004426.7+412729.3 2.4 2.3 2.2 2.2 −300 −217
004427.5+413529.8 3.0 2.5 2.7 2.5 −100 ... 004429.1+412334.0 3.2 2.5 2.8 2.6 −300 −228
004429.6+412138.9 2.1 2.1 2.1 2.2 −300 −268 004429.6+415133.5 1.9 2.0 1.9 2.0 −100 −113
004430.2+415242.7 2.0 2.1 2.3 2.0 −100 −107 004430.5+415154.8 1.1 1.1 1.1 1.2 −100 −96
004431.1+415110.2 3.0 2.6 2.9 3.0 −100 −104 004431.1+415638.2 1.9 2.0 2.1 1.9 −100 −94
004431.9+412233.3 2.9 2.6 2.7 2.6 −300 −196 004431.9+412400.1 2.2 2.2 2.0 4.5 −300 −219
004432.6+412518.7 2.2 2.3 2.3 2.4 −300 −172 004433.8+415249.7b 2.3 2.1 1.9 2.1 −100 −90
004435.6+415606.9b 3.1 2.6 2.6 2.8 −100 ... 004436.7+412445.1 2.3 2.9 2.6 2.5 −300 −189
004437.3+415350.2 1.9 2.1 2.3 1.9 −100 ... 004437.7+415259.8 2.1 2.4 2.3 2.4 −100 −101
004437.9+415154.0 3.8 2.5 2.7 2.6 −100 −137 004438.5+412511.1 3.7 3.4 3.3 3.6 −300 −211
004439.4+415251.3 2.2 2.4 2.2 2.3 −100 −107 004440.3+414923.9 1.9 2.2 2.2 2.0 −100 ...
004441.5+415312.7 1.9 2.0 2.2 1.9 −100 −103 004441.7+412659.6 2.1 2.4 2.1 2.2 −300 −208
004442.7+415341.1 1.3 1.4 1.4 1.3 −100 −98 004443.9+412758.0 3.9 3.3 3.9 3.6 −300 −186
004444.1+415359.0 3.3 2.5 2.6 2.7 −100 −59 004444.8+412839.9 2.6 2.4 2.6 2.6 −300 −165
004447.1+415657.7 2.5 2.5 2.3 2.2 −100 ... 004447.6+412641.5 2.5 2.5 2.5 2.5 −300 ...
004448.1+415307.3 2.3 2.5 2.4 2.4 −100 −91 004448.4+412254.2 3.1 3.0 2.9 2.7 −300 ...
004448.6+415343.6 2.3 2.5 2.5 2.3 −100 −87 004450.6+415608.3 2.3 2.3 2.3 2.0 −100 −42
004450.9+412909.2 2.2 2.4 2.3 2.3 −300 −179 004451.8+415423.7 1.2 1.3 1.4 1.3 −100 −131
004452.7+415309.1 1.3 1.5 1.4 1.5 −100 −62 004452.8+415457.5 2.3 2.1 2.0 2.3 −100 −95
004453.0+415340.3 3.0 2.9 2.8 3.0 −100 −101 004454.4+420327.4 1.8 2.0 2.2 2.1 −100 ...
004456.1+412918.2 3.2 2.9 2.8 2.7 −300 −174 004456.2+413124.1 2.5 2.3 2.0 2.1 −300 −153
004457.2+415524.0 3.1 2.7 2.6 2.6 −100 −72 004457.3+413141.8 2.1 2.4 2.4 1.9 −300 ...
004458.0+414034.7 1.3 1.6 1.4 1.3 −100 ... 004458.1+420008.6 2.3 2.2 2.3 2.3 −100 −114
004458.3+415906.9 2.4 2.4 2.4 2.2 −100 ... 004458.7+415536.1 2.1 1.9 1.7 3.2 −100 −81
004459.1+413233.8 4.2 3.3 4.8 3.3 −300 −166 004459.1+414058.5 3.1 2.7 2.8 2.9 −100 ...
004459.3+413139.2 2.9 2.2 2.4 2.5 −300 −180 004459.5+415510.4 2.4 2.6 2.3 2.4 −100 −68
004500.7+412836.9 4.1 3.2 3.3 3.4 −300 −191 004500.9+413101.1 3.0 2.8 2.8 2.9 −300 ...
004503.0+413249.4 2.0 2.3 2.1 1.9 −300 −153 004504.6+413237.6 1.8 2.1 2.4 2.0 −300 −151
004505.3+413845.9 2.3 2.5 2.4 2.7 −100 ... 004505.9+413925.5 2.2 2.4 2.3 2.3 −100 −126
004506.1+413615.0 2.1 1.9 1.9 1.8 −100 −154 004506.1+415121.0 3.4 2.7 3.8 2.6 −100 −52
004506.2+413424.4 3.0 2.6 2.6 2.7 −100 −150 004506.9+413407.8 2.8 2.7 2.7 2.7 −100 −140
004507.5+413439.4 2.1 2.4 2.4 2.4 −100 −144 004508.2+413424.2 2.2 2.5 2.3 2.4 −100 −132
004509.0+415209.7 3.3 2.7 2.6 2.7 −100 −62 004510.0+420143.6 2.3 2.7 2.4 2.5 −100 ...
004510.3+420228.5 2.6 2.5 2.5 2.6 −100 ... 004510.4+413716.0 1.9 2.2 2.2 2.1 −100 −104
