Research article Special Issues

Barycentric rational interpolation method for solving KPP equation

  • Received: 16 February 2023 Revised: 11 March 2023 Accepted: 12 March 2023 Published: 20 March 2023
  • In this paper, we seek to solve the Kolmogorov-Petrovskii-Piskunov (KPP) equation by the linear barycentric rational interpolation method (LBRIM). As there are non-linear parts in the KPP equation, three kinds of linearization schemes, direct linearization, partial linearization, Newton linearization, are presented to change the KPP equation into linear equations. With the help of barycentric rational interpolation basis function, matrix equations of three kinds of linearization schemes are obtained from the discrete KPP equation. Convergence rate of LBRIM for solving the KPP equation is also proved. At last, two examples are given to prove the theoretical analysis.

    Citation: Jin Li, Yongling Cheng. Barycentric rational interpolation method for solving KPP equation[J]. Electronic Research Archive, 2023, 31(5): 3014-3029. doi: 10.3934/era.2023152

    Related Papers:

  • In this paper, we seek to solve the Kolmogorov-Petrovskii-Piskunov (KPP) equation by the linear barycentric rational interpolation method (LBRIM). As there are non-linear parts in the KPP equation, three kinds of linearization schemes, direct linearization, partial linearization, Newton linearization, are presented to change the KPP equation into linear equations. With the help of barycentric rational interpolation basis function, matrix equations of three kinds of linearization schemes are obtained from the discrete KPP equation. Convergence rate of LBRIM for solving the KPP equation is also proved. At last, two examples are given to prove the theoretical analysis.



    加载中


    [1] Y. Liu, M. Song, H. Li, Y. Li, W. Hou, Containment problem of fifinite-fifield networks with fixed and switching topology, Appl. Math. Comput., 411 (2021), 126519. https://doi.org/10.1016/j.amc.2021.126519 doi: 10.1016/j.amc.2021.126519
    [2] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlin. Sci. Appl., 8 (2015), 340–353. https://doi.org/10.22436/JNSA.008.04.07 doi: 10.22436/JNSA.008.04.07
    [3] D. Mehdi, S. Ali, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400–410. https://doi.org/10.1016/j.cam.2008.12.011 doi: 10.1016/j.cam.2008.12.011
    [4] B. Wongsaijai, T. Aydemir, T. Ak, S. Dhawan, Analytical and numerical techniques for initial-boundary value problems of kolmogorov-petrovsky-piskunov equation, Numer. Methods Partial Differ. Equations, 2020 (2020), 1–18. https://doi.org/10.1002/num.22693 doi: 10.1002/num.22693
    [5] J. E. Macías-Díaz, A. Puri, An explicit positivity-preserving finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation, Appl. Math. Comput., 218 (2012), 5829–5837. https://doi.org/10.1016/j.amc.2011.11.064 doi: 10.1016/j.amc.2011.11.064
    [6] W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation, Appl. Math. Comput., 252 (2015), 552–567. https://doi.org/10.1016/j.amc.2014.12.043 doi: 10.1016/j.amc.2014.12.043
    [7] M. Izadi, A second-order accurate finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Inf. Optim. Sci., 42 (2021), 431–448. https://doi.org/10.1080/02522667.2019.1696919 doi: 10.1080/02522667.2019.1696919
    [8] J. E. Macías-Díaz, I. E. Medina-Ramírez, A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Comput. Appl. Math., 231 (2009), 851–868. https://doi.org/10.1016/j.cam.2009.05.008 doi: 10.1016/j.cam.2009.05.008
    [9] C. Y. Qin, S. F. Tian, X. B. Wang, L. Zou, T. T. Zhang, Lie symmetry analysis, conservation laws and analytic solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation, Chin. J. Phys., 56 (2018), 1734–1742. https://doi.org/10.1016/j.cjph.2018.05.002 doi: 10.1016/j.cjph.2018.05.002
    [10] P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 7 (2019), 1–18. https://doi.org/10.3390/math7030265 doi: 10.3390/math7030265
    [11] X. L. Li, Theoretical analysis of the reproducing kernel gradient smoothing integration technique in galerkin meshless methods, J. Comp. Math., 41 (2023), 503–526. https://doi.org/10.4208/jcm.2201-m2021-0361 doi: 10.4208/jcm.2201-m2021-0361
    [12] J. Wan, X. L. Li, Analysis of a superconvergent recursive moving least squares approximation, Appl. Math. Lett., 133, (2022), 108223 https://doi.org/10.1016/j.aml.2022.108223 doi: 10.1016/j.aml.2022.108223
    [13] M. Floater, H. Kai, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [14] G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
    [15] G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
    [16] J. Berrut, S. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36, (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
    [17] P. Berrut, G. Klein. Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95–107. https://doi.org/10.1016/j.cam.2013.03.044 doi: 10.1016/j.cam.2013.03.044
    [18] E. Cirillo, K. Hormann, On the Lebesgue constant of barycentric rational Hermite interpolants at uniform partition, J. Comput. Appl. Math., 349 (2019), 292–301. https://doi.org/10.13140/RG.2.2.34932.65923 doi: 10.13140/RG.2.2.34932.65923
    [19] S. Li, Z. Q. Wang, High Precision Meshless barycentric Interpolation Collocation Method–Algorithmic Program and Engineering Application, Science Publishing, 2012.
    [20] Z. Q. Wang, S. Li, Barycentric Interpolation Collocation Method for Nonlinear Problems, National Defense Industry Press, Beijing, 2015.
    [21] Z. Q. Wang, Z. K. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201. https://doi.org/10.11776/cjam.35.03.D011 doi: 10.11776/cjam.35.03.D011
    [22] Z. Q. Wang, L. Zhang, Z. K. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002
    [23] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
    [24] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equations, 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [25] J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equations, 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
    [26] J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
    [27] J. Li, X. N. Su, K. Y. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
    [28] J. Li, Y. L. Cheng, Z. C. Li, Z. K. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, Math. Biosci. Eng., 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221
    [29] J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Math., 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(677) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog