Skip to main content
Log in

Effects of Aging on Thermoelectric Properties of Tetrahedrite Cu12Sb4S13

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Tetrahedrite Cu12Sb4S13 was prepared by mechanical alloying and hot pressing. The phase transition, microstructure, and thermoelectric properties (electronic conductivity, Seebeck coefficient, power factor, thermal conductivity, and dimensionless figure of merit) were examined under various aging conditions (atmosphere, temperature, and time). When aged at temperatures above 723 K in air, various oxides (SbO2, Sb2O3, and Sb6O7(SO4)2) and sulfides (Cu9S8, Cu2S, Cu1.96S, and CuSbS2) were formed through oxidation, volatilization, and decomposition of the tetrahedrite phase. However, the tetrahedrite phase was stable up to 723 K in vacuum. The pristine specimen exhibited a dimensionless figure of merit of 0.86 at 723 K, resulting from a power factor of 0.95 mW·m−1K−2 and a thermal conductivity of 0.78 W·m−1K−1 at 723 K. For the specimens aged at 523–723 K for 10 h in air, the dimensionless figure of merit varied from 0.81 to 0.92 as the power factor ranged from 0.97 to 1.04 mW·m−1K−2 and the thermal conductivity ranged from 0.80 to 0.85 W·m−1K−1. However, the thermoelectric performance was slightly degraded when the specimen was aged at 723 K for 100 h because of a decreased power factor and increased thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Qiu, X. Shi and L. Chen, Energy Stor. Mater. 3, 85 (2016).

    Article  Google Scholar 

  2. S. Battiston et al., J. Alloys Compd. 207, 75 (2017).

    Article  Google Scholar 

  3. F. H. Sun et al., RSC Adv. 7, 18909 (2017).

    Article  Google Scholar 

  4. J. Heo et al., Chem. Mater. 26, 2047 (2014).

    Article  Google Scholar 

  5. A. P. Gon¸calves et al., J. Electron. Mater. 47, 2880 (2018).

    Article  Google Scholar 

  6. R. Chetty, A. Bali and R. C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  Google Scholar 

  7. Y. Bouyrie et al., J. Mater. Chem. C 3, 10476 (2015).

    Article  Google Scholar 

  8. T. Barbier et al., J. Alloys Compd. 634, 253 (2015).

    Article  Google Scholar 

  9. K. Chen, Ph.D. Thesis, Queen Mary University of London, UK, 2016.

  10. J. H. Pi et al., J. Electron. Mater. 48, 1991 (2019).

    Article  ADS  Google Scholar 

  11. S. Y. Kim et al., J. Electron. Mater. 48, 1857 (2019).

    Article  ADS  Google Scholar 

  12. R. Chetty et al., Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  13. X. Lu et al., Chem. Mater. 28, 1781 (2016).

    Article  ADS  Google Scholar 

  14. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  15. X. Lu and D. T. Morelli, MRS Commun. 3, 129 (2013).

    Article  Google Scholar 

  16. X. Lu and D. T. Morelli, J. Electron. Mater. 43, 1983 (2014).

    Article  ADS  Google Scholar 

  17. D. S. P. Kumar et al., J. Electron. Mater. 46, 2616 (2017).

    Article  ADS  Google Scholar 

  18. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).

    Article  ADS  Google Scholar 

  19. Y. Yan et al., Energy Storage Mater. 13, 127 (2018).

    Article  Google Scholar 

  20. M. D. Nielsen, V. Ozolins and J. P. Heremans, Energy Environ. Sci. 6, 570 (2013).

    Article  Google Scholar 

  21. D. T. Morelli, V. Jovovic and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008)

    Article  ADS  Google Scholar 

  22. P. G. Klemens, Sol. Sta. Phys. 7, 1 (1958).

    Article  Google Scholar 

  23. S. Shinde and J. S. Goela, High Thermal Conductivity Materials (Springer, New York, USA, 2005), p. 37.

    Google Scholar 

  24. M. C. Roufosse and P. G. Klemens, Phys. Rev. B 7, 5379 (1973).

    Article  ADS  Google Scholar 

  25. Y. Bouyrie et al., Phys. Chem. Chem. Phys. 17, 19751 (2015).

    Article  Google Scholar 

  26. X. Lu et al., Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  27. B. Madavali and S. J. Hong, J. Electron. Mater. 45, 12 (2016).

    Article  Google Scholar 

  28. R. Chetty et al., Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  Google Scholar 

  29. J. Wang et al., J. Electron. Mater. 45, 2274 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Industrial Core Technology Development Program (10083640) funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, JH., Lee, GE. & Kim, IH. Effects of Aging on Thermoelectric Properties of Tetrahedrite Cu12Sb4S13. J. Korean Phys. Soc. 74, 865–870 (2019). https://doi.org/10.3938/jkps.74.865

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.865

Keywords

Navigation