Skip to main content
Log in

Exploration of Strong Field Physics with Multi-PW Lasers

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

At the Center for Relativistic Laser Science (CoReLS) petawatt (PW) lasers have been developed for the investigations of strong field physics. The CoReLS has successfully upgraded one of the existing PW laser beamlines to a 4 PW laser at 20 fs. From laser-driven charged-particle acceleration experiments, multi-GeV electrons and 90-MeV protons can be generated using the laser wakefield acceleration and the radiation pressure acceleration schemes, respectively. The GeV electron beam can be, in turn, used for Compton backscattering with another PW laser. Such a Compton scattering process can be examined for other quantum electrodynamics (QED) effects, including the radiation reaction effect and the Breit-Wheeler pair production process. PW lasers have, thus, offered new opportunities to pursue novel physics research in relativistic plasma physics, strong field quantum electrodynamics, nuclear physics and laboratory astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov and A. M. Sergeev, Phys. Usp. 54, 9 (2011).

    Article  ADS  Google Scholar 

  2. National Academy of Sciences, Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light (The National Academies Press, Washington, DC, 2018).

  3. G. A. Mourou, T. Tajima and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  4. E. Esarey, C. Schroeder and W. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

  5. H. Daido, M. Nishiuchi and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

    Article  ADS  Google Scholar 

  6. A. Macchi, M. Borghesi and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

    Article  ADS  Google Scholar 

  7. J. Schreiber, P. Bolton and K. Parodi, Rev. Sci. Instrum. 87, 071101 (2016).

    Article  ADS  Google Scholar 

  8. H. T. Kim et al., Phys. Rev. Lett. 111, 165002 (2013).

    Article  ADS  Google Scholar 

  9. H. T. Kim et al., Sci. Rep. 7, 10203 (2017).

    Article  ADS  Google Scholar 

  10. I. J. Kim et al., Phys. Plasmas 23, 070701 (2016).

    Article  ADS  Google Scholar 

  11. A. Di Piazza, C. Müller, K. Hatsagortsyan and C. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  12. S. Bulanov, T. Z. Esirkepov, M. Kando, J. Koga, K. Kondo and G. Korn, Plasma Phys. Rep. 41, 1 (2015).

    Article  ADS  Google Scholar 

  13. P. Gibbon, Short pulse laser interactions with matter (Imperial College Press, London, 2005).

    Book  MATH  Google Scholar 

  14. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, Dordrecht, 2013).

    Book  Google Scholar 

  15. F. Albert and A. G. Thomas, Plasma Phys. Controlled Fusion 58, 103001 (2016).

    Article  ADS  Google Scholar 

  16. S. Eliezer, The interaction of high-power lasers with plasmas (CRC Press, Bristol, 2002).

    Book  Google Scholar 

  17. U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445 (2009).

    Article  ADS  Google Scholar 

  18. C. Thaury and F. Quéré, J. Phys. B: At. Mol. Opt. Phys. 43, 213001 (2010).

    Article  ADS  Google Scholar 

  19. I. J. Kim et al., Nat. Commun. 3, 1231 (2012).

    Article  Google Scholar 

  20. A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi and M. Passoni, Plasma Phys. Controlled Fusion 55, 124020 (2013).

    Article  ADS  Google Scholar 

  21. I. J. Kim et al., Phys. Rev. Lett. 111, 165003 (2013).

    Article  ADS  Google Scholar 

  22. K. H. Pae, C. M. Kim and C. H. Nam, Phys. Plasmas 23, 033117 (2016).

    Article  ADS  Google Scholar 

  23. L. Fedeli, High Field Plasmonics (Springer, Dordrecht, 2016).

    Google Scholar 

  24. J. Cole et al., Phys. Rev. X 8, 011020 (2018).

    Google Scholar 

  25. N. Narozhny and A. Fedotov, Contemp. Phys. 56, 249 (2015).

    Article  ADS  Google Scholar 

  26. T. Huang et al., arXiv preprint arXiv:1803.08237 (2018).

  27. A. Pukhov, Z-M. Sheng and J. Meyer-ter Vehn, Phys. Plasmas 6, 2847 (1999).

    Article  ADS  Google Scholar 

  28. T. Arber et al., Plasma Phys. Controlled Fusion 57, 113001 (2015).

    Article  ADS  Google Scholar 

  29. G. Gregori, B. Reville and F. Miniati, Phys. Rep. 601, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Tzeferacos et al., Nat. Commun. 9, 591 (2018).

