Effect of Temperature on Optical and Photovoltaic Properties of nc-TiO2 Thin Films for Dye Sensitized Solar Cell

Article Preview

Abstract:

In this investigation, anatase nanocrystalline TiO2 (nc-TiO2) films are deposited by using sol-gel dip coating method on ITO substrates followed by annealing at 200, 300, 400 and 500 °C / 2 hr in air. To examine the structure and morphology of films, XRD, Raman spectroscopy, SEM and HRTEM techniques are used. The XRD studies showed the evolution of pure anatase TiO2 phase with average crystallite size = 12-15 nm in resultant films. The morphological studies using SEM and HRTEM indicated ~ uniform size distribution of spherical agglomerates in films and nanocrystalline state of films (average particle size ~ 20 nm) respectively. The optical properties calculated from UV-Visible transmission spectra are found to be indirect band gap energy = 3.20 eV, absorbance coefficient = 9.2 x 104 cm-1, transmittance = 88.5 %, refractive index = 2.12 and porosity ratio = 36.6 % for the 400 °C annealed film. The better photovoltaic performance: JSC = 2.34 mA/cm2, VOC = 0.562V, FF = 35.23 % & η = 0.46 % is obtained for eosin-Y dye sensitized solar cell made with 400 °C annealed film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-210

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] M.C. Kao, H.Z. Chen, S.L. Lin, Z.Y. Hung, The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells, Thin Solid Films 517 (2009) 5096-5099.

DOI: 10.1016/j.tsf.2009.03.102

Google Scholar

[2] Y. M. Sung, H. J. Kim, Sputter deposition and surface treatment of TiO2 films for dye-sensitized solar cells using reactive RF plasma, Thin Solid Films 515 (2007) 4996-4999.

DOI: 10.1016/j.tsf.2006.10.079

Google Scholar

[3] H. H. Park, S. Park, K. S. Kim, W. Y. Jeon, B. K. Park, H. S. Kim, T. S. Bae, M. H. Lee, Bioactive and Electrochemical Characterization of TiO2 Nanotubes on Titanium via Anodic Oxidation, Electrochem. Acta 55 (2010) 6109-6114.

DOI: 10.1016/j.electacta.2010.05.082

Google Scholar

[4] M. Grätzel, Sol-Gel Processed TiO2 Films for Photovoltaic Applications, J. Sol Gel Sci. & Technol. 22 (2001) 7-13.

Google Scholar

[5] M. T. Sarode, P. N. Shelke, Y. B. Khollam, M. G. Takwale, S. R. Jadkar, B. B. Kale, K. C. Mohite, Effect of Annealing Temperature on Optical Properties of Titanium Dioxide Thin Films Prepared by Sol-Gel Method, Inter. J. Modern Phys. B 25(31) (2011).

DOI: 10.1142/s0217979211066490

Google Scholar

[6] T. Ohsaka, Y. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321-324.

DOI: 10.1002/jrs.1250070606

Google Scholar

[7] C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements, Sensor & Actuators B 3 (1991)147-155.

DOI: 10.1016/0925-4005(91)80207-z

Google Scholar

[8] P. Chrysicopoulou, D. Davazoglou, C. Trapalis, Optical properties of very thin (< 100 nm) sol–gel TiO2 films, Thin Solid Films 323 (1998) 188-193.

DOI: 10.1016/s0040-6090(97)01018-3

Google Scholar

[9] S. Sankar, K. G. Gopchandran, Effect of annealing on the structural, electrical and optical properties of nanostructured TiO2 thin films, Cryst. Res. Technol. 44 (9) (2009) 989-994.

DOI: 10.1002/crat.200900073

Google Scholar

[10] D. B. Williams, C. Barry Carter, Transmission Electron Microscopy, Plenum Publishing Corpn., (1996).

Google Scholar

[11] N. Hongsith, S. Choopun, ZnO nanobelts as a photoelectrode for dye-sensitized solar cell, Chiang Mai, J. Sci. 37(1) (2010) 48-54.

Google Scholar