Skip to main content
Log in

Characteristics of the Shock Structure for Transition Injection in Laser Wakefield Acceleration

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In order to develop a stable and efficient laser wakefield accelerator by transition injection, the characteristics of the plasma density generated in a gas medium by shock was experimentally measured. The density difference between before and after the shock, and the density after the shock are important parameters for determining the charge and energy of the electron beam in the transition injection scheme. Based on experiments, we developed an adjustment method of these parameters and measured the characteristics of the electron beam by using the shock structure. The shock structure in the gas medium was generated by inserting a blade in a supersonic gas nozzle, and plasma was generated by using a 16-TW laser. Before the shock, the density increases and after that, the density is the same as the density without the shock. The ratio of the density difference was in the range of ~ 0.1–0.6, which could be adjusted according to the position of the blade. The density after the shock was adjustable by varying the distance between the laser and the nozzle, and it was in a suitable range of ~ 5 × 1018 cm −3–1.2 × 1019 cm −3 for the electron acceleration. The measured electron beam indicates that the position of the shock needs to be in the range of ~ 0.3–0.5 mm before the laser focal position in the vacuum because of faster laser focus due to self-focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Hogstrom and P. R. Almond, Phys. Med. Biol. 51, 455 (2006).

    Article  Google Scholar 

  2. S. Fourmaux, K. Ta Phuoc, P. Lassonde, S. Corde, G. Lebrun, V. Malka, A. Rousse and J. C. Kieffer, Appl. Phys. Lett. 101, 111106 (2012).

    Article  ADS  Google Scholar 

  3. T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  4. H. T. Kim, V. B. Pathak, K. H. Pae, A. Lifschitz, F. Sylla, J. H. Shin, C. Hojbota, S. K. Lee, J. H. Sung, H. W. Lee, E. Guillaume, C. Thaury, K. Nakajima, J. Vieira, L. O. Silva, V. Malka and C. H. Nam, Nature 7, 10203 (2017).

    Google Scholar 

  5. S. P. D. Mangles, A. G. R. Thomas, C. Bellei, A. E. Dangor, C. Kamperidis, S. Kneip, S. R. Nagel, L. Willingale and Z. Najmudin, IEEE Trans. Plasma Sci. 36, 1715 (2008).

    Article  ADS  Google Scholar 

  6. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec and V. Malka, Nature 444, 737 (2006).

    Article  ADS  Google Scholar 

  7. J. Kim, Y. H. Hwangbo and K. N. Kim, Plasma Phys. Control. Fusion 60, 034008 (2018).

    Article  ADS  Google Scholar 

  8. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).

    Article  ADS  Google Scholar 

  9. S. Bulanov, N. Naumova, F. Pegoraro and J. Sakai, Phys Rev. E 58, 5257 (1998).

    Article  ADS  Google Scholar 

  10. A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch and L. Veisz, Phys. Rev. Lett. 110, 185006 (2013).

    Article  ADS  Google Scholar 

  11. C. Thaury, E. Guillaume, A. Lifschitz, K. Ta. Phuoc, M. Hansson, G. Grittani, J. Gautier, J-P. Goddet, A. Tafzi, O. Lundh and V. Malka, Nature 5, 16310 (2015).

    Google Scholar 

  12. M. Hansson, B. Aurand, X. Davoine, H. Ekerfelt, K. Svensson, A. Persson, C-G. Wahlström and O. Lundh, Phys. Rev. ST Accel. Beams 18, 071303 (2015).

    Article  ADS  Google Scholar 

  13. H. Ekerfelt, M. Hansson, I. G. Gonzlez, X. Davoine and O. Lundh, Nature 7, 12229 (2017).

    Google Scholar 

  14. J. Kim and G. J. Kim, J. Korean Phys. Soc. 62, 1662 (2013).

    Google Scholar 

  15. S. Semushin and V. Malka, Rev. Sci. Instrum. 72, 2961 (2001).

    Article  ADS  Google Scholar 

  16. K. Schmid and L. Veisz, Rev. Sci. Instrum. 83, 053304 (2012).

    Article  ADS  Google Scholar 

  17. W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca and L. O. Silva, Phys. Rev. ST Accel. Beams 10, 061301 (2007).

    Article  ADS  Google Scholar 

  18. E. Esarey, C. B. Schroeder and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.N., Hwangbo, Y., Jeon, Sg. et al. Characteristics of the Shock Structure for Transition Injection in Laser Wakefield Acceleration. J. Korean Phys. Soc. 73, 561–566 (2018). https://doi.org/10.3938/jkps.73.561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.561

Keywords

Navigation