004510.5+413426.7 2.4 2.4 2.2 2.5 −100 −121 004510.8+415938.9 2.3 2.3 2.2 2.1 −100 ...
004511.2+413644.9 3.3 2.7 2.5 2.6 −100 −116 004511.3+413633.9 2.7 2.7 2.9 2.6 −100 −136
004511.6+420130.3 2.0 2.1 2.4 2.1 −100 ... 004512.1+415542.5 1.9 2.0 2.2 2.0 −100 −55
004512.4+413709.6 3.2 2.7 2.8 2.6 −100 −129 004512.8+413531.6 2.4 1.9 2.1 2.0 −100 −133
004514.4+413723.6 2.5 2.4 2.3 2.6 −100 −120 004515.2+413948.5 3.1 2.5 2.6 2.5 −100 ...
004515.9+420254.4a 2.3 2.4 2.3 2.3 −100 ... 004518.1+413920.5 2.2 2.5 2.6 2.2 −100 −86
004518.5+414013.2 2.1 2.1 2.1 1.8 −100 ... 004518.7+413906.1 2.2 2.1 2.4 2.2 −100 ...
004518.8+420331.8 1.2 1.4 1.3 1.5 −100 ... 004520.7+414716.7 3.1 2.5 2.8 2.5 −100 −100
004520.9+414248.8 2.3 2.2 2.3 1.9 −100 ... 004521.6+420345.1 2.3 2.3 2.4 2.3 −100 ...
004523.1+414346.0 2.0 2.0 2.1 2.3 −100 −103 004524.4+415537.4 2.1 1.8 2.1 3.6 −100 ...
004526.8+415820.1 2.6 2.0 2.1 2.6 −100 ... 004527.0+415135.5 1.8 2.4 2.2 2.0 −100 ...
004528.0+415928.1 2.6 2.6 2.3 2.3 −100 −50 004528.2+414513.6 3.1 2.8 2.4 2.8 −100 −91
004528.2+414630.6 1.7 2.1 2.3 2.1 −100 −75 004528.6+415000.2 2.1 2.0 2.3 2.0 −100 −55
004532.2+414543.3 2.0 2.5 2.2 1.9 −100 −94 004533.3+414739.8 2.0 2.4 2.3 2.1 −100 −61
004533.6+414728.2 2.3 2.3 2.4 2.5 −100 −70 004534.1+414703.3 2.3 2.5 2.2 2.5 −100 ...
004536.3+414252.0 2.1 2.3 2.3 2.4 −100 −129 004536.5+415307.7 2.2 2.0 2.2 2.0 −100 −78
004536.9+415704.0 3.2 2.7 2.7 2.4 −100 −72 004537.2+415802.4 2.9 2.6 2.8 3.0 −100 −36
004537.3+415107.0 3.2 2.9 2.7 2.6 −100 ... 004537.6+415424.1 3.2 2.8 3.1 2.8 −100 −67
004538.5+415231.1 3.2 2.9 2.9 2.4 −100 −45 004540.0+415510.2b 3.2 2.7 2.5 2.9 −100 −63
004541.4+415550.4 1.9 2.0 2.0 2.2 −100 −59 004541.6+415107.7 3.3 2.5 2.6 2.6 −100 −89
004542.9+415234.8 2.5 2.0 2.0 2.0 −100 −62 004543.3+415109.3 1.1 1.2 1.2 1.2 −100 ...
004543.3+415301.1 3.0 2.7 2.6 2.7 −100 −57 004543.5+414235.1 2.0 2.3 2.0 2.0 −100 ...
004544.3+415207.4 3.1 2.9 2.8 2.8 −100 −31 004549.7+421017.1 2.3 2.3 2.4 2.0 −100 ...
004555.2+415645.8 2.1 2.2 2.5 2.1 −100 ... 004608.5+421131.0 2.9 2.6 3.0 2.7 −100 ...
004613.4+415224.4 2.1 2.5 2.4 2.2 −100 ... 004617.6+415158.0 3.4 2.7 2.7 2.8 −100 −122
004623.9+421215.2 2.1 2.4 2.5 2.5 −100 ... 004625.4+421156.0 2.2 2.3 2.3 2.3 −100 ...
004626.0+421121.7 2.2 2.3 2.2 2.3 −100 ... 004627.9+415920.4 2.2 2.4 2.3 2.2 −100 ...
004631.5+421342.6 2.4 2.5 2.4 2.3 −100 ... 004633.4+421244.2 2.5 2.3 2.4 2.2 −100 ...
004633.6+415932.0 3.0 2.8 2.8 2.8 −100 ... 004634.2+415636.8 1.9 2.1 2.2 2.1 −100 ...
004634.4+421143.1 2.4 2.0 2.0 1.9 −100 ... 004641.6+421156.2b 3.2 2.7 2.7 2.6 −100 ...
004641.9+421547.8 2.3 2.4 2.5 2.4 −100 ... 004642.2+415837.3 2.4 2.5 2.3 2.3 −100 ...
004642.6+421406.8a 2.4 2.5 2.5 2.6 −100 ... 004645.9+420453.1 2.2 2.2 2.3 2.3 −100 ...
004654.5+420046.2 2.3 2.2 2.6 2.2 −100 ... 004703.1+415755.4a 2.3 2.3 2.5 2.3 −100 ...

