Structure and Magnetic Properties of Mn-Zn Ferrite Synthesized by Glycine-Nitrate Auto-Combustion Process

Article Preview

Abstract:

Manganese-Zinc ferrites belong to the group of soft ferrite materials characterized by high magnetic permeability and low power loses. These materials are mainly used as cores for inductors, transformers, recording heads and noise filters among others. In this study, nanocrystalline Mn-Zn ferrite with the chemical formula Mn1-xZnxFe2O4 with x=0.2, 0.4, 0.6, 0.8 has been successfully synthesized by glycine-nitrate auto-combustion process using glycine as a fuel and nitrates as oxidants. The structures and magnetic properties of the resulting powder were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). It is revealed from the XRD pattern than a significant amount nanocrystalline Mn1-xZnxFe2O4 ferrite with average crystallite size in the range 43.25-66.7 nm has been formed. The magnetic measurement gives a typical value of saturation magnetic of 34-69 emu/g and coercivity of 40-60 Oe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

520-525

Citation:

Online since:

November 2011

Export:

Price:

[1] G. Ott, J. Wrba and R. Lucke: J. Magn. Magn. Mater. Vol. 535 (2003) pp.254-255.

Google Scholar

[2] U. Ghazanfar, S.A. Siddiqi and G. Abbas: Mater. Sci. Eng. B Vol. 118 (2005) p.84.

Google Scholar

[3] P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang and A.A. Volinsky: J. Magn. Magn. Mater. Vol. 322 (2010) p.173–177.

Google Scholar

[4] E. Auzans, D. Zins and R. Massart: J. Mater. Sci. Vol. 34 (1999) p.1253.

Google Scholar

[5] M. Rozman and M. Drofenik: J. Am. Ceram. Soc. Vol. 78 (1995) p.2449.

Google Scholar

[6] A. Thakur and M. Singh: Ceram. Int. Vol. 29 (2003) p.505.

Google Scholar

[7] R.V. Mangalaraja, S. Ananthakmar, P. Manohara, F.D. Gnanama and M. Awano: Mater. Sci. and Eng. A Vol. 367 (2004) p.301–305.

Google Scholar

[8] D. Makovec, A. Kosak and M. Drofenik: Nanotechnology Vol. 15 (2004) p.160.

Google Scholar

[9] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos: Mater. Lett. Vol. 10 (1990) p.6.

Google Scholar

[10] J.J. Kingsley and L.R. Rederson: Mater. Lett. Vol. 18 (1993) p.89.

Google Scholar

[11] C. Suryanarayana and M. Grant Norton: X-ray Diffraction; A practical Approach (Plenum Press, New York 1998).

Google Scholar

[12] J. Giri, T. Sriharsha, S. Asthana, T.K.G. Rao, A.K. Nigam and D. Bahadur: J. Magn. Magn. Mater. Vol. 293 (2005) p.55.

Google Scholar

[13] P.M. Botta, P.G. Bercoff, E.F. Aglietti, H.R. Bertorello and J.M.P. López: Jornadas SAM/CONAMET/Simpósio Matéria (2003) p.1042.

Google Scholar

[14] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan and B. Jeyadevan: J. Magn. Magn. Mater. Vol. 298 (2006) p.83.

Google Scholar

[15] S. Dasgupta, K.B. Kim, J. Ellrich, J. Eckert and I. Manna: J. Alloys Compd, Vol. 424 (2006) p.13–20.

Google Scholar

[16] M. Mozaffari, F. Ebrahimi, S. Daneshfozon and J. Amighian: J. Alloys Compd, Vol. 449 (2007) pp.65-67.

Google Scholar

[17] W. H. Von Aulock: Handbook of microwave ferrite materials (Academic Press INC., New York 1965).

Google Scholar