Skip to main content
Log in

Condensation of Rodlike Counterions on a Charged Cylinder

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the condensations of dumbbell-like counterions onto an oppositely charged cylinder at weak and strong electrostatic coupling strengths. Performing extensive Monte Carlo simulations, we show that the condensation characteristics of the dumbbell ions can be understood by viewing dumbbell ions of length d as point ions with an effective valency depending on the radial distance r from the cylinder’s axis. In terms of the condensation behavior, dumbbell ions behave as two independent point ions if rd, but act as a single point ion with twofold valency when rd. Such a distance-dependent effective valency as a characteristic of ions of extended structures explains a unique feature in the condensed counterion fraction and heat capacity at both weak and strong coupling strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-L. Barrat and J-F. Joanny, Adv. Chem. Phys. 94, 1 (1996).

    Google Scholar 

  2. V. A. Bloomfield, Biopolymers 31, 1471 (1991).

    Article  Google Scholar 

  3. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  Google Scholar 

  4. N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).

    Article  ADS  Google Scholar 

  5. R. Podgornik, D. Rau and V. A. Parsegian, Biophys. J. 66, 962 (1994).

    Article  Google Scholar 

  6. T. E. Angelini, H. Liang, W. Wriggers and G. C. L. Wong, Proc. Natl. Acad. Sci. U.S.A. 100, 8634 (2003).

    Article  ADS  Google Scholar 

  7. G. C. Wong et al., Science 288, 2035 (2000).

    Article  ADS  Google Scholar 

  8. B-Y. Ha and A. J. Liu, Phys. Rev. Lett. 79, 1289 (1997).

    Article  ADS  Google Scholar 

  9. M. L. Henle and P. A. Pincus, Phys. Rev. E 71, 060801 (2005).

    Article  ADS  Google Scholar 

  10. M. Sayar and C. Holm, Phys. Rev. E 82, 031901 (2010).

    Article  ADS  Google Scholar 

  11. H. Boroudjerdi et al., Phys. Rep. 416, 219 (2005).

    Article  Google Scholar 

  12. J. W. Klein and B. R. Ware, J. Chem. Phys. 80, 1334 (1984).

    Article  ADS  Google Scholar 

  13. A. Popov and D. A. Hoagland, J. Polym. Sci. B: Polym. Phys. 42, 3616 (2004).

    Article  ADS  Google Scholar 

  14. N. V. Brilliantov, D. V. Kuznetsov and R. Klein, Phys. Rev. Lett. 81, 1433 (1998).

    Article  ADS  Google Scholar 

  15. H. Schiessel and P. Pincus, Macromolecules 31, 7953 (1998).

    Article  ADS  Google Scholar 

  16. R. Golestanian, M. Kardar and T. B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999).

    Article  ADS  Google Scholar 

  17. Y. W. Kim and W. Sung, Phys. Rev. Lett. 91, 118101 (2003).

    Article  ADS  Google Scholar 

  18. E. Koculi, C. Hyeon, D. Thirumalai and S. A. Woodson, J. Am. Chem. Soc. 129, 2676 (2007).

    Article  Google Scholar 

  19. E. Koculi, N-K. Lee, D. Thirumalai and S. A. Woodson, J. Mol. Biol. 341, 27 (2004).

    Article  Google Scholar 

  20. R. M. Fuoss, A. Katchalsky and S. Lifson, Proc. Natl. Acad. Sci. U.S.A. 37, 579 (1951).

    Article  ADS  Google Scholar 

  21. T. Alfrey, P. W. Berg and H. Morawetz, J. Polym. Sci. 7, 543 (1951).

    Article  ADS  Google Scholar 

  22. M. Le Bret and B. H. Zimm, Biopolymers 23, 287 (1984).

    Article  Google Scholar 

  23. G. S. Manning, J. Chem. Phys. 51, 924 (1969).

    Article  ADS  Google Scholar 

  24. G. S. Manning, J. Chem. Phys. 51, 3249 (1969).

    Article  ADS  Google Scholar 

  25. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).