Notes. Detected H2O maser regions are in bold. The rms noise is quoted per 3.1–3.3 km s−1 (244 kHz) channels. VObs is the observed central velocity tuning of the 632–674 km s−1 (50 MHz) bandwidth. VCO uncertainties are typically ∼1 km s−1 (Nieten et al. 2006), but the CO velocity map shows mean and median dispersions of 19 and 13 km s−1 within the GBT beam. All velocities are in the heliocentric reference frame using the optical definition.

aGiant star identified by Amiri & Darling (2016). bPlanetary nebula identified by Merrett et al. (2006).

Download table as:  ASCIITypeset images: 1 2 3 4 5 6

Observations were conducted with the dual K-band receivers in 2010 and beams 1 and 2 of the K-band focal plane array in 2011–2012 in a nodding mode in two circular polarizations with 0.15–0.16 km s−1 (12.2 kHz) channels and 9-level sampling. The time on-source was 5 minutes, except for sources that were reobserved to confirm or refute possible lines (typically 10 minutes). A winking calibration diode and hourly atmospheric opacity estimates were used for flux density calibration. Opacities ranged from 0.03 to 0.14 nepers, but were typically 0.06 nepers. The estimated uncertainty in the flux density calibration is ∼20%. Pointing and focus corrections were made hourly. Pointing was typically good to within a few arcseconds, and the largest pointing corrections during observing sessions were no more than 6''. The resolution of the 24 μm Spitzer image is 6'' (Gordon et al. 2008), so the unresolved IR sources remained within the 33'' GBT beam even during the largest pointing drifts. The 33'' beam (FWHM) at 22 GHz spans 125 pc in M31.

