Mechanics of Microfilaments Networks: A Cross-Scales Study

Article Preview

Abstract:

The mechanical properties of microfilament networks are systematically summarized at different special scales in this paper. We have presented the mechanical models of single microfilaments and microfilament networks at microscale. By adopting a coarse-grained simulation strategy, the mechanical stability of microfilaments related cellular structures are analysed. Structural analysis is conducted to microfilament networks to understand the stress relaxation under compression. The nanoscale molecular mechanisms of the microfilaments deformation is also summarized from the viewpoint of molecular dynamics simulation. This paper provides the fundaments of multiscale modelling framework for the mechanical behaviours simulation of hierarchical microfilament networks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-315

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] D.A. Fletcher, R.D. Mullins, Cell mechanics and the cytoskeleton, Nature, 463 (2010) pp.485-492.

Google Scholar

[2] P. Cossart, Cellular microbiology, ASM Press, Washington DC, (2005).

Google Scholar

[3] T.D. Pollard, L. Blanchoin, R.D. Mullins, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Biomol. Struct., 29 (2000) pp.545-576.

DOI: 10.1146/annurev.biophys.29.1.545

Google Scholar

[4] K.H. Wrighton, Cytoskeleton: JMY: actin up in cell motility, Nat. Rev. Mol. Cell Biol., 10 (2009) pp.304-304.

DOI: 10.1038/nrm2678

Google Scholar

[5] H. Kojima, A. Ishijima, T. Yanagida, Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation, Proceedings of the National Academy of Sciences, 91 (1994) pp.12962-12966.

DOI: 10.1073/pnas.91.26.12962

Google Scholar

[6] D.E. Dupuis, W. Guilford, J. Wu, D. Warshaw, Actin filament mechanics in the laser trap, J. Muscle Res. Cell Motil., 18 (1997) pp.17-30.

Google Scholar

[7] X. Liu, G.H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers, Biophys. J., 83 (2002) pp.2705-2715.

DOI: 10.1016/s0006-3495(02)75280-6

Google Scholar

[8] T. Li, Y.T. Gu, P.K.D.V. Yarlagadda, A. Oloyede, Continuum mechanics modelling of microfilament networks with different architectures based on molecular investigation of single F-actin, 4th International Conference on Computational Methods, (2012).

Google Scholar

[9] T. Li, Y.T. Gu, X. -Q. Feng, P.K.D.V. Yarlagadda, A. Oloyede, Hierarchical multiscale model for biomechanics analysis of microfilament networks, J. Appl. Phys., 113 (2013) pp.194701-194707.

DOI: 10.1063/1.4805029

Google Scholar

[10] M.L. Gardel, F. Nakamura, J. Hartwig, J.C. Crocker, T.P. Stossel, D.A. Weitz, Stress-Dependent Elasticity of Composite Actin Networks as a Model for Cell Behavior, Phys. Rev. Lett., 96 (2006) p.088102.

DOI: 10.1103/physrevlett.96.088102

Google Scholar

[11] J. Stricker, T. Falzone, M.L. Gardel, Mechanics of the F-actin cytoskeleton, J. Biomech., 43 (2010) pp.9-14.

Google Scholar

[12] K. Lee, J.L. Gallop, K. Rambani, M.W. Kirschner, Self-Assembly of Filopodia-Like Structures on Supported Lipid Bilayers, Science, 329 (2010) pp.1341-1345.

DOI: 10.1126/science.1191710

Google Scholar

[13] M. Karplus, Molecular dynamics simulations of biomolecules, Acc. Chem. Res., 35 (2002) pp.321-323.

DOI: 10.1021/ar020082r

Google Scholar

[14] D. ben-Avraham, M.M. Tirion, Dynamic and elastic properties of F-actin: a normal-modes analysis, Biophys. J., 68 (1995) pp.1231-1245.

DOI: 10.1016/s0006-3495(95)80299-7

Google Scholar

[15] J.W. Chu, G.A. Voth, Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis, Proc. Natl. Acad. Sci. U. S. A., 102 (2005) p.13111.

DOI: 10.1073/pnas.0503732102

Google Scholar

[16] Y.T. Gu, L. Zhang, A concurrent multiscale method based on the meshfree method and molecular dynamics analysis, Multiscale Modeling & Simulation, 5 (2006) pp.1128-1155.

DOI: 10.1137/060654232

Google Scholar

[17] Y.T. Gu, P.K. Yarlagadda, A multiscale deformation analysis for mono-crystalline copper under dynamic uniaxial tension, Advanced Materials Research, 32 (2008) pp.241-244.

DOI: 10.4028/www.scientific.net/amr.32.241

Google Scholar

[18] L. Liu, L. Zhang, J. Lua, Branched carbon nanotube reinforcements for improved strength of polyethylene nanocomposites, Appl. Phys. Lett., 101 (2012) pp.161907-161905.

DOI: 10.1063/1.4761936

Google Scholar

[19] J.W. Chu, G.A. Voth, Coarse-grained modeling of the actin filament derived from atomistic-scale simulations, Biophys. J., 90 (2006) pp.1572-1582.

DOI: 10.1529/biophysj.105.073924

Google Scholar

[20] M.A. Deriu, A. Shkurti, G. Paciello, T.C. Bidone, U. Morbiducci, E. Ficarra, A. Audenino, A. Acquaviva, Multiscale modelling of cellular actin filaments: From atomistic molecular to coarse grained dynamics, Proteins: Struct., Funct., Bioinf., (2012).

DOI: 10.1002/prot.24053

Google Scholar

[21] Y. Shimada, T. Adachi, Y. Inoue, M. Hojo, Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method, Mol. Cell. Biomech., 6 (2009) pp.161-174.

Google Scholar

[22] X. -Y. Ji, X. -Q. Feng, Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules, Physical Review E, 84 (2011) p.031933.

DOI: 10.1103/physreve.84.031933

Google Scholar

[23] T. Li, Y.T. Gu, A. Oloyede, P.K.D.V. Yarlagadda, Molecular investigation of the mechanical properties of single actin filaments based on vibration analyses, Comput. Methods Biomech. Biomed. Eng., (2012).

DOI: 10.1080/10255842.2012.706279

Google Scholar

[24] H.E. Huxley, A. Stewart, H. Sosa, T. Irving, X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle, Biophys. J., 67 (1994) pp.2411-2421.

DOI: 10.1016/s0006-3495(94)80728-3

Google Scholar

[25] M. Gardel, J. Shin, F. MacKintosh, L. Mahadevan, P. Matsudaira, D. Weitz, Elastic behavior of cross-linked and bundled actin networks, Science, 304 (2004) pp.1301-1305.

DOI: 10.1126/science.1095087

Google Scholar

[26] O. Chaudhuri, S.H. Parekh, D.A. Fletcher, Reversible stress softening of actin networks, Nature, 445 (2007) p.295.

DOI: 10.1038/nature05459

Google Scholar

[27] M.M.A.E. Claessens, M. Bathe, E. Frey, A.R. Bausch, Actin-binding proteins sensitively mediate F-actin bundle stiffness, Nat. Mater., 5 (2006) pp.748-753.

DOI: 10.1038/nmat1718

Google Scholar