Predicting Flow Curves of Q&P Steel Using Sharp Pyramidal Nanoindentation on Constituent Phases: Isostrain Method

Article Preview

Abstract:

In this research, a method is presented for predicting macroscopic plastic flow behavior of a quench and partitioning (Q&P) steel using data of nanoindentation experiments.The method is based on Tabor’s model in which nanohardness values obtained with indenters of different angles to be connected to the flow behavior of the indented material. The process consists of two steps: (i) the macroscopic flow relation of each microphases assessed based on the characteristic strain and constraint factor, (ii) the total flow curve of the steel extracted through an isostrain manner. A rationally successful prediction of the macroscopic plastic flow of the Q&P steel is obtained from the constituent phases properties due to consideration of the indentation size effect and application of a rule of-mixture. Eventually, the accuracy of the estimation is verified by comparing the predicted stress-strain curve to the tensile curve obtained from a standard bulk sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-91

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] M. Karam-Abian, A. Zarei-Hanzaki, H. Abedi, S. Heshmati-Manesh, Micro and macro-mechanical behavior of a transformation-induced plasticity steel developed by thermomechanical processing followed by quenching and partitioning, Mater. Sci. Eng., A 651 (2016) 233-240.

DOI: 10.1016/j.msea.2015.10.116

Google Scholar

[2] D. Edmonds, K. He, F. Rizzo, B. De Cooman, D. Matlock, J. Speer, Quenching and partitioning martensite—A novel steel heat treatment, Mater. Sci. Eng., A 438 (2006) 25-34.

DOI: 10.1016/j.msea.2006.02.133

Google Scholar

[3] S. Hamtaei, A. Zarei‐Hanzaki, A. Mohamadizadeh, Optimum Deformation Criteria and Flow Behavior Description of Boron‐Alloyed Steel through Numerical Approach, Steel Res. Int. 87(12) (2016) 1657-1669.

DOI: 10.1002/srin.201600042

Google Scholar

[4] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6) (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[5] Y. ToMOTA, I. TAMURA, Mechanical behavior of steels consisting of two ductile phases, Transactions of the Iron and Steel Institute of Japan 22(9) (1982) 665-677.

DOI: 10.2355/isijinternational1966.22.665

Google Scholar

[6] Y. Tomota, Application of the secant method to prediction of flow curves in multi-microstructure steels, Acta Mater. 45(5) (1997) 1923-1929.

DOI: 10.1016/s1359-6454(96)00313-8

Google Scholar

[7] P. Jacques, F. Delannay, J. Ladrière, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels, Metall. Mater. Trans. A 32(11) (2001) 2759-2768.

DOI: 10.1007/s11661-001-1027-4

Google Scholar

[8] P. Jacques, Q. Furnémont, F. Lani, T. Pardoen, F. Delannay, Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing, Acta Mater. 55(11) (2007) 3681-3693.

DOI: 10.1016/j.actamat.2007.02.029

Google Scholar

[9] N. Ishikawa, M. Okatsu, S. Endo, J. Kondo, Design concept and production of high deformability linepipe, 2006 International Pipeline Conference, American Society of Mechanical Engineers, 2006, pp.215-222.

DOI: 10.1115/ipc2006-10240

Google Scholar

[10] N. Ishikawa, S. Endo, J. Kondo, High performance UOE linepipes, JFE technical report 7 (2006) 20.

Google Scholar

[11] M. Karam‐Abian, A. Zarei‐Hanzaki, H.R. Abedi, The local characterization of individual phase mechanical properties using nano‐indentation and In situ scanning probe microscopy in an advanced high strength steel, Steel Res. Int. 88(1) (2017) 1600274.

DOI: 10.1002/srin.201600274

Google Scholar

[12] A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H. Abedi, M. Karam-Abian, H. Ding, D. Han, N. Kheradmand, Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process, Mater. Sci. Eng., A 725 (2018) 341-349.

DOI: 10.1016/j.msea.2018.04.042

Google Scholar

[13] E. Herbert, W. Oliver, G. Pharr, Nanoindentation and the dynamic characterization of viscoelastic solids, J. Phys. D: Appl. Phys. 41(7) (2008) 074021.

DOI: 10.1088/0022-3727/41/7/074021

Google Scholar

[14] I.M. Hutchings, The contributions of David Tabor to the science of indentation hardness, J. Mater. Res. 24(3) (2009) 581-589.

