Skip to main content
Log in

Study of the electric field screening effect for field emitter arrays

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Understanding the influence of the interaction of emitters on the field emission performance of a field emitter array is of great importance for the design of a multi-emitter device. In this work, a screening factor S is defined to quantify the effect of electric field screening due to the interaction of emitters in an array. A three-dimensional finite integration technique is used to study the electric field screening effect for Spindt-type field emitter arrays which have potential applications in flatscreen displays and high-power vacuum electronics. The dependences of the electric field screening on the tip-to-tip spacing, half-angle of the emitter, height of the emitter and radius of the tip’s curvature are analyzed. The effects of the variations in the size of the emitter’s geometry on the most efficient arrangement to achieve maximum emission efficiency in an array are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney and E. R. Westerberg, IEEE Trans. Electron Devices 36, 225 (1989).

    Article  ADS  Google Scholar 

  2. C. A. Spindt, C. E. Holland, P. R. Schwoebel and I. Brodie, J. Vac. Sci. Technol. B 16, 758 (1998).

    Article  Google Scholar 

  3. K. L Jensen, Phys. Plasmas 6, 2241 (1999).

    Article  ADS  Google Scholar 

  4. Q. H. Wang, M. Yan and R. P. H. Chang, Appl. Phys. Lett 78, 1294 (2001).

    Article  ADS  Google Scholar 

  5. D. R. Whaley, B. M. Gannon, C. R. Smith, C. M. Armstrong and C. A. Spindt, IEEE Trans. Plasma Sci. 28, 727 (2002).

    Google Scholar 

  6. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, J. Appl. Phys. 47, 5248 (2009).

    Article  ADS  Google Scholar 

  7. D. N. Davydov, P. A. Sattari, D. A. Mawlawi, A. Osika, T. L. Haslett and M. Moskovits, J. Appl. Phys. 86, 3983 (1999).

    Article  ADS  Google Scholar 

  8. L. Nilsson, O. Groning, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, Appl. Phys. Lett. 76, 2071 (2000).

    Article  ADS  Google Scholar 

  9. J. S. Suh, K. S. Jeong, J. S. Lee and I. Han, Appl. Phys. Lett. 80, 2392 (2002).

    Article  ADS  Google Scholar 

  10. V. Semet, V. T. Binh, P. Vincent, D. Guillot, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, P. Legagneux and D. Pribat, Appl. Phys. Lett. 81, 343 (2002).

    Article  ADS  Google Scholar 

  11. J. M. Bonard, K. A. Dean, B. F. Coll and C. Klinke, Phys. Rev. Lett. 89, 197602 (2002).

    Article  ADS  Google Scholar 

  12. H. Gao, C. Mu, F. Wang, D. Xu, K. Wu, Y. Xie, S. Liu, E. Wang, J. Xu and D. Yu, J. Appl. Phys. 93, 5602 (2003).

    Article  ADS  Google Scholar 

  13. W. Tang, D. Shiffler, K. Golby, M. LaCour and T. Knowles, J. Vac. Sci. Technol. B 30, 061803 (2012).

  14. J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forra and A. Chatelain, Appl. Phys. A: Master Sci. Process. 69, 245 (1999).

    Article  ADS  Google Scholar 

  15. J. M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury and N. Weiss, Carbon 40, 1715 (2002).

    Article  Google Scholar 

  16. X. Q. Wang, M. Wang, H. L. Ge, Q. Chen and Y. B. Xu, Physica E 30, 101 (2005).

    Article  ADS  Google Scholar 

  17. Y Li and H. W. Cheng, Comput. Phys. Commun. 179, 107 (2008).

    Article  ADS  Google Scholar 

  18. R. C. Smith and S. R. P. Silva, Appl. Phys. Lett. 94, 133104 (2009).

    Article  ADS  Google Scholar 

  19. H. C. Lee and R. S. Huang, IEEE Electron Dev. Lett. 11, 579 (1990).

    Article  ADS  Google Scholar 

  20. L. Wei, W. Baoping, Y. Hanchun, Nucl. Instr. Meth. Phys. Res. A 423, 213 (1999).

    Article  ADS  Google Scholar 

  21. T. Weiland, AEU, Int. J. Electron. Commun. 31, 116 (1977).

    Google Scholar 

  22. N. Li, Z. Wu, J. Liu, H. Zhang, J. Guo and B. Zeng, J. Korean Phys. Soc. 63, 1213 (2013).

    Article  ADS  Google Scholar 

  23. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London A 119, 197 (1928).

    Article  Google Scholar 

  24. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).

    Article  ADS  Google Scholar 

  25. J. He, P. H. Cutler, N. M. Miskovsky, T. E. Feuchtwang and T. E. Sullivan, Surf. Sci. 246, 348 (1991).

    Article  ADS  Google Scholar 

  26. O. Groning, O. M. Kuttel, C. Emmenegger, P. Groning and L. Schlapbach, J. Vac. Sci. Technol. B 18, 665 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqing Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Yan, F., Pang, S. et al. Study of the electric field screening effect for field emitter arrays. Journal of the Korean Physical Society 66, 1186–1191 (2015). https://doi.org/10.3938/jkps.66.1186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1186

Keywords

Navigation