Analysis of Forces and Temperatures in Conventional and Ultrasonically-Assisted Cutting of Bone

Article Preview

Abstract:

Bone cutting is a frequently used procedure in orthopaedic and neuro surgeries. Current research on bone cutting is concerned with the efforts to decrease the forces generated during cutting the bone as well as temperature to avoid mechanical and thermal damage (bone necrosis) induced by surgical tools. The paper presents results of finite-element simulations of conventional cutting (CC) and ultrasonically-assisted cutting (UAC) of bone in order to understand thermomechanics of the process. The study was aimed at investigating the levels of tool-penetration force and temperatures induced in the bone when a hard cutting tool penetrates into it in both types of cutting. The models allow the quantitative analysis of forces and temperatures produced during the cutting process. The use of UAC reduces the tool penetration force and temperature in the cutting region

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-254

Citation:

Online since:

April 2011

Export:

Price:

[1] O.L. Harrysson, Y.A. Hosni and J.F. Nayfeh: BMC Musculoskelet Disor Vol. 8 (2007), p.91.

Google Scholar

[2] S.F.F. Malak, I.A. Anderson: Med. Eng. Physics Vol. 30 (2008) p.717

Google Scholar

[3] T. Tanishima, N. Yoshimasu and M. Ogai: Surgical Neurology Vol. 44 (1995), p.131.

Google Scholar

[4] F.G. Pallan: J. Oral. Surg Anesth. Hosp. Dent. Serv Vol. 18 (1960), P. 400.

Google Scholar

[5] W.R. Krause: BONEZone Vol. 2 (2003), p.4.

Google Scholar

[6] A.V. Mitrofanov, V.I. Babitsky and V.V. Silberschmidt: Comp. Mat. Sci Vol. 32 (2005), p.463.

Google Scholar

[7] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky and V.V. Silberschmidt: Comp. Mat. Sci Vol. 39 (2007), p.149.

Google Scholar

[8] Z.C. Li, Y. Jiao, T.W. Deines, Z.J. Pei and C. Treadwell: Int. J. Mach. Tools Manuf Vol. 45 (2005), p.1402.

Google Scholar

[9] M. Lucas, A. MacBeath, E. McCulloc and A. Cardoni: Ultrasonics Vol. 44 (2006), p.503.

Google Scholar

[10] A. Cardoni, A. MacBeath and M. Lucas: Ultrasonics Vol. 44 (2006), p.37.

Google Scholar

[11] K. Alam, A.V. Mitrofanov and V.V. Silberschmidt: American Journal of Biomedical Sciences, Vol. 1/4 (2009), p.312.

Google Scholar

[12] K. Alam, A.V. Mitrofanov, M. Bäker and V.V. Silberschmidt: IOP Publishing Journal of Physics: Conference Series, 2009, 181:012014, (8pp).

Google Scholar

[13] B.S. Khambay, A.D. Walmsley: J. Dent, Vol. 28 (2000), p.39.

Google Scholar

[14] C.H. Jacobs, M.H. Pope, J.T. Berry and F.T. Hoagland: J. Biomech Vol. 9 (1976), p.343.

Google Scholar

[15] W.R. Krause: Mechanical effects of orthogonal bone cutting, Ph.D. Dissertation, Clemson University (1976).

Google Scholar

[16] K.L. Wiggings and S. Malkin: J. Biomech. Eng Vol. 100 (1978), p.122.

Google Scholar

[17] MSC.Marc User's Guide: MSC Software Corporation, 2007, Los Angles.

Google Scholar

[18] D. Wyeth, G. Goli, A. Atkins, G. Jeronimidis and M. Fioravanti: Friction in orthogonal cutting of Douglas Fir at various grain orientations: Measurements and consequences. (Proceedings of third International Symposium on Wood Machining, Lausanne Switzerland, May, 2007, p.21).

Google Scholar

[19] C. Hortig and B. Svendsen: J. Mat. Proc. Tech Vol. 186 (2007), p.66.

Google Scholar

[20] T. Özel and E. Zeren: J. Mat. Proc. Tech Vol. 153–154 (2004), p.1019.

Google Scholar

[21] K. Alam, A.V. Mitrofanov and V.V. Silberschmidt: Comp. Mat. Sci Vol 46 (2009), p.738.

Google Scholar

[22] R. Huiskes: Acta Orthop Scan (Suppl) Vol. 185 (1980), p.44.

Google Scholar

[23] S.R.H. Davidson and D.F. James: Med. Eng. Phy Vol. 22 (2000), p.741.

Google Scholar

[24] M. Mitsuishi, S. Warisawa and N. Sugita: CIRP Ann. Manuf. Tech Vol. 53 (2004), p.107.

Google Scholar

[25] S. Naohiko, M. Mamoru, F. Yoshinori and S. Tadaaki: Journal of the Japan Society of Advanced Production Technology Vol. 24 (2006), p.8.

Google Scholar