Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor

Article Preview

Abstract:

Nano-structures on the wing of Morpho butterflies generate bright blue color, and this color is sensitive to ambient gas, or more specifically, the refractive index of ambient gas. It was found that even slight change of the refractive index can lead to obvious change of the color. Such phenomenon has caught much attention and was employed as a sensing principle for detecting gas. In the present study, a typical nano-structure on the wing of Morpho butterflies is mimicked and simplified for constructing a refractive index based gas sensor. Moreover, partial derivative of the optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, is utilized based on the rigorous coupled-wave analysis (RCWA) method. Finally, the effects of the nano-structure’s shape on the partial derivative are analyzed. The results can be applied to the design of the bioinspired refractive index based gas sensor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

235-240

Citation:

Online since:

July 2011

Export:

Price:

[1] H. Tada, S. Mann, I. Miaoulis, and P. Wong: Optics Express Vol. 5 (1999), p.87.

Google Scholar

[2] L. Plattner: Journal of The Royal Society Interface Vol. 1 (2004), p.49.

Google Scholar

[3] R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson: Nature Photonics Vol. 1 (2007), p.123.

DOI: 10.1038/nphoton.2007.2

Google Scholar

[4] L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin: Advanced Materials Vol. 22 (2010), p.1351.

DOI: 10.1002/adma.200902763

Google Scholar

[5] Y. Zhao and X. Zhao and Z. Gu: Advanced Functional Materials Vol. 20 (2010), p.2970.

Google Scholar

[6] D. James, S. M. Scott, Z. Ali, and W. T. O Hare: Microchim Acta Vol. 149 (2005), p.1.

Google Scholar

[7] A. P. F. Turner, and N. Magan: Nature Reviews Microbiology Vol. 2 (2004), p.161.

Google Scholar

[8] L. M. Bonanno and L. A. DeLouise: Langmuir Vol. 23 (2007), p.5817.

Google Scholar

[9] G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss: Appl. Phys. Lett. Vol. 93 (2008), p.161109.

Google Scholar

[10] D. Block and L. L. Chan and B. T. Cunningham: Sensors and Actuators B: Chemical Vol. 120 (2006), p.187.

Google Scholar

[11] N. Ganesh and I. D. Block and B. T. Cunningham: Appl. Phys. Lett. Vol. 89 (2006), p.23901.

Google Scholar

[12] R. C. Bailey and J. T. Hupp: Journal of the American Chemical Society Vol. 124 (2002), p.6767.

Google Scholar

[13] T. Gao and J. Gao and M. J. Sailor: Langmuir Vol. 18 (2002), p.9953.

Google Scholar

[14] N. P. van der Aa and R. M. M. Mattheij: Journal of the Optical Society of America A Vol. 24 (2007), p.2692.

Google Scholar

[15] N. P. van der Aa, Sensitivity analysis for grating reconstruction, PhD Thesis, Eindhoven University of Technology, Eindhoven, Netherlands, (2007).

Google Scholar

[16] M. G. Moharam and T. K. Gaylord: Journal of the Optical Society of America Vol. 71 (1981), p.811.

Google Scholar

[17] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord: Journal of the Optical Society of America A Vol. 12 (1995), p.1068.

Google Scholar

[18] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord: Journal of the Optical Society of America A Vol. 12 (1995), p.1077.

Google Scholar

[19] P. Lalanne, and G. M. Morris: Journal of the Optical Society of America A Vol. 13 (1996), p.779.

Google Scholar

[20] G. Granet, and B. Guizal: Journal of the Optical Society of America A Vol. 13 (1996), p.1019.

Google Scholar

[21] L. Li: Journal of the Optical Society of America A Vol. 13 (1996), p.1870.

Google Scholar