Synthesis and Characterization of Nanoflakes β-Ni(OH)2 Microspheres for Supercapacitors

Article Preview

Abstract:

Nanoflakes β-Ni(OH)2 microspheres were successfully synthesized by a facile hydrothermal. The microstructures and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties studies were carried out using cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy methods, respectively. The results exhibited that the β-Ni(OH)2 single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 1929 F/g could be achieved in 6 M aqueous KOH with 0 to 0.4 V potential at a charge-discharge current density of 6 mA/cm2. Therefore, the obtained nanoflakes β-Ni(OH)2 microspheres can be a potential application electrode material for supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 230-232)

Pages:

306-309

Citation:

Online since:

May 2011

Export:

Price:

[1] B. E. Conway: Electrochemical Supercapacitors (Plenum Press, New York 1999).

Google Scholar

[2] J.H. Jang, S.J. Han, T.W. Hyon and S.M. Oh: J. Power Sources Vol. 123 (2003), p.79.

Google Scholar

[3] Y. Z. Zheng, H.Y. Ding and M.L. Zhang: Mater. Res. Bull. Vol. 44 (2009), p.403.

Google Scholar

[4] B.E. Conway: J. Electrochem. Soc. Vol. 138 (1991), p.1539.

Google Scholar

[5] Q.S. Song, C.H. Chiu and S.L.I. Chan: J. Appl. Electrochem. Vol. 36 (2006), p.97.

Google Scholar

[6] M.S. Wu and H.H. Hsieh: Electrochim. Acta Vol. 53 (2008), p.3427.

Google Scholar

[7] N.A.M. Barakat, A.E.M. Omran, S. Aryal, F.A. Sheikh, H.K. Kang, and H.Y. Kim: J. Mater. Sci. Vol. 43 (2008), p.860.

Google Scholar

[8] P. Genin, A. Delahaye-Vidal, F. Portemer, K. Tekaia-Elhsissen and M. Figlarz: Eur. J. Solid State Inorg. Chem. Vol. 28 (1991), p.505.

Google Scholar

[9] T.N. Ramesh and P.V. Kamath: Bull. Mater. Sci. Vol. 31 (2008), p.169.

Google Scholar

[10] M. Diyit, P. V. Kamath and J. Gopalakrishnan: J. Electrochem. Soc. Vol. 146 (1999), p.79.

Google Scholar

[11] B. Liu, X.Y. Wang, H.T. Yuan and Y.S. Zhang: J. Appl. Electrochem. Vol. 29 (1999), p.853.

Google Scholar

[12] R.S. Jayashree and P.V. Kamath: J. Appl. Electrochem. Vol. 29 (1999), p.454.

Google Scholar

[13] L. Cao, L.B. Kong, Y.Y. Liang and H.L. Li: Chem. Commun. Vol. 14 (2004), p.1646.

Google Scholar

[14] Y.G. Wang, H.Q. Li, Y.Y. Xia: Adv. Mater. Vol. 18 (2006), p. (2019).

Google Scholar

[15] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque and M. Chesneau: J. Power Sources Vol. 101 (2001), p.109.

DOI: 10.1016/s0378-7753(01)00707-8

Google Scholar

[16] P. Kurzweil and H.J. Fischle: J. Power Sources Vol. 127 (2004), p.331.

Google Scholar