Skip to main content
Log in

Effects of the Post-Annealing Treatment on the Properties of Ga-Doped SnOx Thin Films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the effects of the post-annealing treatment (PAT) on the properties of Ga-doped tin-oxide (Ga-SnOx) thin films grown at room temperature by using a radio-frequency magnetron sputtering technique. On the basis of X-ray photoelectron spectroscopy (XPS), dynamic secondaryion mass spectrometry, X-ray diffraction (XRD), and Hall Effect measurements, we conclude that n-type SnO2 is the dominant phase in all samples regardless of PAT at low temperatures (25–200 °C). The Sn2+ area decreased to 32.5% with increasing temperature up to 150 °C, with a simultaneous increase in the Sn4+ area to 59%. This was attributed to a decrease and an increase in the Ga and the oxygen contents in the samples, respectively, which also caused a decrease in the number of oxygen vacancies in the samples treated at higher temperatures. In contrast, XPS on the samples post-annealed at temperatures higher than 150 °C showed results opposite to those of the samples treated at temperatures lower than 150 °C. This indicates that the Ga ions in Ga-doped SnOx films act as hole acceptors and that heat treatment is useful for controlling the number of oxygen vacancies, Sn2+ ions, and Sn4+ ions in Ga-doped SnOx films. In addition, XRD showed that post-annealing did not affect the amorphous phase in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).

    Article  Google Scholar 

  2. L. Guo et al., Mater. Sci. Semicond. Process. 46, 35 (2016).

    Article  Google Scholar 

  3. L. Qiang et al., Solid-State Electron. 129, 163 (2017).

    Article  ADS  Google Scholar 

  4. J-H. Lee et al., IEEE Electron Dev. Lett. 37, 300 (2016).

    ADS  Google Scholar 

  5. A. Azmi et al., IEEE Electron Dev. Lett. 38, 1543 (2017).

    Article  ADS  Google Scholar 

  6. P-C. Chen et al., J. Alloys Compd. 707, 162 (2017).

    Article  Google Scholar 

  7. H. Luo, L. Liang and H. Cao, Solid-State Electron. 129, 88 (2017).

    Article  ADS  Google Scholar 

  8. J. S. Ahn, R. Pode and K. B. Lee, Thin Solid Films 608, 102 (2016).

    Article  ADS  Google Scholar 

  9. Y. Ogo et al., Appl. Phys. Lett. 93, 032113 (2008).

    Article  ADS  Google Scholar 

  10. L. Y. Liang et al., J. Electrochem. Soc. 157, H598 (2010).

    Article  Google Scholar 

  11. J. Um, B. M. Roh, S. Kimand S. E. Kim, Mater. Sci. Semicond. Process. 16, 1679 (2013).

    Article  Google Scholar 

  12. P. C. Hsu et al., Jpn. J. Appl. Phys. 52, 05DC07 (2013).

    Article  Google Scholar 

  13. P. C. Hsu et al., Thin Solid Films 555, 57 (2014).

    Article  ADS  Google Scholar 

  14. S-S. Lin, Y-S. Tsai and K-R. Bai, Appl. Surf. Sci. 380, 203 (2016).

    Article  ADS  Google Scholar 

  15. S-S. Lin, S-Y. Fan and Y-S. Tsai, Ceram. Int. 43, 1802 (2017).

    Article  Google Scholar 

  16. H-J. Kim et al., IEEE Electron Dev. Lett. 38, 473 (2017).

    Article  ADS  Google Scholar 

  17. A. H-T. Nguyen et al., Thin Solid Films 641, 24 (2017).

    Article  ADS  Google Scholar 

  18. J. Yang et al., IEEE Trans. Electron Devices 63, 1904 (2016).

    Article  ADS  Google Scholar 

  19. B. L. Zhu et al., J. Alloys Compd. 719, 429 (2017).

    Article  Google Scholar 

  20. M. S. Huh et al., Electrochem. Solid-State Lett. 12, H385 (2009).

    Article  Google Scholar 

  21. X. Zhang et al., Superlattices Microstruct. 123, 330 (2018).

    Article  ADS  Google Scholar 

  22. W-S. Kim et al., Thin Solid Films 520, 2220 (2012).

    Article  ADS  Google Scholar 

  23. B. L. Zhu et al., Ceram. Int. 43, 10288 (2017).

    Article  Google Scholar 

  24. S. S. Pan et al., Appl. Phys. Lett. 95, 222112 (2009).

    Article  ADS  Google Scholar 

  25. Y. Kim et al., Mater. Sci. Eng. B 177, 1470 (2012).

    Article  Google Scholar 

  26. Y. Kim, J. Um, S. Kim and S. E. Kim, ECS Solid State Letters 1, P29 (2012).

    Article  Google Scholar 

  27. H. P. Dang, Q. H. Luc, V. H. Le and T. Le, J. Alloys Compd. 687, 1012 (2016).

    Article  Google Scholar 

  28. C. Z. Chen et al., Results Phys. 7, 2588 (2017).

    Article  ADS  Google Scholar 

  29. H. I. Bang, H. B. Seo, B. S. Bae and E-J. Yun, Phys. Status Solidi A 216, 1800863 (2019).

    Article  ADS  Google Scholar 

  30. A. Ammari, M. Trari, B. Bellal and N. Zebbar, J. Electroanal. Chem. 823, 638 (2018).

    Article  Google Scholar 

  31. E. Elangovan and K. Ramamurthi, Cryst. Res. Technol. 38, 779 (2003).

    Article  Google Scholar 

  32. A. Ammari, M. Trari and N. Zebbar, Mater. Sci. Semicond. Proc. 89, 97 (2019).

    Article  Google Scholar 

  33. C. Luan, Z. Zhu, W. Miand J. Ma, J. Alloys Compd. 586, 426 (2014).

    Article  Google Scholar 

  34. K. Liand D. Xue, J. Phys. Chem. A 110, 11332 (2006).

    Article  Google Scholar 

  35. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2011).

    Google Scholar 

  36. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009).

    Google Scholar 

  37. V. Y. Prokhorenko et al., HighTemp. 38, 954 (2000).

    Google Scholar 

  38. P. Heitjans and J. Kärger, Diffusion in Condensed Matter: Methods, Materials, Models (Springer, Birkhauser, 2005).

    Book  Google Scholar 

  39. D. M. Priyadarshini, R. Mannam, M. S. R. Rao and N. DasGupta, Appl. Surf. Sci. 418, 414 (2017).

    Article  ADS  Google Scholar 

  40. H. Luo et al., ACS Appl. Mater. Interf. 7, 17023 (2015).

    Article  Google Scholar 

  41. C-H. Hung et al., Mater. Sci. Semicond. Process. 67, 84 (2017).

    Article  Google Scholar 

  42. H. Xie et al., Mater. Sci. Semicond. Process. 64, 1 (2017).

    Article  Google Scholar 

  43. H. P. Dang, Q. H. Luc, T. T. Nguyen and T. Le, J. Alloys Compd. 776, 276 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Academic Research Fund of Hoseo University in 2018 (20180341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Jung Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, H.I., Yun, EJ. & Bae, B.S. Effects of the Post-Annealing Treatment on the Properties of Ga-Doped SnOx Thin Films. J. Korean Phys. Soc. 75, 561–568 (2019). https://doi.org/10.3938/jkps.75.561

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.561

PACS numbers

Keywords

Navigation