Using DOProC Method in Structural Reliability Assessment

Article Preview

Abstract:

Reliability of load-carrying structures has been assessed by various calculation procedures based on probability theory and mathematic statistics, which have been becoming more and more popular. The calculation procedures are well-suited for the design of elements in load-carrying structures with the required level of reliability if at least some input parameters are random and contribute to a qualitatively higher level of the reliability assessment and, in turn, higher safety of those who use the buildings and facilities. This paper discusses application of the original and new probabilistic methods – the Direct Optimized Probabilistic Calculation (“DOProC”), which uses a purely numerical approach without any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases, to considerably faster completion of computations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

860-869

Citation:

Online since:

February 2013

Export:

Price:

[1] M. R. M. Akramin, A. Zulkifli and M. M. Mahat: Reliability Analysis of Uncertain Input Variables for Cracked Structures. Advances in Mechanical Engineering, pts 1-3, book series: Applied Mechanics and Materials, Vol. 52-54, pp.1358-1363 (6 p), doi: 10. 4028/www. scientific. net/AMM. 52-54. 1358, ISSN 1660-9336, (2011).

DOI: 10.4028/www.scientific.net/amm.52-54.1358

Google Scholar

[2] K. Bergmeister, D. Novak, R. Pukl. and V. Cervenka: Structural and Reliability Analysis for Existing Engineering Structures, Theoretical Background. Structure and Infrastructure Engineering, vol. 5, issue 4, p.267–275 (9 p), doi: 10. 1080/15732470601185612, (2009).

DOI: 10.1080/15732470601185612

Google Scholar

[3] R. Cajka and P. Manasek: Building Structures in Danger of Flooding. IABSE Conference New Delhi, India 2005: Role of Structural Engineers towards Reduction of Poverty. New Delhi, India, pp.551-558 ISBN 978-3-85748-111-6, WOS: 000245746100072, (2005).

DOI: 10.2749/222137805796272296

Google Scholar

[4] R. Cajka, P. Mateckova, M. Stara and L. Mynarzova: Probability Assessment of Compressive Strength as a Basis for Post Tensioned Masonry Testing. Recent Researchers in Environmental & Geological Sciences, Kos Island, Greece, WSEAS Press, pp.447-450 (4 p), ISSN 2227-4359, ISBN 978-1-61804-110-4, (2012).

Google Scholar

[5] R. Cajka: Determination of Friction Parameters for Soil – Structure Interaction Tasks. Recent Researches in Environmental & Geological Sciences, Energy, Environmental and Structural Engineering Series No. 4, Kos Island, Greece, WSEAS Press, pp.435-440 (6 p), ISSN 2227-4359, ISBN 978-1-61804-110-4, (2012).

Google Scholar

[6] R. Cajka: A Subsoil Model based on Numerical Integration of a Nonlinear Halfspace. In: Proceedings of the Eighth International Conference on Engineering Computational Technology, Civil-Comp Press, Stirlingshire, UK, Paper 114, doi: 10. 4203/ccp. 100. 114, (2012).

DOI: 10.4203/ccp.100.114

Google Scholar

[7] R. Cajka, P. Mateckova and M. Janulikova: Bitumen Sliding Joints for Friction Elimination in Footing Bottom. Applied Mechanics and Materials, Vol. 188, pp.247-252 (6 p), Trans Tech Publications, Switzerland, ISSN 1660-9336, doi: 10. 4028/www. scientific. net/AMM. 188. 247, (2012).

DOI: 10.4028/www.scientific.net/amm.188.247

Google Scholar

[8] A. Der Kiureghian and T. Dakessian: Multiple Design Points in First and Second-Order Reliability. Structural Safety, vol. 20, issue 1, p.37–49 (13 p), doi: 10. 1016/S0167-4730(97)00026-X, (1998).

DOI: 10.1016/s0167-4730(97)00026-x

Google Scholar

[9] J. C. Helton and F. J. Davis: Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety, vol. 81, issue 1, p.23–69 (47 p), doi: 10. 1016/S0951-8320(03)00058-9, (2003).