After averaging polarizations, spectra were Hanning smoothed and subsequently Gaussian smoothed to obtain a final spectral resolution of 3.1–3.3 km s−1 (244 kHz) for the line search. H66α was also smoothed to 9.8 km s−1 (732 kHz) to search for broad recombination lines (e.g., Dieter 1967; Mezger & Höglund 1967). Polynomial baselines, typically of fifth order, were fit and subtracted to obtain flat and generally uniform-noise spectra. Spectral rms noise measurements for each pointing center and observed line are listed in Table 1. Non-detection spectra generally did not show any features greater than 3σ, corresponding to roughly 10 mJy, which is at least an order of magnitude more sensitive than previous surveys (Greenhill et al. 1995; Imai et al. 2001; Claussen & Beasley, 2011, private communication), and is likely the weakest line that can currently be used for VLBI proper motion studies. All data reduction was performed in GBTIDL.4

In order to assess the average and median line emission of the sample, we aligned H2O, NH3, and H66α spectra according to the Nieten et al. (2006) CO velocities, and median- and mean-stacked them to determine whether the median or mean object selected for the survey produces line emission in a given species an order of magnitude below the single-spectrum sensitivity. Spectra were noise-weighted in the mean stacks, and 300 spectra were used for both the mean and median stacks (except for the H2O stacks, which used 299 spectra). Omitted spectra either had no CO velocity information, had unreliable CO velocity information, or have been identified to be something other than an H ii region (indicated with footnotes in Table 1; see also Section 4). Every object in Table 1 was manually inspected in the Nieten et al. (2006) CO velocity map to ensure that no mask edges, incomplete data, or high (instrumental) velocity dispersion regions were included in the stack. All objects in Table 1 that show a CO velocity can be considered reliable.

4. RESULTS

We have detected water maser emission in 5 out of 506 24 μm selected regions in M31 (Table 1). The water maser isotropic line luminosity sensitivity is 4.4 × 10−4 L, which is a 3σ peak line flux density limit of 9 mJy and width 3.3 km s−1. The detected water masers were presented in Darling (2011) and are not reproduced here. Omitting the 44 objects likely to be planetary nebulae (9 objects; Merrett et al. 2006; Amiri & Darling 2016) or giant stars (35 objects; Amiri & Darling 2016), the overall detection rate is 1.1(0.5)%. The actual water maser fraction likely depends on star formation stage and conditions, and our overall detection rate is a strong function of the survey sensitivity; Amiri & Darling (2016) demonstrate that we detect only the high-luminosity tail of the underlying maser population. Conversely, it is unlikely that all the remaining 24 μm sources are compact H ii regions (e.g., Verley et al. 2007; Mould et al. 2008), so the maser fraction among star-forming regions may be higher than 1.1(0.5)% given the survey sensitivity. The maser detection rate would also be higher were we to use a more refined selection method, such as the one presented in Amiri & Darling (2016).

No NH3 or H66α lines were detected in the survey; see Table 1 for rms noise values. Figure 2 shows the noise-weighted mean spectral stacks for the four observed spectral lines: H2O, H66α, NH3 (1, 1), and NH3 (2, 2). The stacks of 300 spectra (299 spectra for H2O) reached rms noise values of 0.17, 0.14, 0.15, and 0.15 mJy per 3.1–3.3 km s−1 channel, respectively. The median stacks appear similar to the mean stacks, but with 12%, 21%, 20%, and 13% higher noise. No lines are detected in these stacks, which show the expected $\sqrt{N}$ noise improvement over single-object spectra.

Figure 2.

Figure 2. Mean stacks of 300 spectra (299 spectra for H2O). Velocities of individual spectra were centered on the local CO velocity measured by Nieten et al. (2006) prior to stacking. Channels are 3.1–3.3 km s−1. Median stacks show a similar lack of significant lines and 12%–21% higher noise.

Standard image High-resolution image

5. DISCUSSION

Neither the mean nor the median compact 24 μm emitting region selected for the water maser survey show detectable emission in the four observed lines. In all of the stacked spectra, errors in the CO velocity used to center the spectra, CO velocity variance, and CO line peak offsets from the denser molecular gas velocity can all contribute to incorrect spectral shifts in the stacking process. These factors will dilute the detectability of lines in spectral stacks, particularly in the mean.

