Nonlinear Ultrasonic Properties of Stress in 2024 Aluminum

Article Preview

Abstract:

Perturbation method is used to resolve one-dimensional wave equation under the assumption of small strain conditions. The relationship of the second order relative nonlinear coefficients (SORNC) β', the third order relative nonlinear coefficient (TORNC) δ' as the functions of fundamental and harmonic amplitudes is determined. The specimens are loaded from-200 MPa to 320 MPa at increments of 40 MPa by the electron universal testing machines. The SORNC β' and TORNC δ' are detected by the nonlinear ultrasonic testing system when ultrasonic waves propagate in the specimens. Results show that the relative nonlinear coefficients increase with the stress. The SORNT β' is approximately linear with the stress when stress is lower than 84.6% of the yield strength. The TORNC δ' is approximately linear with the stress when stress is lower than 76.9% of the yield strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

371-377

Citation:

Online since:

January 2017

Export:

Price:

[1] W. T. SONG, Q. X. PAN. Benchmark of Residual Stress for Ultrasonic Nondestructive Testing[C]. 2013 Far East Forum on Nondestructive Evaluation/Testing, (2013).

DOI: 10.1109/fendt.2013.6635532

Google Scholar

[2] C. G. Xu, X. Li, Q. X. Pan, Wentao Song. Bolt stress measurements by ultrasonic non-destructive methods [J]. Journal of Applied Acoustic, 33(2014): 102-106.

Google Scholar

[3] C. G. Xu, W. T. Song, Q. X. Pan, Xiao Li et. al. Residual stress nondestructive testing method using ultrasonic. [J]. Nondestructive testing, 36(2014): 25-31.

DOI: 10.1109/fendt.2014.6928254

Google Scholar

[4] L. Bjørnø. Forty Years of Nonlinear Ultrasound[J]. Ultrasonics, 40(2002): 11-17.

DOI: 10.1016/s0041-624x(02)00084-7

Google Scholar

[5] A. Hikata, B. B. Chick, C. Elbaum. Effect of Dislocations on Finite Amplitude Ultrasonic Waves in Aluminum[J]. Applied Physics Letters, 3(1963): 195-197.

DOI: 10.1063/1.1753845

Google Scholar

[6] M. A. Breazeale, D. O. Thompson. Finite-amplitude Ultrasonic Waves in Aluminum[J]. Applied Physics Letters, 3(1963): 77~78.

DOI: 10.1063/1.1753876

Google Scholar

[7] R. D. Peters, M. A. Breazeale, J. Ford. Third Harmonic of an Initial Sinusoidal Ultrasonic Wave in Copper[J]. Applied Physics Letters, 12(1968): 106~109.

DOI: 10.1063/1.1651894

Google Scholar

[8] Y. Ryuzo, K. Koichiro, M. Morimasa. Application of Nonlinear Ultrasonic Measurement for Quality Assurance of Diffusion Bonds of Gamma Titanium Aluminum Alloy and Steel[J]. Research in Nondestructive Evaluation, 2006, 17(3): 222-239.

DOI: 10.1080/09349840600981120

Google Scholar

[9] S. Chaki, G. Bourse. Guided Ultrasonic Waves for Non-destructive Monitoring of the Stress Levels in Prestressed Steel Strands[J]. Ultrasonics, 2009, 11(6): 230-235.

DOI: 10.1016/j.ultras.2008.07.009

Google Scholar

[10] B. Ivan, N. Claudio, etc. Nonlinear Ultrasonic Guided Waves for Stress Monitoring in Prestressing Tendons for Post-tensioned Concrete Structures[J]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2009, 19(2): 230-235.

DOI: 10.1117/12.815614

Google Scholar

[11] M. Liu, Y. K. Jin, L. Jacobs, J. Qu. Experimental Study of Nonlinear Rayleigh Wave Propagation in Shot-peened Aluminum Plates-Feasibility of Measuring Residual Stress[J]. NDT&E International, 2011, 44: 67-74.

DOI: 10.1016/j.ndteint.2010.09.008

Google Scholar

[12] D. T. Zeitvogel, K. H. Matlack, J. Y. Kim, L. J. Jacobs, P. M. Singh, Ji. Qu. Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh The Rayleigh waves[J]. NDT&E International, 2014(62): 144-152.

DOI: 10.1016/j.ndteint.2013.12.005

Google Scholar

[13] G. S. Shui, Y. S. Wang, J. M. Qu. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound. [J]. Advance in Mechanics, 2005, 11(6): 412-415.

