Skip to main content
Log in

Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Kim et al., Nature 457, 706 (2009).

    Article  ADS  Google Scholar 

  2. X. Li et al., Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  3. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. of Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  5. J. H. Lee et al., Science 344, 286 (2014).

    Article  ADS  Google Scholar 

  6. Z. Yin et al., ACS Nano 6, 74 (2012).

    Article  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  8. B. B. L. Evans and P. A. Young, Proc. Roy. Soc. A 284, 402 (1965).

    Article  ADS  Google Scholar 

  9. R. Fivaz and E. Mooser, Phys. Rev. A 163, 743 (1967).

    Article  ADS  Google Scholar 

  10. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett. 10, 1271 (2010).

    Article  ADS  Google Scholar 

  11. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  12. H. Liu and P. D. Ye, IEEE Elec. Dev. Lett. 33, 546 (2012).

    Article  ADS  Google Scholar 

  13. H. Wang et al., Nano Lett. 12, 4674 (2012).

    Article  ADS  Google Scholar 

  14. M. Thripuranthaka, R. V. Kashid, C. S. Rout and D. J. Late, Appl. Phys. Lett. 104, 081911 (2014).

    Article  ADS  Google Scholar 

  15. N. Li, Y. Chai, Y. Li, Z. Tang, B. Dong, Y. Liu and C. Liu, Mater. Lett. 66, 236 (2012).

    Article  Google Scholar 

  16. S. Wang, G. Li, G. Du, X. Jiang, C. Feng, Z. Guo and S. J. Kim, Chinese J. Chem. Engin. 18, 910 (2010).

    Article  Google Scholar 

  17. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small 8, 966 (2012).

    Article  Google Scholar 

  18. W. Wu, D. De, S. C. Chang, Y. Wang, H. Peng, J. Bao and S. S. Pei, Appl. Phys. Lett. 102, 142106 (2013).

    Article  ADS  Google Scholar 

  19. H. Schmidt et al., Nano Lett. 14, 1909 (2014).

    Article  ADS  Google Scholar 

  20. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).

    Article  Google Scholar 

  21. H. Li et al., Small 8, 63 (2012).

    Article  Google Scholar 

  22. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu and K. P. Loh, Nat. Commun. 5, 2995 (2013).

    Google Scholar 

  23. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, J. Am. Chem. Soc. 135, 10274 (2013).

    Article  Google Scholar 

  24. G. Tang, J. Sun, C. Wei, K. Wu, X. Ji, S. Liu, H. Tang, and C. Li, Mater. Lett. 86, 9 (2012).

    Article  Google Scholar 

  25. P. Joensen, E. D. Crozier, N. Alberding and R. F. Frindt, J. Phys. C: Solid State Phys. 20, 4043 (1987).

    Article  ADS  Google Scholar 

  26. T. J. Wieting and J. L. Verble, Phys. Rev. B 3, 12 (1971).

    Article  Google Scholar 

  27. W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc and A. H. Castro Neto, G. Eda, Nano Lett. 13, 5627 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ho Choi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, J., Oh, S.D. et al. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation. Journal of the Korean Physical Society 66, 1852–1855 (2015). https://doi.org/10.3938/jkps.66.1852

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1852

Keywords

Navigation