Computational Study of Ultrasonically-Assisted Turning of Ti Alloys

Article Preview

Abstract:

Industrial applications of titanium alloys especially in aerospace, marine and offshore industries have grown significantly over the years primarily due to their high strength, light weight as well as good fatigue and corrosion-resistance properties. The machinability of these difficult-to-cut metallic materials with conventional turning (CT) techniques has seen a limited improvement over the years. Ultrasonically-assisted turnning (UAT) is an advanced machining process, which has shown to have specific advantages, especially in the machining of high-strength alloys. In this study a three-dimensional finite element model of ultrasonically-assisted oblique cutting of a Ti-based super-alloy is developed. The nonlinear temperature-sensitive material behaviour is incorporated in our numerical simulations based on results obtained with split-Hopkinson pressure bar tests. Various contact conditions are considered at the tool tip-workpiece interface to get an in-depth understanding of the mechanism influencing cutting parameters. The simulation results obtained are compared for both CT and UAT conditions to elucidate main deformation mechanisms responsible for the observed changes in the material’s responses to cutting techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-36

Citation:

Online since:

April 2011

Export:

Price:

[1] C. Brecher, C.J. Rosen, M. Emonts: Laser-assisted Milling of Advanced Materials. Physics Procedia, Vol. 5: (2010), pp.259-272.

DOI: 10.1016/j.phpro.2010.08.052

Google Scholar

[2] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt: Finite element analysis of ultrasonically assisted turning of Inconel 718. Journal of Materials Processing Technology, Vol. 153-154: (2004), pp.233-239.

DOI: 10.1016/j.jmatprotec.2004.04.299

Google Scholar

[3] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt: Finite element simulations of ultrasonically assisted turning. Computational Materials Science, Vol. 28: (2003), pp.645-653.

DOI: 10.1016/j.commatsci.2003.08.020

Google Scholar

[4] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V, Silberschmidt: Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Materials Science and Engineering, Vol. A 424: (2006), pp.318-325.

DOI: 10.1016/j.msea.2006.03.025

Google Scholar

[5] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt: 3D finite element analysis of ultrasonically assisted turning. Computational Materials Science, Vol. 39: (2007), pp.149-154.

DOI: 10.1016/j.commatsci.2005.12.045

Google Scholar

[6] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt: Analysis of forces in ultrasonically assisted turning. Journal of Sound and Vibration, Vol. 308: (2007), pp.845-854.

DOI: 10.1016/j.jsv.2007.04.003

Google Scholar

[7] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt: Stresses in ultrasonically assisted turning. Applied Mechanics & Materials, Vol. 5-6: (2006), pp.351-358.

DOI: 10.4028/www.scientific.net/amm.5-6.351

Google Scholar

[8] A.V. Mitrofanov V.I. Babitsky, V.V. Silberschmidt: Thermomechanical finite element simulations of ultrasonically assisted turning. Computational Materials Science, Vol. 32: (2005), pp.463-471.

DOI: 10.1016/j.commatsci.2004.09.019

Google Scholar

[9] DEFORMTM 3D Ver 6.1, Scientific Forming Technology Corporation, Columbus, Ohio.

Google Scholar

[10] A.V. Mitrofanov, N. Ahmed, V.I. Babitsky, V.V. Silberschmidt: Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. Journal of Materials Processing Technology, Vol. 162-163: (2005), pp.649-654.

DOI: 10.1016/j.jmatprotec.2005.02.170

Google Scholar

[11] A.J. Shih: Finite element analysis of orthogonal metal cutting mechanics. International Journal of Machine Tools and Manufacture, Vol. 36: (1996), pp.255-273.

DOI: 10.1016/0890-6955(95)98765-y

Google Scholar

[12] Z. Li, J. Lambros: Determination of the dynamic response of brittle composites by the use of the split Hopkinson pressure bar. Composites Science and Technology, Vol. 59: (1999), pp.1097-1107.

DOI: 10.1016/s0266-3538(98)00152-3

Google Scholar

[13] M. Demiral, A. Roy, V.V. Silberschmidt:, Effects of loading conditions on deformation process in indentation. Computers Materials and Continua, (2010), (Submitted)

Google Scholar

[14] H. Fassi, L. Bousschine, A. chaaba, A. Elharif: Numerical simulation of orthogonal cutting by incremental elasto-plastic analysis and finite element methods. Journal of Materials Processing Technology, Vol. 141: (2003), pp.181-188.

DOI: 10.1016/s0924-0136(02)01018-x

Google Scholar

[15] T. Oezer: The influence of friction models on finite element simulations of machining. International Journal of Machine Tools Manufacture, Vol. 46: (2006), pp.518-530.

DOI: 10.1016/j.ijmachtools.2005.07.001

Google Scholar