Google Scholar

[14] G.S. Shui, J.Y. Kim, J.M. Qu. A New Technique for Measuring the Acoustic Nonlinearity of Materials Using Rayleigh Waves[J]. NDT&E International, 2008, 41(4): 326-332.

DOI: 10.1016/j.ndteint.2008.01.007

Google Scholar

[15] H. Sohn, H. J. Lim, M. P. DeSimio, K. Brown, M. Derriso. Nonlinear ultrasonic wave modulation for online fatigue crack detection. JournalofSoundandVibration, 2014 (333): 1473–1484.

DOI: 10.1016/j.jsv.2013.10.032

Google Scholar

[16] L. J. Jacobs, T. J. Ulrich, J. Qu. Introduction to Special Issue on Nonlinear Ultrasonic Nondestructive Evaluation. Journal of Nondestruct Evaluation, 2014(33): 167–168.

DOI: 10.1007/s10921-014-0245-9

Google Scholar

[17] T. M. Apple, J.H. Cantrell, C.M. Amaro, C.R. Maye, W.T. Yost , S.R. Agnew, J.M. Howe. Acoustic harmonic generation from fatigue-generated dislocation substructures in copper single crystals. Philosophical Magazine, 2014, 20(5): 679–697.

DOI: 10.1080/14786435.2013.789144

Google Scholar

[18] A. A. Shah, Y. Ribakov, Ch. Zhang. Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro and macro-scale defects in concrete[J]. Materials and Design, 2013, 50: 905-916.

DOI: 10.1016/j.matdes.2013.03.079

Google Scholar

[19] Y. D. g Sha, J. Wei, Z. J. Gao, H. J. Zhong. Nonlinear response with snap-through and fatigue life prediction for panels to thermo-acoustic loadings. Journal of Vibration and Control, 2014, 20(5): 679–697.

DOI: 10.1177/1077546312463751

Google Scholar

[20] G. Ren, J. Kim, K. Y. Jhang. Relationship between second- and third-order acoustic nonlinear parameters in relative measurement. Ultrasonics, 2015, 56: 539-544.

DOI: 10.1016/j.ultras.2014.10.009

Google Scholar

[21] J. L. Rose. Ultrasonic Waves in Sollid Media[M]. Cambridge University Press, (1999).

Google Scholar

[22] E. A. Koen, Van Den Abeele, A. Sutin. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS) [J]. NDT&E International, 2001, 34(4): 239-248.

DOI: 10.1016/s0963-8695(00)00064-5

Google Scholar

[23] H. J. Yan, C.G. Xu, Q. Lin, H. C. Cai Metal Surface Fatigue Detection Using Nonlinear Ultrasonic[C]. Applied Mechanics and Materials, 2014, 156: 156-162.

DOI: 10.4028/www.scientific.net/amm.510.156

Google Scholar

[24] M. Amura, M. Meo, F. Amerini. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter[J]. Journal of the Acoustical Society of America, 2011, 130(4): 1829-1837.

DOI: 10.1121/1.3621714

Google Scholar

[25] J. Herrmann, J. Y. Kim, L. J. Jacobsa, J. Qu, Jerrol W. Littles, Michael F. Savage. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh The Rayleigh waves. Journal of Applied Physics, 2006(99): 124913.

DOI: 10.1063/1.2204807

Google Scholar

[26] O. Buck, W. L. Morris, J.M. Richardson. Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Applied Physics letters 1978, 33(5): 371-373.

DOI: 10.1063/1.90399

Google Scholar

[27] J. H. Cantrell, Fundamentals and Application of Nonlinear Ultrasonic Nondestructive Evaluation[M]. Florida: CRC Press LLC, (2003).

Google Scholar

[28] W. D. Cash, W. Cai. Contribution of dislocation dipole structures to the acoustic nonlinearity[J]. Journal of Applied Physics, 2012, 111: 074906.

DOI: 10.1063/1.3699362

Google Scholar

[29] J. Zhang, F. Xuan. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime[J]. Journal of Applied Physics, 2014, 11: 204906.

DOI: 10.1063/1.4879415

Google Scholar

[30] H. J. Yan, C.G. Xu, D. X. Xiao, H. C. Cai. Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves[J], Advances in Materials Science and Engineering, 2015, 457384: 1-9.

DOI: 10.1155/2015/457384

Google Scholar

[31] H. J. Yan, C.G. Xu, D. X. Xiao, H. C. Cai. Research on nonlinear ultrasonic properties of tension stress in metal materials. Journal of Mechanical Engineering. 52(2016)22-29.

Google Scholar