Pyrolysis Behaviour of Boron Phenolic Resin-Based Ceramicable Composites by Introducing of MgO-Al2O3-SiO2

Article Preview

Abstract:

Ceramifying composites based on boron phenolic resin (BPF) were prepared with the modification additives of nanoMgO-Al2O3-SiO2 (MAS). The effects of fillers on the thermal stability of BPF-based composites were investigated. MAS inorganic fillers could enhance the heat-resistance with a high residue yield and a near-net shape at elevated temperature. The effect of elevated temperature on microstructure and phase composition of composites was also characterized by scanning electron microscope (SEM) and X-ray diffraction analyses (XRD) when samples were heated at 600°C, 800°C, 1000°C and 1200°C respectively. SEM showed the presence of the skin and compact ceramic structure formation, more pronounced at higher temperature. XRD patterns manifested that the formation of new phases (main glass phase) in 1200°C stemmed mainly from the reaction between the porous activated carbon from the decomposed resin matrix and MAS fillers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-145

Citation:

Online since:

January 2017

Export:

Price:

[1] J.G. Gao, Y.F. Liu, L. T. Yang. Thermal stability of boron-containing phenol formaldehyde resin [J]. Polymer Degradation and Stability. 63. 1(1999): 19-22.

DOI: 10.1016/s0141-3910(98)00056-1

Google Scholar

[2] Y. Zhang, S.H. Shen, Y.J. Liu. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure [J]. Polymer Degradation and Stability, 2013, 98. 2(2013): 514–518.

DOI: 10.1016/j.polymdegradstab.2012.12.006

Google Scholar

[3] J.S. Tate, S. Gaikwad, N. Theodoropoulou, et al. Carbon/Phenolic Nanocomposites as Advanced Thermal Protection Material in Aerospace Applications [J]. Journal of Composites, (2013).

DOI: 10.1155/2013/403656

Google Scholar

[4] Z.J. Wang, D.J. Kwon, G.Y. Gu, et al. Ablative and mechanical evaluation of CNT/phenolic composites by thermal and microstructural analyses [J]. Composites Part B Engineering. 60. 2(2014): 597–602.

DOI: 10.1016/j.compositesb.2013.12.042

Google Scholar

[5] Y.X. Chen, P. Chen, C.Q. Hong, et al. Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles [J]. Composites Part B Engineering. 47. 3(2013): 320–325.

DOI: 10.1016/j.compositesb.2012.11.007

Google Scholar

[6] I. Srikanth, A. Daniel, S. Kumar, et al. Nano silica modified carbon–phenolic composites for enhanced ablation resistance [J]. Scripta Materialia. 63. 2(2010): 200-203.

DOI: 10.1016/j.scriptamat.2010.03.052

Google Scholar

[7] V.M. Gun'Ko, V.M. Bogatyrov, O.I. Oranska, et al. Effect of nanosilica on characteristics of carbonizates of phenol-formaldehyde resin – Fe(acac)3 [J]. Applied Surface Science. 264. 1(2013): 707–712.

DOI: 10.1016/j.apsusc.2012.10.101

Google Scholar

[8] J.G. Wang, H.Y. Jiang, Q.G. Guo, et al. High-Temperature Joining of Carbon/Carbon Composites by an Organic Resin Adhesive [J]. Journal of Adhesion Science and Technology. 23. 1(2009): 115-123.

DOI: 10.1163/156856108x344072

Google Scholar

[9] A. Paydayesh, M. Iran. Kokabi. Highly filled organoclay/phenolic resin nanocomposite as an ablative heat shield material [J]. Iranian Polymer Journal. 24. 5(2015): 389-397.

DOI: 10.1007/s13726-015-0331-6

Google Scholar

[10] D.C. Wang, G.W. Chang, Y. Chen. Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites [J]. Polymer Degradation and Stability. 93. 1(2008): 125-133.

DOI: 10.1016/j.polymdegradstab.2007.10.021

Google Scholar

[11] K.W. Thomson, R.A. Shanks, Genovese A. New Ceramifying Polymer Materials for Passive Fire Protection Applications [J]. Journal of Astm International. 4. 7(2007): 100516-100523.

DOI: 10.1520/jai100516

Google Scholar

[12] L.G. Hanu, G.P. Simon, J. Mansouri, et al. Development of polymer–ceramic composites for improved fire resistance [J]. Journal of Materials Processing Technology. 153. 22(2004): 401–407.

DOI: 10.1016/j.jmatprotec.2004.04.104

Google Scholar

[13] J. Mansouri, R.P. Burford, Y.B. Cheng. Pyrolysis behaviour of silicone-based ceramifying composites [J]. Materials Science and Engineering A. 425. 1(2006): 7-14.

DOI: 10.1016/j.msea.2006.03.047

Google Scholar

[14] S. Hamdani-Devarennes, A. Pommier, C. Longuet, et al. Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices II. Analyses on composite residues from an industrial-based pyrolysis test [J]. Polymer Degradation and Stability. 96. 9(2011).

DOI: 10.1016/j.polymdegradstab.2011.05.019

Google Scholar

[15] S. Hamdani, C. Longuet, D. Perrin, et al. Flame retardancy of silicone-based materials [J]. Polymer Degradation and Stability. 94. 4(2009): 465–495.

DOI: 10.1016/j.polymdegradstab.2008.11.019

Google Scholar

[16] L. Schmidt, X. Kornmann, A Krivda, et al. Tracking and erosion resistance of high temperature vulcanizing ATH-free silicone rubber [J]. IEEE Transactions on Dielectrics and Electrical Insulation. 17. 2(2010): 533-540.

DOI: 10.1109/tdei.2010.5448109

Google Scholar

[17] S.L. Fang, Y. Hu, L. Song, et al. Preparation and investigation of ethylene–vinyl acetate copolymer/silicone rubber/clay nanocomposites [J]. Journal of Applied Polymer Science. 113(2009): 1664-1670.

DOI: 10.1002/app.30288

Google Scholar

[18] Y.L. Xiong, Q. Shen, F. Chen, et al. High strength retention and dimensional stability of silicone/alumina composite panel under fire [J]. Fire and Materials, 2012, 36. 4(2012): 254-263.

DOI: 10.1002/fam.1107

Google Scholar

[19] R. Anyszka, D.M. Bieliński, Z. Pedzich, et. al. Influence of surfaces of modified montmorillonites on properties of silicone rubber-based ceramizable composites. Journal of Thermal Analysis and Calorimetry. 119. 1(2015): 111-121.

DOI: 10.1007/s10973-014-4156-x

Google Scholar

[20] L.G. Hanu, G.P. Simon, Y.B. Cheng. Preferential orientation of muscovite in ceramifiable silicone composites [J]. Materials Science and Engineering A. 398. 1(2005): 180–187.

DOI: 10.1016/j.msea.2005.03.022

Google Scholar

[21] Y. Qin, Z.X. Huang, M.X. Shi, J. Ding and Z. L Rao, CN. Patent 102675822.A. (2012). Z.X. Huang, Y. Qin, Z.L. Rao, J. Ding, Y.X. Li, L.M. Zhang, CN. Patent 103058632.A. (2013).

Google Scholar

[22] S.M. Logvinkov, G.D. Semchenko, D.A. Kobyzeva. Rearrangement of conodes of the phase diagram of the MgO-Al2O3-SiO2 system and its technological prospects [J]. Refractories and Industrial Ceramics. 37. 11(1996): 378-381.

DOI: 10.1007/bf02238702

Google Scholar