The water maser fraction in Galactic surveys can be of order 50% (e.g., Kurtz & Hofner 2005; Urquhart et al. 2011), so one might expect to detect line emission from the median object in an adequately deep survey. While the line luminosity sensitivity of the M31 survey does not reach the sensitivity needed in Galactic surveys to detect the median water maser in individual spectra, the median spectral stack reaches a 3σ luminosity sensitivity of 2.8 × 10−5 L (assuming a 3.3 km s−1 wide maser). Because the median Urquhart et al. (2011) H2O maser isotropic line luminosity is 1 × 10−5 L and the CO velocity alignment of the stacks lacks the velocity precision needed for alignment of few km s−1 lines, the M31 spectral stack cannot quite detect the median Galactic H ii water maser equivalent.

For the H66α line, the non-detection in stacked spectra probably implies that the mean or median region simply does not emit in this line. Aside from selecting for 22 GHz radio continuum backlights, the 24 μm selection method is sub-optimal for hydrogen radio recombination lines (the H66α line was included in the GBT observations to allow serendipitous detection).

NH3 emission, by contrast, is common in H ii regions; Urquhart et al. (2011) obtain a detection rate of ∼80%, fairly independent of H ii region luminosity, and Dunham et al. (2011) detected NH3 (1, 1) toward 72% of 1.1 mm continuum sources in the inner Galaxy. One would expect to detect NH3 lines in mean or median spectra of adequate depth, provided the NH3 filling factor does not become too small at the distance of M31. We discuss these issues below.

5.1. Water Maser Detection Rate and Star Formation

The sensitivity of the GBT survey corresponds to a ∼200 Jy Galactic maser 6 kpc distant. There are 23 H2O masers in the Palagi et al. (1993) sample and roughly 30 masers in the Breen et al. (2010) sample that our survey could detect at the distance of M31. Hence, sensitivity is not the only consideration; the number of water masers detectable in M31 will also depend on the the substantially lower star formation rate of M31 compared to galactic. The maser detection rate, however, should be comparable between galaxies in similarly selected samples of star-forming regions if the physical conditions of star formation are similar.

In the Urquhart et al. (2011) Galactic water maser survey, there are 30 H2O masers with peak flux density greater than 200 Jy, and 22 H2O masers with isotropic luminosity greater than 4.4 × 10−4 L. Were this Galactic survey restricted to the luminosity sensitivity of the M31 water maser survey, the net detection rate would fall from 52(2)% to 3.7(0.8)%, which is not significantly different from our M31 detection rate of 1.1(0.5)%. The Urquhart et al. (2011) detection rate, however, is a strong function of H ii region bolometric luminosity, approaching 100% in the highest luminosity regions. Owing to the order of magnitude reduced star formation rate in M31 compared to the Galaxy, this high-luminosity tail of star-forming regions may not exist in M31, further reducing the expected maser detection rate.

To estimate the total number of expected water masers in Local Group galaxies, Brunthaler et al. (2006) used the Greenhill et al. (1990) Galactic water maser luminosity function (LF) scaled from the Galactic star formation rate to that of Local Group galaxies, assuming that the maser population is proportional to the star formation rate. Local Group water maser statistics agree fairly well with this approach (Brunthaler et al. 2006). Updating Darling (2011), we scale the Galactic star formation rate of ∼2 M yr−1 (Chomiuk & Povich 2011) to that of M31, ${0.25}_{-0.04}^{+0.06}$ M yr−1 (Ford et al. 2013), to predict 3.3 water masers for an isotropic line luminosity limit of 4.4 × 10−4 L. This prediction suffers from small number statistics, but our five detections suggest that either we have detected the majority of bright water masers in M31 (the high-luminosity tail of the water maser LF) or that the star formation scaling approach is inaccurate. The former seems more likely: Amiri & Darling (2016) show that we have surveyed nearly all of the regions most likely to produce luminous water masers and that there are probably no more bright water masers to be found in M31.