DOI: 10.1016/s0951-8320(03)00058-9

Google Scholar

[10] P. Janas, M. Krejsa and V. Krejsa: Assessment Using Direct Determined Probabilistic Calculation: paper 72. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing: CC 2009, Funchal, Madeira, Portugal. Edited by B.H.V. Topping, L.F. Costa Neves and R.C. Barros. Kippen, Stirlingshire, Scotland: Civil-Comp Press, 2009, abstract (1 p), full paper (20 p). ISBN 978-1-905088-31-7. Elsevier B.V., 2012. ISBN 978-190508830-0, (2009).

DOI: 10.4203/ccp.91.72

Google Scholar

[11] P. Janas, M. Krejsa and V. Krejsa: Using the Direct Determined Fully Probabilistic Method (DDFPM) for determination of failure. In: Proceedings of European Safety and Reliability Conference (ESREL 2009): Reliability, Risk and Safety: Theory and Applications, Vols 1-3, Prague, Czech Republic, 2009. Edited by Briš, Guedes Soares & Martorell. London: Taylor & Francis Group, pp.1467-1474 (8 p). ISBN 978-0-415-55509-8. WOS: 000281188500203, (2010).

DOI: 10.1201/9780203859759.ch203

Google Scholar

[12] P. Janas, M. Krejsa and V. Krejsa: Software Package ProbCalc from the Poin of View of a User: paper #10. Transactions of the VŠB - Technical University of Ostrava: Construction Series [online]. Warsaw, Poland: Versita, Volume 10, Issue 1, pp.1-11 (11 p). ISSN 1804-4824 (Online); ISSN 1213-1962 (Print). DOI: 10. 2478/v10160-010-0010-7, (2010).

DOI: 10.2478/v10160-010-0010-7

Google Scholar

[13] P. Janas, R. Snupárek, V. Krejsa and M. Krejsa: Designing of Anchoring Reinforcement in Underground Workings Using DOProC Method: paper #20. Transactions of the VSB - Technical University of Ostrava: Construction Series [online]. Warsaw, Poland: Versita, Volume 10, Issue 2, pp.1-13, ISSN 1804-4824 (Online); ISSN 1213-1962 (Print), doi: 10. 2478/v10160-010-0020-5, (2010).

DOI: 10.2478/v10160-010-0020-5

Google Scholar

[14] Z. Kala: Stability problems of steel structures in the presence of stochastic and fuzzy uncertainty, Thin-Walled Structures, Volume 45, Issues 10–11, pp.861-865 (5 p), doi: 10. 1016/j. tws. 2007. 08. 007, (2007).

DOI: 10.1016/j.tws.2007.08.007

Google Scholar

[15] P. Konecny, J. Brozovsky and V. Krivy: Simulation Based Reliability Assessment Method using Parallel Computing. Proceedings of the First International Conference on Parallel, Distributed and Grid Computing for Engineering. Civil Comp Proceedings, Issue: 90, pp.542-549 (8 p), ISSN 1759-3433, ISBN 978-1-905088-29-4, WOS: 000271452700038, (2009).

DOI: 10.4203/ccp.90.38

Google Scholar

[16] J. Kralik: A RSM method for probabilistic nonlinear analysis of reinforced concrete bubbler tower structure integrity. In: Proceedings of European Safety and Reliability Conference (ESREL 2009): Reliability, Risk and Safety: Theory and Applications, Vols 1-3, Prague, Czech Republic, 2009. Edited by Briš, Guedes Soares & Martorell. London: Taylor & Francis Group, pp.1369-1372 (4 p). ISBN 978-0-415-55509-8. WOS: 000281188500188, (2010).

DOI: 10.1201/9780203859759.ch188

Google Scholar

[17] M. Krejsa: Probabilistic Calculation of Fatigue Crack Progression Using FCProbCalc Code: paper #3. Transactions of the VSB - Technical University of Ostrava: Construction Series [online], Warsaw, Poland: Versita, Vol. 12, Issue 1, pp.1-11 (11 p), ISSN 1804-4824 (Online); ISSN 1213-1962 (Print). DOI: 10. 2478/v10160-012-0003-9, (2012).

