A Review of Concrete Performance Employing a Starch as Addition Using Several Regression Techniques

Article Preview

Abstract:

Nowadays, the use of additions in the concrete blends to improve its behavior is increasingly noticeable. The present research describes the effect of adding a polymer to a concrete blend of materials belonging to the zone of Morelia, Mexico. The polymer is an organic starch gained commercially, and it was added at a 2 percent per cement weight. The concrete’s physical and mechanical performance was monitored against a control blend to quantify any improvements. Destructive and non-destructive tests were performed. The addition of a polymer improved substantial concrete performance. Numerical models found correlations among the tests made, a technique by machine learning for establishing predictive models to assess the results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] HZ Lopez-Calvo, P Montes-Garcia, EM Alonso-Guzmán, W Martinez-Molina, TW Bremner, and MDA Thomas. Effects of corrosion inhibiting admixtures and supplementary cementitious materials combinations on the strength and certain durability properties of hpc. Canadian Journal of Civil Engineering, 44(11):918-926, (2017).

DOI: 10.1139/cjce-2016-0237

Google Scholar

[2] Geraldo C Isaia, Antonio Luiz Guerra GASTALDInI, and R Moraes. Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and concrete composites, 25(1):69-76, (2003).

DOI: 10.1016/s0958-9465(01)00057-9

Google Scholar

[3] ASTM International Committee C09 on Concrete and Concrete Aggregates. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, (2014).

DOI: 10.1520/c0039_c0039m-99

Google Scholar

[4] C78 ASTM et al. Standard test method for flexural strength of concrete (using simple beam with third-point loading). In American Society for Testing and Materials, volume 100, pages 19428-2959, (2010).

DOI: 10.1520/c0078_c0078m-15a

Google Scholar

[5] ASTM. Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method), (2004).

DOI: 10.1520/c1583_c1583m-20

Google Scholar

[6] C ASTM. Standard test method for pulse velocity through concrete. ASTM International, West Conshohocken, PA, (2009).

Google Scholar

[7] C ASTM et al. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. Annual book of ASTM standards, (2008).

DOI: 10.1520/c0215-08

Google Scholar

[8] Andres Antonio Torres-Acosta and L Alejandra Díaz-Cruz. Concrete durability enhancement from nopal (opuntia ficus-indica) additions. Construction and Building Materials, 243:118170, (2020).

DOI: 10.1016/j.conbuildmat.2020.118170

Google Scholar

[9] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer, (2010).

DOI: 10.1007/978-3-7908-2604-3_16

Google Scholar

[10] Moncef Nehdi, Hassan El Chabib, and M Hesham El Naggar. Predicting performance of self-compacting concrete mixtures using artificial neural networks. Materials Journal, 98(5):394-401, (2001).

DOI: 10.14359/10729

Google Scholar

[11] PR Rajagopalan, Jai Prakash, and V Naramimhan. Correlation between ultrasonic pulse velocity and strength of concrete. Indian Concrete J, 47(11):416-418, (1973).

Google Scholar

[12] Gregor Trtnik, Franci Kavčič, and Goran Turk. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1):53-60, (2009).

DOI: 10.1016/j.ultras.2008.05.001

Google Scholar

[13] S. Popovics. Analysis of the concrete strength versus ultrasonic pulse velocity relationship. American Society for Nondestructive Testing, (2007).

Google Scholar

[14] Etsuzo Ohdaira and Nobuyoshi Masuzawa. Water content and its effect on ultrasound propagation in concrete-the possibility of nde. Ultrasonics, 38(1-8):546-552, 2000.[15] JG Cabrera and P Ghoddoussi. influence of fly ash on the resistivity and rate of corrosion of reinforced concrete,. Special Publication, 145:229-244, (1994).

DOI: 10.1016/s0041-624x(99)00158-4

Google Scholar

[16] William Elkey and Erik J Sellevold. electrical resistivity of concrete,. (1995).

Google Scholar

[17] C ASTM. 702-98, standard practice for reducing samples of aggregate to testing size. ASTM Annual Book of ASTM Standards, 4, (2003).

Google Scholar

[18] SC NMX-C. 414-onncce-2004. Industria de la construcción-Cementos hidráulicos- Especificaciones y métodos de prueba, (2004).

Google Scholar

[19] Jerome M Raphael. Tensile strength of concrete. In Journal Proceedings, volume 81, pages 158-165, (1984).

Google Scholar

[20] Muhammad Fauzi Mohd Zain, HB Mahmud, Ade Ilham, and M Faizal. Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research, 32(8):1251-1258, (2002).

DOI: 10.1016/s0008-8846(02)00768-8

Google Scholar

[21] ASTM. Astm c 597: Standard test method for pulse velocity through concrete. Am. Soc. Test. Mater West Conshohocken, PA, USA, (2016).

Google Scholar

[22] Joseph L Rose. Ultrasonic waves in solid media. Cambridge university press, (2004).

Google Scholar

[23] Wilfrido Martínez-Molina, Andrés Antonio Torres-Acosta, Juan Carlos Jáuregui, Hugo Luis Chávez-García, Elia Mercedes Alonso-Guzmán, Mario Graff, and Juan Carlos Arteaga-Arcos. predicting concrete compressive strength and modulus of rupture using different ndt techniques,. Advances in Materials Science and Engineering, 2014, (2014).

DOI: 10.1155/2014/742129

Google Scholar

[24] A Del Valle Moreno, JA Guzmán Torres, EM Alonso Guzmán, W Martínez Molina, AA Torres Acosta, J Terán Guillén, MA Montes Zea, AI Torres Murillo, and M Martínez Madrid. solicitaciones mecánicas y estáticas a concreto hidráulico simple elaborado con agregados pétreos redondeados y adicionados con fibras deshidratadas de cactus opuntia,. Publicación Técnica, (448), (2015).

DOI: 10.1201/b10552-143

Google Scholar

[25] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, (2016).

Google Scholar

[26] O Troconis, A Romero, C Andrade, P Helene, and I Díaz. Durabilidad de la armadura, manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado. DURAR. Red Temática XV. B., CYTED ISBN, pages 980-296.

DOI: 10.4995/thesis/10251/192263

Google Scholar

[27] R Cigna, C Andrade, U Nürnberger, R Polder, E Weydert, and E Seitz. corrosion and protection of metals in contact with concrete,. In COST Action, (1997).

Google Scholar

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, (2011).

DOI: 10.3389/fninf.2014.00014

Google Scholar