5.2. Ammonia

While ammonia lines lack the intrinsic brightness temperature of H2O, they can be beam-filling. Given the mean Tmb = 1.1 K (1, 1) line peak and mean distance of ∼5 kpc of the Urquhart et al. (2011) sample, and using a GBT main-beam efficiency of 0.87 and gain of 1.88 K Jy−1 (Mangum et al. 2013), the average Galactic NH3 emission from an H ii region5 scaled to the distance of M31 would produce a ∼0.02 mJy line peak, all other factors being equal and assuming no confusion in the NH3 emission from multiple H ii regions along Galactic sight lines (the Dunham et al. 2011 measurements provide a similar prediction). There would thus need to be roughly 150 such NH3 emitters within a GBT beam to approach the rms noise in a single pointing. The rough size of a Galactic NH3 source in the Urquhart et al. (2011) sample is 0.2–0.4 pc, so by area, it is possible that 150 such objects could fall within the 121 pc GBT beam in the molecular ring of M31. The brightest H ii region in the Urquhart et al. (2011) sample would appear at 0.13 mJy in M31, which is still a factor of ∼20 below the rms noise in individual spectra. The NH3 (2, 2) line is typically weaker than the (1, 1) line, so our observations of the (2, 2) line are less constraining than the (1, 1) line.

The mean-stacked NH3 (1, 1) spectra show an rms noise per channel that is seven times higher than the expected average Galactic NH3 (1, 1) line emitter, but if the average 121 pc diameter region contained roughly 20 such regions, then a 3σ peak would be detected. The data do not support this.

Extragalactic NH3 cm metastable lines have been detected toward numerous galaxies, some down to the few mJy/mK level (see, e.g., Martin & Ho 1979; Henkel et al. 2000; Takano et al. 2000; Weiß et al. 2001; Takano et al. 2002; Mauersberger et al. 2003; Ott et al. 2005, 2011; and Mangum et al. 2013), but in most cases the galaxies are actively star-forming—if not starbursts—at substantially higher rates than M31. The non-detection of NH3 toward M31 is not yet constraining on the NH3 abundance compared to the Galactic value.

6. CONCLUSIONS

We have expanded a survey for H2O masers in M31 based on pointed observations of 24 μm selected regions. While the 24 μm selection method clearly succeeds in identifying water masers (albeit at the low rate of 1.1(0.5)%), 24 μm emission is a necessary but not a sufficient condition for water maser activity (see Amiri & Darling 2016 for a study of the properties of star-forming regions most likely to produce water masers). In Darling (2011), we suggested that the catalog of water masers in M31 is incomplete and that an exhaustive survey of IR-luminous regions would identify additional masers. The prediction was too optimistic, and it should be noted that the detected masers are consistent with the aggregate star formation rate of M31, given its distance and the sensitivity of the survey. New masers could still be detected in deeper surveys or in future surveys of similar depth, given the variable nature of water masers in star-forming regions. However, variability also implies that the currently detected masers could be flaring and therefore fade, limiting their astrometric utility.

For now, the five known water masers in M31 will have to serve as the basis for proper motion studies, which will probably minimally constrain the three expected proper motion signals (plus random peculiar maser motions) described by Darling (2011): (1) the systemic proper motion (already constrained by Sohn et al. 2012; van der Marel et al. 2012a), (2) proper rotation, and (3) proper expansion caused by the −300 km s−1 (heliocentric) approach of M31 (see also Darling 2013). We predict that proper rotation and systemic proper motion will be measurable in a few years with current facilities, and that the "moving cluster" divergence of maser spots as M31 approaches the Galaxy may be detectable in a decade (Darling 2013). However a possible previous interaction between M31 and M32 may have produced peculiar radial motions in the molecular ring of M31 that would mask this signal (Block et al. 2006; Dierickx et al. 2014).

All authors acknowledge support from the NSF grant AST-1109078. The authors thank K. Gordon for the Spitzer map, M. Claussen and T. Beasley for sharing their results, and the anonymous referee for helpful comments. This research has made use of NASA's Astrophysics Data System Bibliographic Services and the NASA/IPAC Extragalactic Database (NED), and uses observations made with the Spitzer Space Telescope, both of which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Facility: GBT - Green Bank Telescope.

Footnotes

  • The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  • GBTIDL (http://gbtidl.nrao.edu/) is the data reduction package produced by NRAO and written in the IDL language for the reduction of GBT data.

  • Not all NH3-emitting objects in the Urquhart et al. (2011) sample are H ii regions.

Please wait… references are loading.
10.3847/0004-637X/826/1/24