Hysteresis Investigation of Shear-Mode MR Damper for Front-Loaded Washing Machine

Article Preview

Abstract:

In this research, a shear-mode MR damper that can replace conventional passive damper of a front-loaded washing machine is designed, manufactured and an experiment based model is employed to characterize hysteresis behavior of the damper. Firstly, an optimized MR damper for front loaded washing machine is manufactured and an experimental system is set up for testing hysteresis behaviour of the damper. The experimental test is then conducted and presented. From experiential results, hysteresis of the damper is investigated and a suitable hysteresis model is proposed for the damper. The proposed hysteresis model of damper is then evaluated through experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-370

Citation:

Online since:

March 2019

Export:

Price:

* - Corresponding Author

[1] R. W. Phillips, Engineering applications of fluids with a variable yield stress, PhD Thesis University of California, Berkeley, California, (1969).

Google Scholar

[2] G. M. Kamath and N. M. Wereley, A nonlinear viscoelastic-plastic model for electrorheological fluids, Smart Mater. Struct. 6 (1996) 351–9.

DOI: 10.1088/0964-1726/6/3/012

Google Scholar

[3] N. M. Wereley and L. Pang, Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models, Smart Mater. Struct. 7 (1998) 732–43.

DOI: 10.1088/0964-1726/7/5/015

Google Scholar

[4] D. Y. Lee and N. M. Wereley, Analysis of electro- and magneto-rheological flow mode dampers using Herschel–Bulkley model, Proc. SPIE Smart Structure and Materials Conf. (Newport Beach, CA) vol 3989 (Bellingham, WA: SPIE Optical Engineering Press) (2000) p.244–52.

DOI: 10.1117/12.384565

Google Scholar

[5] D. Y. Lee, Y. T. Choi and N. M. Wereley, Performance analysis of ER/MR impact damper systems using Herschel–Bulkley model, J. Intell. Mater. Syst. Struct. 13 (2002) 525–31.

DOI: 10.1106/104538902031061

Google Scholar

[6] S. R. Hong, S. John , Wereley N. M., Choi Y. T. and Choi S. B., A unifying perspective on the quasi-steady analysis of magnetorheological dampers, J. Intell. Mater. Syst. Struct. 19 (2008) 959–76.

DOI: 10.1177/1045389x07082949

Google Scholar

[7] S. B. Choi, S. K. Lee and Y. P. Park, A hysteresis model for the field-dependent damping force of a magnetorheological damper, J. Sound Vib. 245 (2001) 375–83.

DOI: 10.1006/jsvi.2000.3539

Google Scholar

[8] X. Q. Ma, Wang E. R., Rakheja S., et al., Modeling hysteretic characteristics of MR-fluid damper and model validation, Proceedings of the 41st IEEE Conference on Decision and Control 1 (2002) 1675–1680.

DOI: 10.1109/cdc.2002.1184761

Google Scholar

[9] Kim K. J., Lee C. W. and Koo J. H., Design and modeling of semi-active squeeze film dampers using magneto-rheological fluids, Smart Mater. Struct. 17 (2008) 035006.

DOI: 10.1088/0964-1726/17/3/035006

Google Scholar

[10] Chang C. C. and Roshke P., Neural network modeling of a magnetorheological damper, J. Intell. Mater. Syst. Struct. 9 (1998) 755–64.

Google Scholar

[11] Wang D. H. and Liao W. H., Modeling and control of magnetorheological fluid dampers using neural networks, Smart Mater. Struct. 14 (2005) 111–26.

DOI: 10.1088/0964-1726/14/1/011

Google Scholar

[12] Schurter K. C. and Roschke P. N., Fuzzy modelling of a magnetorheological damper using ANFIS, Proceedings of the 9th IEEE International Conference on Fuzzy Systems 1 (2000) 122–127.

DOI: 10.1109/fuzzy.2000.838645

Google Scholar

[13] Kim H. S. and Roschke P. N., Fuzzy control of base-isolation system using multi-objective genetic algorithm, Comput.-Aided Civil Infrastruct. Eng. 21 (2006) 436–49.

DOI: 10.1111/j.1467-8667.2006.00448.x

Google Scholar

[14] Stanway R., Sproston J. L. and Stivens N. G., Non-linear modeling of an electrorheological vibration damper, Journal of Electrostatics 20 (1987) 167–184.

DOI: 10.1016/0304-3886(87)90056-8

Google Scholar

[15] Gamota D. R. and Filisko F. E., Dynamic mechanical studies of electrorheological materials: moderate frequencies, Journal of Rheology 35(3) (1991) 399–425.

DOI: 10.1122/1.550221

Google Scholar

[16] Wereley N. M., Pang L. G. and Kamath M., Idealized hys teresis modeling of electrorheological and magnetorheological dampers, Journal of Intelligent Material Systems and Structures 9 (1998) 642–649.

DOI: 10.1177/1045389x9800900810

Google Scholar

[17] Jimenez R. and Alvarez L., Real time identification of structures with magnetorheological dampers, Proc. 41st IEEE (Las Vegas, Nevada, USA) (2002) p.1017–22.

Google Scholar

[18] Bouc R., Modele mathematique d'hysteresis, Acustica 24 (1971) 16–25.

Google Scholar

[19] Wen Y. K., Method of random vibration of hysteretic systems, Journal of Engineering Mechanics: ASCE 102(EM2) (1976) 249–263.

Google Scholar

[20] Spencer B. F., Dyke S. J. Jr., Sain M. K., et al., Phenomenological model of a magnetorheological damper, Journal of Engineering Mechanics: ASCE 123 (1997) 230–238.

DOI: 10.1061/(asce)0733-9399(1997)123:3(230)

Google Scholar

[21] Yao G. Z., Yap F. F., Chen G., et al., MR-damper and its application for semi-active control of vehicle suspension system, Mechatronics 12 (2002) 963–973.

DOI: 10.1016/s0957-4158(01)00032-0

Google Scholar

[22] Dominguez A., Sedaghati R. and Stiharu I., Modeling the hysteresis phenomenon of magnetorheological dampers, Journal of Smart Materials and Structures 13 (2004) 1351–1361.

DOI: 10.1088/0964-1726/13/6/008

Google Scholar

[23] Dominguez A., Sedaghati R. and Stiharu I., A new dynamic hysteresis model for magnetorheological dampers, Journal of Smart Materials and Structures 15 (2006) 1179–1189.

DOI: 10.1088/0964-1726/15/5/004

Google Scholar

[24] Aurelio D. G., Ion S. and Ramin S., Practical hysteresis model for magnetorheological dampers, Journal of Intelligent Material Systems and Structures 0(0) (2013) 1–13.

Google Scholar

[25] D. Q. Bui, V. L. Hoang, H. D. Le, H. Q. Nguyen, Design and evaluation of a shear-mode MR damper for front-loaded washing machines, Proceedings of the International Conference on Advances in Computational Mechanics (2017).

DOI: 10.1007/978-981-10-7149-2_74

Google Scholar