DOI: 10.1557/jmr.2009.0085

Google Scholar

[15] Z.-H. Xu, J. Ågren, An analysis of piling-up or sinking-in behaviour of elastic–plastic materials under a sharp indentation, Philosophical Magazine 84(23) (2004) 2367-2380.

DOI: 10.1080/14786430410001690015

Google Scholar

[16] X. Hou, A. Bushby, N. Jennett, Direct measurement of surface shape for validation of indentation deformation and plasticity length-scale effects: A comparison of methods, Meas. Sci. Technol. 21(11) (2010) 115105.

DOI: 10.1088/0957-0233/21/11/115105

Google Scholar

[17] Y.V. Milman, B. Galanov, S. Chugunova, Plasticity characteristic obtained through hardness measurement, Acta Metall. Mater. 41(9) (1993) 2523-2532.

DOI: 10.1016/0956-7151(93)90122-9

Google Scholar

[18] Y. Wang, Effects of indenter angle and friction on the mechanical properties of film materials, Results in Physics 6 (2016) 509-514.

DOI: 10.1016/j.rinp.2016.08.008

Google Scholar

[19] M. Karam‐Abian, A. Zarei‐Hanzaki, H. Abedi, S. Ghodrat, F. Hajy‐Akbary, L. Kestens, The Effect of Martensite‐Austenite Constituent Characteristics on the Mechanical Behavior of Quenched‐Partitioned Steel at Room Temperature, Steel Res. Int. 90(3) (2019) 1800399.

DOI: 10.1002/srin.201800399

Google Scholar

[20] K. Kese, Z.-C. Li, B. Bergman, Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip, Mater. Sci. Eng., A 404(1-2) (2005) 1-8.

DOI: 10.1016/j.msea.2005.06.006

Google Scholar

[21] M. Sakai, N. Hakiri, T. Miyajima, Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales, J. Mater. Res. 21(9) (2006) 2298-2303.

DOI: 10.1557/jmr.2006.0276

Google Scholar

[22] F. Wang, B. Fu, H. Luo, S. Staggs, R. Mirshams, W. Cooper, S. Park, M. Kim, C. Hartley, H. Lu, Characterization of the grain-level mechanical behavior of Eglin sand by nanoindentation, Experimental Mechanics 54(5) (2014) 871-884.

DOI: 10.1007/s11340-013-9845-z

Google Scholar

[23] D. Tabor, The hardness of metals, Oxford university press2000.

Google Scholar

[24] A. Atkins, D. Tabor, Hardness and deformation properties of solids at very high temperatures, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 292(1431) (1966) 441-459.

DOI: 10.1098/rspa.1966.0146

Google Scholar

[25] K.L. Johnson, K.L. Johnson, Contact mechanics, Cambridge university press1987.

Google Scholar

[26] S. Shim, J.-i. Jang, G.M. Pharr, Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation, Acta Mater. 56(15) (2008) 3824-3832.

DOI: 10.1016/j.actamat.2008.04.013

Google Scholar

[27] J.H. Strader, S. Shim, H. Bei, W.C. Oliver, G.M. Pharr, An experimental evaluation of the constant β relating the contact stiffness to the contact area in nanoindentation, Philosophical Magazine 86(33-35) (2006) 5285-5298.

DOI: 10.1080/14786430600567747

Google Scholar

[28] G. Feng, A. Budiman, W. Nix, N. Tamura, J. Patel, Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction, J. Appl. Phys. 104(4) (2008) 043501.

DOI: 10.1063/1.2966297

Google Scholar

[29] A. Bodin, J. Sietsma, S. Van der Zwaag, Flow stress prediction during intercritical deformation of a low-carbon steel with a rule of mixtures and Fe-simulations, Scripta Mater. 45(8) (2001) 875-882.

DOI: 10.1016/s1359-6462(01)01050-8

Google Scholar

[30] J.-i. Jang, S. Shim, S.-i. Komazaki, T. Honda, A nanoindentation study on grain-boundary contributions to strengthening and aging degradation mechanisms in advanced 12 Cr ferritic steel, J. Mater. Res. 22(1) (2007) 175-185.

DOI: 10.1557/jmr.2007.0009

Google Scholar