    Google Scholar 

  26. Y. Levin, Physica A 257, 408 (1998).

    Article  ADS  Google Scholar 

  27. A. L. Kholodenko and A. L. Beyerlein, Phys. Rev. Lett. 74, 4679 (1995)

    Article  ADS  Google Scholar 

  28. Y. Y. Suzuki, J. Phys.: Condens. Matter 16, S2119 (2004).

    ADS  Google Scholar 

  29. A. Deshkovski, S. Obukov and M. Rubinstein, Phys. Rev. Lett. 86, 2341 (2001).

    Article  ADS  Google Scholar 

  30. M. L. Henle, C. D. Santangelo, D. M. Patel and P. A. Pincus, Europhys. Lett. 66, 284 (2004).

    Article  ADS  Google Scholar 

  31. B. O’Shaughnessy and Q. Yang, Phys. Rev. Lett. 94, 048302 (2005).

    Article  ADS  Google Scholar 

  32. M. Deserno, C. Holm and S. May, Macromolecules 33, 199 (2000).

    Article  ADS  Google Scholar 

  33. Q. Liao, A. V. Dobrynin and M. Rubinstein, Macromolecules 36, 3399 (2003).

    Article  ADS  Google Scholar 

  34. A. Naji and R. R. Netz, Phys. Rev. Lett. 95, 185703 (2005).

    Article  ADS  Google Scholar 

  35. A. Naji and R. R. Netz, Phys. Rev. E 73, 056105 (2006).

    Article  ADS  Google Scholar 

  36. M. Cha, J. Yi and Y. W. Kim, Eur. Phys. J. E 40, 70 (2017).

    Article  Google Scholar 

  37. M. Cha, J. Yi and Y. W. Kim, Sci. Rep. 7, 10551 (2017).

    Article  ADS  Google Scholar 

  38. L. C. Gosule and J. A. Schellman, Nature 259, 333 (1976).

    Article  ADS  Google Scholar 

  39. D. J. Needleman et al., Proc. Natl. Acad. Sci. U.S.A. 101, 16099 (2004).

    Article  ADS  Google Scholar 

  40. J. Pelta, F. Livolant and J-L. Sikorav, J. Biol. Chem. 271, 5656 (1996).

    Article  Google Scholar 

  41. E. Raspaud, M. O. de la Cruz, J-L. Sikorav and F. Livolant, Biophys. J. 74, 381 (1998).

    Article  ADS  Google Scholar 

  42. J. C. Butler, T. Angelini, J. X. Tang and G. C. L. Wong, Phys. Rev. Lett. 91, 028301 (2003).

    Article  ADS  Google Scholar 

  43. Y. W. Kim, J. Yi and P. Pincus, Phys. Rev. Lett. 101, 208305 (2008).

    Article  ADS  Google Scholar 

  44. S. May, A. Iglic, J. Rescic, S. Maset and K. Bohinc, J. Phys. Chem. B 112, 1685 (2008).

    Article  Google Scholar 

  45. M. Kanduc et al., J. Phys.: Condens. Matter 21, 424103 (2009).

    Google Scholar 

  46. A. Naji, M. Kanduc, J. Forsman and R. Podgornik, J. Chem. Phys. 139, 150901 (2013).

    Article  ADS  Google Scholar 

  47. D. Dean, J. Dobnikar, A. Naji and R. Podgornik, Electrostatics of Soft and Disordered Matter (Pan Stanford Publishing, Singapore, 2014).

    Book  Google Scholar 

  48. S. Dutta and Y. S. Jho, Phys. Rev. E 93, 012504 (2016).

    Article  ADS  Google Scholar 

  49. M. Cha, S. Ro and Y. W. Kim, Phys. Rev. Lett. 121, 058001 (2018).

    Article  ADS  Google Scholar 

  50. R. R. Netz and H. Orland, Eur. Phys. J. E 1, 203 (2000).

    Article  Google Scholar 

  51. R. R. Netz, Eur. Phys. J. E 5, 557 (2001).

    Article  Google Scholar 

  52. A. Moreira and R. R. Netz, Phys. Rev. Lett. 87, 078301 (2001).

    Article  ADS  Google Scholar 

  53. For various polyelectrolytes, typical values of the surface charge density and the radius are given as σs = 0.17 e/nm2 (F-actin), 0.38 e/nm2 (microtubule) and R = 3.7 nm (F-actin), 12.5 nm (microtubule), which gives parameters in the range of Ξ = 0.5 ∼ 30 and ξ = 3 ∼ 60 for mono- to tri-valent counterions, respectively.

  54. A. Moreira and R. R. Netz, Eur. Phys. J. E 8, 33 (2002).

    Article  Google Scholar 

  55. D. Andelman, in Soft Condensed Matter Physics in Molecular and Cell Biology, edited by W. C. K. Poon and D. Andelman (Taylor & Francis, New York, 2006).

  56. A. Naji and R. R. Netz, Eur. Phys. J. E 13, 43 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Grant No. NRF-2020R1A2C1014826). S. R. was supported by the National Research Foundation of Korea (2019R1A6A3A03033761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Woon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, M., Ro, S. & Kim, Y.W. Condensation of Rodlike Counterions on a Charged Cylinder. J. Korean Phys. Soc. 77, 811–818 (2020). https://doi.org/10.3938/jkps.77.811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.811

Keywords

Navigation