DOI: 10.2478/v10160-012-0003-9

Google Scholar

[18] M. Krejsa: Stochastic Modelling of Fatigue Crack Progression using the DOProC Method: Paper 113. Proceedings of the Eleventh International Conference on Computational Structures Technology, Stirlingshire, Scotland: Civil-Comp Press, summary (1 p), full paper pp.1-18, ISBN 978-1-905088-54-6, ISSN 1759-3433, doi: 10. 4203/ccp. 99. 113, (2012).

DOI: 10.4203/ccp.99.113

Google Scholar

[19] M. Krejsa and V. Tomica: Determination of Inspections of Structures Subject to Fatigue: paper #7. Transactions of the VSB - Technical University of Ostrava: Construction Series [online], Warsaw, Poland: Versita, Vol. 11, Issue 1, pp.1-9 (9 p), ISSN 1804-4824 (Online); ISSN 1213-1962 (Print), doi: 10. 2478/v10160-011-0007-x, (2011).

DOI: 10.2478/v10160-011-0007-x

Google Scholar

[20] V. Krivy and K. Vavrusova: New Digital Ground Snow Load Map for the Area of the Czech Republic, Proceedings of the 5th WSEAS International Conference on Natural Hazards (NAHA´12): WSEAS Press, ISBN 978-1-61804-120-3, ISSN 2227-4359, (2012).

Google Scholar

[21] A. Lokaj, K. Vavrusova and E. Rykalova: Application of laboratory tests results of dowel joints in cement-splinter boards VELOX into the fully probabilistic methods (SBRA method). Applied Mechanics and Materials, Vol. 137, Trans Tech Publications, Switzerland, pp.95-99 (5 p), ISSN 1660-9336, doi: 10. 4028/www. scientific. net/AMM. 137. 95, (2012).

DOI: 10.4028/www.scientific.net/amm.137.95

Google Scholar

[22] M. Marschalko, M. Fuka, L. Treslin: Measurements by the method of precise inclinometry on locality affected by mining activity. Archives of Mining Sciences, Vol. 53, Issue 3, pp.397-414 (18 p), ISSN 0860-7001, WOS: 000259381400006, (2008).

Google Scholar

[23] R. Rackwitz and B. Fiessler: Structural Reliability Under Combined Random Load Sequences. Computers & Structures, vol. 9, issue 5, p.489–494 (6 p), doi: 10. 1016/0045-7949(78)90046-9, (1978).

DOI: 10.1016/0045-7949(78)90046-9

Google Scholar

[24] M. Sejnoha, J. Sejnoha, M. Kalouskova and J. Zeman: Stochastic analysis of failure of earth structures, Probabilistic Engineering Mechanics, Vol. 22, Issue 2, pp.206-218 (13 p), doi: 10. 1016/j. probengmech. 2006. 11. 003, ISSN 0266-8920, (2007).

DOI: 10.1016/j.probengmech.2006.11.003

Google Scholar

[25] B. H. Thacker, D. S. Riha, S. H. K. Fitch, L. J. Huyse and J. B. Pleming: Probabilistic Engineering Analysis Using the NESSUS software, Structural Safety, vol. 28, issue 1-2, pp.83-107 (25 p), doi: 10. 1016/j. strusafe. 2004. 11. 003, (2006).

DOI: 10.1016/j.strusafe.2004.11.003

Google Scholar

[26] L. Tvedt: Proban - Probabilistic Analysis. Structural Safety, vol. 28, issue 1-2, pp.150-163 (14 p), doi: 10. 1016/j. strusafe. 2005. 03. 003, (2006).

DOI: 10.1016/j.strusafe.2005.03.003

Google Scholar

[27] M. Vorechovsky and D. Novak: Correlation Control in Small-Sample Monte Carlo type simulations I: A Simulated Annealing Approach, Probabilistic Engineering Mechanics, vol. 24, issue 3, p.452–462, doi: 10. 1016/j. probengmech. 2009. 01. 004, (2009).

DOI: 10.1016/j.probengmech.2009.01.004

Google Scholar