Skip to main content
Log in

Soft modes and local structural transitions in Pb-free Ba(Ti0.8Zr0.2)O3-x (Ba0.7Ca0.3)TiO3 (x = 0.5): Pressure- and temperature-dependent Raman studies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report our Raman studies of a new lead-free relaxor ferroelectrics, Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZO). The Raman modes of BCTZO are compared with those of BaTi0.8Zr0.2O3 (BTZO), and BaTiO3 (BTO). Also, they are compared with the eigenmodes of BTO calculated by using an abinitio quantum-mechanical frozen-phonon method. The sharp mode at 321 cm−1 of BTO, reported as a coupled mode showing an interference effect, becomes progressively broader in BTZO and BCTZO. This behavior, together with a broadening of the 527-cm−1 mode, suggests that the modecoupling is weakened in BTZO and BCTZO. The structural transitions of BCTZO were investigated as functions of pressure at pressures below 20 GPa and of temperature at temperatures below 600 K. Three characteristic pressure-induced transitions, on each at 2.5, 5.0, and 13.0 GPa, were found. The transitions are suggested by the drastic changes in phonon modes (two softening modes, one each at ∼300 and ∼530 cm−1) and by the transformation of the intensity profile. A temperature-induced transition was found at a Curie temperature of ∼380 K, where the average structure changes from tetragonal to cubic. It is accompanied by a softening mode at ∼530 cm−1. The phonon spectrum of BCTZO suggests that its local environment is close to that of BTZO. However, the characteristic pressures of BCTZO are close to those of BTO. The sequence of pressure-induced transitions in both BCTZO and BTZO illustrate rich interplay between the long-range averaged structure and the short-range local order such that four distinguishable phases are suggested: tetragonal, locally ordered but compensated cubic, disordered cubic, and ideal cubic. We found that the critical pressures are plausibly related to the average crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Hill and H. L. Tuller, Ceramic Sensors: Theory and Practice, edited by L. M. Levinson (Marcel Dekker, New York, 1988), p. 265.

  2. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  3. G. Shirane, K. Suzuki, and A. Takeda, J. Phys. Soc. Jpn. 7, 12 (1952); B. Jaffe, R. S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).

    Article  ADS  Google Scholar 

  4. E. Aksel and J. L. Jones, Sensors 10, 1935 (2010).

    Article  Google Scholar 

  5. Advanced Piezoelectric Materials: Science and Technology (Woodhead Publishing Series in Optical and Electronic Materials No. 17), edited by K. Uchino (Woodhead Publishing Ltd., Cambridge, 2010).

    Google Scholar 

  6. W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  ADS  Google Scholar 

  7. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010).

    Article  ADS  Google Scholar 

  8. J. Zhao, Q. M. Zhang, N. Kim, and T. Shrout, Jpn. J. Appl. Phys. 34, 5658 (1995).

    Article  ADS  Google Scholar 

  9. C. Laulhé, F. Hippert, R. Bellissent, A. Simon, and G. J. Cuello,, Phys. Rev. B 79, 064104 (2009).

    Article  ADS  Google Scholar 

  10. I. -K. Jeong, C. Y. Park, J. S. Ahn, S. Park, and D. J. Kim, Phys. Rev. B 81, 214119 (2010).

    Article  ADS  Google Scholar 

  11. I. -K. Jeong and J. S. Ahn, Appl. Phys. Lett. 101, 242901 (2012).

    Article  ADS  Google Scholar 

  12. J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).

    Article  ADS  Google Scholar 

  13. J. Kreisel, B. Dkhil, P. Bouvier, and J.-M. Kiat, Phys. Rev. B 65, 172101 (2002).

    Article  ADS  Google Scholar 

  14. E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, Phys. Rev. Lett. 98, 196406 (2007).

    Article  ADS  Google Scholar 

  15. M. Correa, A. Kumar, S. Priya, R. S. Katiyar, and J. F. Scott, Phys. Rev. B 83, 014302 (2011).

    Article  ADS  Google Scholar 

  16. P. -N. Chen, C.-S. Zha, X.-J. Chen, J. Shu, R. J. Hemley, and H.-K. Mao, Phys. Rev. B 84, 104110 (2011).

    Article  ADS  Google Scholar 

  17. G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).

    Article  ADS  Google Scholar 

  18. A. Grzechnik, G. H. Wolf, and P. F. McMillan, J. Raman Spectros. 28, 885 (1997).

    Article  ADS  Google Scholar 

  19. U. D. Venkatesawaran, V. M. Naik, and R. Naik, Phys. Rev. B 58, 14256 (1998).

    Article  ADS  Google Scholar 

  20. R. Pirc and R. Blinc, Phys. Rev. B 70, 134107 (2004).

    Article  ADS  Google Scholar 

  21. A. Pinczuk, W. Taylor, E. Burnstein, and I. Lefkowitz, Solid State Commun. 5, 429 (1967); M. DiDomenico, Jr., S. H. Wemple, S. P. S. Porto, and R. P. Bauman, Phys. Rev. 174, 522 (1968).

    Article  ADS  Google Scholar 

  22. R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571 (2005); R. Dovesi et al., CRYSTAL09 User’s Manual (University of Torino, Torino, 2009).

    Article  Google Scholar 

  23. For tetragonal and orthorhombic BTO, one imaginary phonon frequency is reported. However, for the rhombohedral phase of BTO, all phonon frequencies have real values. X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005); P. Hermet, M. Veithen, and Ph. Ghosez, J. Phys. Condens. Matter 21, 215901 (2009); S. Sanna, C. Thierfelder, S. Wippermann, T. P. Sinha, and W. G. Schmidt, Phys. Rev. B 83, 054112 (2011); R. A. Evarestov and A. V. Bandura, J. Comp. Chem. 33, 1123 (2012).

    Article  ADS  Google Scholar 

  24. A. K. Sood, N. Chandrabhas, D. V. S. Muthu, and A. Jayaraman, Phys. Rev. B 51, 8892 (1995).

    Article  ADS  Google Scholar 

  25. R. Farhi, M. El Marssi, A. Simon, and J. Ravez, Eur. Phys. J. B 9, 599 (1999).

    Article  ADS  Google Scholar 

  26. P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo, and A. S. Bhalla, J. Appl. Phys. 89, 8085 (2001).

    Article  ADS  Google Scholar 

  27. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, and A. Simon, Phys. Rev. B 69, 092104 (2004).

    Article  ADS  Google Scholar 

  28. J. P. Itié, B. Couzinet, A. Polian, A. M. Flank, and P. Lagarde,, Europhys. Lett. 74, 706 (2006).

    Article  ADS  Google Scholar 

  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).

    Google Scholar 

  30. W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 (1995).

    Article  ADS  Google Scholar 

  31. T. Ishidate, S. Abe, H. Takahashi, and N. Môri, Phys. Rev. Lett. 78, 2397 (1997).

    Article  ADS  Google Scholar 

  32. C. H. Perry and D. B. Hall, Phys. Rev. Lett. 15, 700 (1965).

    Article  ADS  Google Scholar 

  33. J. Harada, T. Pedersen, and Z. Barnea, Acta Crystallogr., Sect. A: Found. Crystallogr. 26, 336 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Seok Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, YS., Ahn, J.S. & Jeong, IK. Soft modes and local structural transitions in Pb-free Ba(Ti0.8Zr0.2)O3-x (Ba0.7Ca0.3)TiO3 (x = 0.5): Pressure- and temperature-dependent Raman studies. Journal of the Korean Physical Society 62, 749–755 (2013). https://doi.org/10.3938/jkps.62.749

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.749

Keywords

Navigation