A Compact Plasma System for Experimental Study

Article Preview

Abstract:

A compact plasma system is set up at Ravenshaw University, India. The plasma system consists of a curved vacuum chamber which is nothing but a part of a toroid (θ=700) having minor radius, r= 0.3 m and major radius, R= 0.5 m, vacuum system, electromagnet, gas injected washer stacked plasma gun to produce plasma blobs/filaments, pulse forming network to energise plasma gun, diagnostic tools like electric probes, magnetic probes, spectrometer, high speed CCD camera, digital pulse/delay generator to synchronise the diagnostic tools. A pair of copper coil is wound over the chamber and capacitive pulse is fed to the coil to produce non-uniform magnetic field inside the chamber. The gas injected washer stacked plasma gun is a mono-anode - multi cathode system having five cathodes made up of brass and an anode made up of copper. The gun impedance is ~ 15 Ω. The pulse forming network (PFN) is Guillemin E type which consists of capacitors having equal capacitance 5.5 μF and inductors having equal inductances 1.5 μH. The pulse width of the PFN is ~ 7.6 μs for a seven stage network, as tested with known resistive circuit. Magnetic probes are designed and calibrated using a Helmholtz coil to map the radial magnetic field profile of the plasma chamber. Electric probes like Langmuir triple probe, velocity probes are designed to measure plasma parameters like blob velocity, density, temperature etc. Emission spectroscopy method is used to identify charged species inside the plasma. High speed CCD camera is used to interpret the structure of the plasma. A digital pulse/trigger generator is used to synchronise the CCD, spectrometer and switching thyristor etc. Preliminary results are also reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-100

Citation:

Online since:

January 2013

Export:

Price:

[1] W. H. Bostick : Phys. Rev. Vol. 104 (1956), p.292.

Google Scholar

[2] W. H. Bostick and O. A. Twite: Nature Vol. 179 (1957), p.214.

Google Scholar

[3] W. H. Bostick: Phys Fluids Vol. 3 (1960) p.486.

Google Scholar

[4] M. Alidiere, R. Aymar, Ph. Jourdan, F. Koechlin and A. Samain: Phys. Fluids Vol. 6 (1963), p.407.

Google Scholar

[5] J. F. Steinhaus, N. L. Oleson and W. L. Barr: Phys Fluids Vol. 8 (1965), p.1720.

Google Scholar

[6] P. F. Little and B. E. J. Avis: Nucl. Energy, Part C, Plasma Phys Vol. 8 (1966), p.11.

Google Scholar

[7] K. K. Jain, P. I. John, A. M. Punithavelu and P. P. Rao: J. Phys. E: Sci. Instrum. Vol. 13 (1980) p.928.

Google Scholar

[8] J. E. Osher: Rev. Sci. Instrum. Vol. 53 (1982), p.1685.

Google Scholar

[9] A. BenAmar Baranga , A. Fisher and D. Tzach: Rev. Sci. Instrum. Vol. 56 (1985), p.1472.

Google Scholar

[10] S. F. Schaer: Acta. Phys. Pol. A 88 (1995) S77.

Google Scholar

[11] A. V. Voronin and K. G. Hellblom: Plasma Phys. and Controlled Fusion Vol. 41 (1999), p.293.

Google Scholar

[12] H. Himura, Y. Saito, A. Sanpei, S. Masamune, N. Takeuchi and T. Shiono: Rev. Sci. Instrum. Vol. 77 (2006) p.073506.

Google Scholar

[13] T. Asai, H. Itagaki, H. Numasawa, Y. Terashima, Y. Hirano and A. Hirose: Rev. Sci. Instrum. Vol. 81 (2010), p.063502.

Google Scholar

[14] F. H. Coensgen, W. H. Cummins, G. Gormezano, B. F. Logan, A. W. Molvik, W. E. Nexsen,T. C. Simonen, B. W. Stellard and W. C. Turner: Phys. Rev. Lett. Vol. 37 (1976), p.143.

DOI: 10.1103/physrevlett.37.143

Google Scholar

[15] R. Prater, R. Lattaye, S. Wong, S. Ejima, C. Moeller and P. Peterson: EPRI Report ER-215 (1976).

Google Scholar

[16] M. Dembinski, P. K. John and A. G. Ponomarenko: Appl. Phys. Lett. Vol. 34 (1971), p.553.

Google Scholar

[17] T. H. Buller, R. J. Turnbull and K. Kim: Appl. Phys. Lett. Vol. 34 (1979), p.7268.

Google Scholar

[18] S. C. Hsu and P. M. Bellan: Mon. Not. Royal Astron. Soc. Vol. 334(2) (2002), p.257.

Google Scholar

[19] G. Sahoo, R. Paikaray, J. Ghosh, D. C. Patra, N. Sasini: O. J. Phys. Vol. 17(1) (2010) p.53.

Google Scholar

[20] G. Sahoo, R. Paikaray, D. Karan, N. Sasini, D. C. Patra, S. Samantaray, J. Ghosh, A. Sanyasi: IEEE Xplore Vol. 6002608 (2011), p.6465.

DOI: 10.1109/icmt.2011.6002608

Google Scholar

[21] N. K. Naik and Y. Perla: Mineral Properties Vol. 27(4) Vol. 27 (4) (2008), p.504.

Google Scholar

[22] D. W. A. Rees: Mechanics of Solids and Structures (Imperial College Press, 2000) p.175.

Google Scholar

[23] J. E. Minor and H. S. Norville: J. Archit Eng. Vol. 13(3), (2006), p.116.

Google Scholar

[24] W. Umrath: Fundamentals of vacuum technology (Vacuum Technology training Centre, Cologne, 1998) p.67.

Google Scholar

[25] G. N. Glasoe and J. V. Lebacqz: Pulse Generators (McGraw Hill Book Company, New York, 1948) p.5.

Google Scholar

[26] H. J. White, P. R. Gillette and J. V. Lebacqz: Pulse Generators Ed. G. N. Glasoe and J. V. Lebacqz (McGraw Hill Book Company, New York, 1948) p.200.

Google Scholar

[27] E. G. Cook: Pulse Forming Network Investigation, M S thesis on Electrical Engineering, Texas Tech University (1975), p.41.

Google Scholar

[28] G. Sahoo, R. Paikaray , S. Samantaray, D. C. Patra D C, J. Ghosh , M. B. Chowdhuri: Asian Journal of Spectroscopy (2012), pp.231-238.

Google Scholar

[29] F. F. Chen: Electrostatic Probes in Plasma Diagnostic Techniques Ed. R. H. Huddlestone and S. L. Leonard (Academic Press, 1965) p.113.

Google Scholar

[30] N. Sasini, R. Paikaray, L. Dinda, G. Sahoo, J. Ghosh, A. Sanyasi: J. Phy.: Conf. Ser. Vol. 208 (2010) p.012132.

DOI: 10.1088/1742-6596/208/1/012132

Google Scholar

[31] D. Sangwan: Private communication, DST SERC School on Plasma Diagnostics, held at IPR, Bhat, Gandhinagar, (2009).

Google Scholar

[32] R. F. Eckman: Langmuir Probe measurements in a plume of pulsed plasma thrusters M S thesis on Mechanical Engineering, Worcester Polytechnic Institute, 1999, p.30.

Google Scholar