    Article  ADS  Google Scholar 

  31. G. Sarri et al., Nat. Commun. 6, 6747 (2015).

    Article  Google Scholar 

  32. M. Lobet, X. Davoine, E. dHumières and L. Gremillet, Phys. Rev. AB 20, 043401 (2017).

    ADS  Google Scholar 

  33. J. Warwick et al., Phys. Rev. Lett. 119, 185002 (2017).

    Article  ADS  Google Scholar 

  34. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).

    Article  ADS  Google Scholar 

  35. M. Perry et al., in CLEO’ 96., Summaries of papers presented at the Conference on Lasers and Electro-Optics (IEEE, 1996), p. 307.

    Google Scholar 

  36. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane and H. Takuma, Opt. Lett. 23, 1468 (1998).

    Article  ADS  Google Scholar 

  37. M. Aoyama et al., Opt. Lett. 28, 1594 (2003).

    Article  ADS  Google Scholar 

  38. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong and J. Lee, Opt. Lett. 35, 3021 (2010).

    Article  ADS  Google Scholar 

  39. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong and J. Lee, Opt. Express 20, 10807 (2012).

    Article  ADS  Google Scholar 

  40. J. H. Sung et al., Opt. Lett. 42, 2058 (2017).

    Article  ADS  Google Scholar 

  41. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry and J. L. Collier, Opt. Express 16, 8039 (2008).

    Article  ADS  Google Scholar 

  42. T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  43. A. Pukhov and J. Meyer-ter Vehn, Appl. Phys. B 74, 355 (2002).

    Article  ADS  Google Scholar 

  44. X. Wang et al., Nat. Commun. 4, 1988 (2013).

    Article  Google Scholar 

  45. W. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014).

    Article  ADS  Google Scholar 

  46. V. B. Pathak, H. T. Kim, J. Vieira, L. O. Silva and C. H. Nam, submitted (2018).

  47. M. H. Cho, V. B. Pathak, H. T. Kim and C. H. Nam, submitted (2018).

  48. M. Borghesi et al., Phys. Plasmas 9, 2214 (2002).

    Article  ADS  Google Scholar 

  49. K. W. D. Ledingham, P. McKenna and R. P. Singhal, Science 300, 1107 (2003).

    Article  ADS  Google Scholar 

  50. T. Tajima, D. Habs and X. Yan, in Reviews of Accelerator Science and Technology.: Volume 2: Medical Applications of Accelerators (World Scientific, Singapore, 2009), p. 201.

    Book  Google Scholar 

  51. S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000).

    Article  ADS  Google Scholar 

  52. L. O. Silva et al., Phys. Rev. Lett. 92, 015002 (2004).

    Article  ADS  Google Scholar 

  53. S. Bulanov et al., Phys. Rev. E 78, 026412 (2008).

    Article  ADS  Google Scholar 

  54. A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009).

    Article  ADS  Google Scholar 

  55. A. Robinson, M. Zepf, S. Kar, R. Evans and C. Bellei, New J. Phys. 10, 013021 (2008).

    Article  ADS  Google Scholar 

  56. I. J. Kim et al., High Energy Density Phys. 17, 203 (2015).

    Article  ADS  Google Scholar 

  57. I. W. Choi et al., Appl. Phys. Lett. 99, 181501 (2011).

    Article  ADS  Google Scholar 

  58. I. W. Choi et al., Rev. Sci. Instrum. 80, 053302 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hee Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.K., Kim, H.T., Choi, I.W. et al. Exploration of Strong Field Physics with Multi-PW Lasers. J. Korean Phys. Soc. 73, 179–189 (2018). https://doi.org/10.3938/jkps.73.179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.179

Keywords

Navigation